JP3883118B2 - Optical directional coupler and manufacturing method of optical directional coupler - Google Patents
Optical directional coupler and manufacturing method of optical directional coupler Download PDFInfo
- Publication number
- JP3883118B2 JP3883118B2 JP2002313722A JP2002313722A JP3883118B2 JP 3883118 B2 JP3883118 B2 JP 3883118B2 JP 2002313722 A JP2002313722 A JP 2002313722A JP 2002313722 A JP2002313722 A JP 2002313722A JP 3883118 B2 JP3883118 B2 JP 3883118B2
- Authority
- JP
- Japan
- Prior art keywords
- waveguide
- bending
- optical
- region
- directional coupler
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Landscapes
- Optical Integrated Circuits (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、光方向性結合器及び光方向性結合器の製造方法に関する。詳しくは、光ファイバ通信に用いられる導波路光都品において、光パワーを合分波する光方向性結合器に係る。
【0002】
【従来の技術】
光通信技術の急速な発達により、各種光部品が研究開発されているが、中でも平面基板上の光導波路を基本とした導波路型光部品が最も重要な位置を占めている。
これは、導波路型光部品がフォトリソグラフィ技術及び微細加工技術により光波長以下の精度で再現性良く量産可能という特徴を有するからである。
特に、近年は導波路型光部品の大規模化・複雑化が進んでいる。
このような導波路規模の大規模化・複雑化に伴って、量産性向上のため、単位チップあたりの省スペース化が切望されている。
【0003】
ところで、このような導波路型光部品において、光方向性結合器は最も基本的な回路要素である。
例えば、長距離伝送実験において用いられている光導波路による大規模利得等化器は、所望の光学特性を実現するために、20ヶの50%結合光方向性結合器及び5組の遅延線の縦列接続により構成されており、その全回路長は27.9cmにも及ぶ(非特許文献1参照)。
【0004】
以下に、図を用いて上述の文献において用いられている従来の光方向性結合器の概要を説明する。
従来の光方向性結合器の概略図を図10に示す。
従来の光方向性結合器は、2本の入力導波路221及び222、第1曲げ導波路223及び224、直線導波路225及び226、第2曲げ導波路227及び228、更に2本の出力光導波路229及び230からなる。
【0005】
互いに光結合が生じない間隔Sを有する2本の入力導波路221及び222は、それぞれ、第1曲げ導波路223及び224を介して、2本の直線導波路225及び226に接続される。
同様に、2本の直線導波路225及び226は、それぞれ、第2曲げ導波路227及び228を介して、互いに光結合が生じない間隔Sにある2本の入力導波路229及び230へ接続される。
【0006】
上記光方向性結合器においては、例えば、入力導波路221より入射した光波は、第1曲げ導波路223を経由して、光結合を生じる領域1において他方の光導波路と光学的に結合を生じ、第2曲げ導波路227及び228を経由して出力導波路229及び230へと出力される。
一般に、方向性結合器の結合比C.R.は、下式(1)で与えられる。
【0007】
【数3】
【0008】
ここで、Lは直線導波路225,226の長さ、dLは第1及び第2曲げ導波路223,224,227,228において生じる結合成分を直線部の長さに変換した結合長、L0は定数である。
ビーム伝搬法を用いた数値計算によれば、導波路パラメータとして、幅W=7μm、厚さH=6μm、R=10mm、比屈折率差Δ=0.75%、直線導波路間隔G=3μmにて、図9の構造の光方向性結合器ではL0=3349μm,dL=−6463μmとなり、入力光が出力導波路229及び230に等分配される50%結合長L3dB=1439μmが得られる。
また、その損失は0.02dBである。
【0009】
前述の利得等化器フィルタでは、熱光学効果位相シフタの熱干渉を避けるため、入力導波路間隔S及び出力導波路間隔Sは250μm程度とする必要がある。本従来例における導波路パラメータを用いれば、S=250μmでは単位光方向性結合器の回路長は、その第1曲げ導波路の始端から第2曲げ導波路の終端までで5900μmとなる。
従って、利得等化器フィルタでは全回路長27.9cmのうち11.8cmを光方向性結合器が占める。
【0010】
一方、光回路の導波路幅を狭くすることで光結合を強め、光方向性結合器を短長化することが可能である。
以下にビーム伝搬法による数値例を挙げて、従来手法を説明する。
導波路幅Wに対する50%結合長L3dBの関係、及び、その導波路幅Wにおける単独導波路の半径5mmの90度曲げ導波路の伝搬損失を図11に示す。
導波路幅W以外の導波路パラメータは前出の従来例と同様である。
【0011】
導波路幅を狭めることにより、直線導波路225,226での光電界の導波路コアからの染み出しが大きくなるため、光結合を生じる領域1での光結合を強めることができる。
図10より、例えば、W=3μmではL3dB=105μmであるので、上述の条件(S=250μm)では、光方向性結合器の第1曲げ導波路の始端から第2曲げ導波路の終端までの回路長は4570μmへの短長化が可能である。
しかしながら、W=3μmの光導波路では同時に光方向性結合器以外の導波路部分での曲げ半径5mmでの90度曲げによる伝搬損失は2.5dBまで増加する傾向が見て取れる。
【0012】
【非特許文献1】
T. Matsuda et al , ″Ultra−broadband Raman−amplified transoceanic system with adaptive gain equalization″, the 4th International Convention on Undersea Communication (SubOptic 2001), PDP4, Kyoto, May, 2001.
【0013】
【発明が解決しようとする課題】
前述のように、従来の光方向性結合器は光導波路上において機能回路を構成するために必要不可欠な構成要素であるが、例えば前述の例においては、光方向性結合器の全長はおよそ6mmにも及び、その短長化が切実な問題であった。
更に、光方向性結合器の短長化の方策のひとつである導波路幅の狭幅化を適用したとしても、光方向性結合器以外の領域での伝搬損失が極端に大きくなり、実用的な解ではなかった。
本発明は、光方向性結合器以外の領域での伝搬損失を増大させることなく、光方向性結合器の短長化を図ることを目的とする。
【0014】
【課題を解決するための手段】
本発明において開示される発明の概要を簡単に説明すれば次の通りである。
本発明における光方向性結合器は、基板上に形成された光導波路により構成され、光方向性結合器の結合領域以外の領域においては、孤立導波路としての伝搬損失が十分無視できるほど小さい。
【0015】
加えて光方向性結合器は、2本の入力導波路が、光結合が生じない程度十分離れた間隔から第1曲げ導波路を介して徐々に接近し、直線導波路において一定間隔を保ちつつ平行に延在し、再び第2曲げ導波路を介して光結合が生じない位置まで離遠する構造を有し、前記第1曲げ導波路及び前記第2曲げ導波路において導波路パラメータが断熱的に変化することで、その光結合を生じる領域においては導波路V値が、光結合を生じない領域における導波路V値よりも小さく、かつ光結合を生じる領域において導波路は単一モードであり、前記第1曲げ導波路を構成する2本の導波路におけるV値の伝搬方向変化率は等しく、また、前記第2曲げ導波路を構成する2本の導波路におけるV値の伝搬方向変化率は等しく、前記光結合を生じる領域におけるV値は1以上かつ零次ベッセル関数の第1の零点未満である光学的特性を有する。
光結合を生じる領域における最小V値を1以上とすることで、光方向性結合器自体の放射損失増加も防ぐことができる。
【0016】
このような光方向性結合器は、光結合を生じない領域から光結合を生じる領域にかけて、導波路の屈折率を断熱的に小さくすることにより実現される。
この場合、光結合を生じる領域におけるV値が光結合を生じない領域におけるV値に比べて小さく設定される。
ここで用いた「断熱的」とは、光伝搬の解析において用いられる″adiabatic″を意味し、熱力学で用いられる「断熱変化」を意味するものではない。
また、前記入力導波路と前記第1曲げ導波路の接点、前記出力導波路と前記第2曲げ導波路の接点、前記直線導波路と前記第1曲げ導波路の接点、前記直線導波路と前記第2曲げ導波路の接点、及び前記第1、第2曲げ導波路において導波路屈折率の連続性を保ちつつ、導波路屈折率を十分滑らかに変化させることで、当該光方向性結合器の伝搬損失の増加を回避できる。
さらに、入力導波路における屈折率変化n ( x ) が、直線導波路における屈折率n1、光結合を生じない領域における屈折率n2、入力導波路と第1曲げ導波路の接点の伝搬方向位置x1、直線導波路と第1曲げ導波路の接点との境界の伝搬方向位置x2について、
【0017】
【数4】
【0018】
を満足する構成としてもよい。
【0019】
このような光方向性結合器の構造は、基板上に形成された光導波路において、前記第1曲げ導波路、前記第2曲げ導波路に対して導波路屈折率を調整可能なレーザを照射して、前記入力導波路から前記直線導波路にかけて、及び前記出力導波路から前記直線導波路にかけて、導波路屈折率を徐々に断熱的に変化させることにより作製される。
また、前記第1曲げ導波路、前記第2曲げ導波路の屈折率の変化率は、光方向性結合器に対する導波路屈折率を調整可能なレーザ光の照射位置を適切な速度で移動させることにより実現される。
【0020】
上記方法に加え、光結合を生じない領域から光結合を生じる領域にかけて、前記第1曲げ導波路及び前記第2曲げ導波路の幅を断熱的に狭くすることによっても、実現可能である。
この場合、光結合を生じる領域における横方向V値が光結合を生じない領域における横方向V値に比べて小さく設定される。
また、前記入力導波路と前記第1曲げ導波路の接点、前記出力導波路と前記第2曲げ導波路の接点、前記直線導波路と前記第1曲げ導波路の接点、前記直線導波路と前記第2曲げ導波路の接点、及び前記第1、第2曲げ導波路において導波路屈折率の連続性を保ちつつ、導波路幅を十分滑らかに変化させることで、当該光方向性結合器の伝搬損失の増加を回避できる。
また、第1曲げ導波路における導波路幅変化W ( x ) が、光結合を生じない領域における導波路幅W1、光結合を生じる領域における導波路幅W2、第1曲げ導波路の光結合を生じない領域との接点の伝搬方向位置x1、第1曲げ導波路の光結合を生じる領域との接点 の伝搬方向位置x2について、
【0021】
【数5】
【0022】
を満足する構成としてもよい。
【0023】
上記方法に加え、光結合を生じない領域から光結合を生じる領域にかけて、前記第1曲げ導波路及び前記第2曲げ導波路の厚さを断熱的に薄くすることにより、光結合を生じる領域における縦方向V値が光結合を生じない領域における縦方向V値に比べて小さくすることができる。
【0024】
更に、その光方向性結合器の構造は、下部クラッド層を成膜する工程とコア膜を成膜する工程と導波路コアパターンを形成する工程と、上部クラッドを形成する工程を及び、前記コアパターンを形成する工程と上部クラッド層を成膜する工程の間に、前記第1曲げ導波路の前記直線導波路側の領域、前記第2曲げ導波路の前記直線導波路側の領域、及び前記直線導波路全体を除く基板の上部に、適切な高さにシャドウマスクを配置することで、前記第1曲げ導波路の前記直線導波路側の領域、前記第2曲げ導波路の前記直線導波路側の領域、及び前記直線導波路全体を、異方性エッチングすることで、前記入力導波路から前記直線導波路にかけて、及び前記出力導波路から前記直線導波路にかけて、導波路厚を徐々に断熱的に変化させる工程を有する作製方法により作製される。
【0025】
本発明の光方向性結合器では、光結合を生じない領域に比べて光結合を生じる領域でのV値は小さい、即ち導波路コアからの光電界の染み出し成分は大きくなる。
従って、光結合を生じる領域での2本の導波路のモードの重なりは従来型の光方向性結合器に比べて大きくなる。
【0026】
即ち、光結合を生じる領域における2本の導波路間の光結合も強められ、光方向性結合器の短長化が図られる。
加えて、本光方向性結合器では、光方向性結合器以外の回路要素において損失の増大を引き起こすことがない。
これは、光方向性結合器の曲げ導波路部にモード変換器を内包しているので、光結合を生じない領域及び当該光方向性結合器以外の回路要素においては大きなV値の確保が可能、即ち、導波路コアに対して強い光電界の閉じ込めを維持できるからである。
【0027】
また、光方向性結合器自体においても、その曲げ導波路部のモード変換器は光結合を生じない領域と光結合を生じる領域の間で断熱的に、即ち導波路の閉じ込めを徐々に変化させることでモード変換を行うので、光方向性結合器においても過剰な損失を生じない。
以上のように、本発明によれば、その他の回路要素での伝搬損失増大という光学特性の劣化を引き起こすことなく、光方向性結合器の短長化が可能となる。
【0028】
【発明の実施の形態】
以下に図面を参照して本発明の実施の形態を詳細に説明する。
なお、発明の実施の形態を説明するための全図において、同一機能を有するものは同一符号をつけ、その繰り返しの説明は省略する。
以下の例では石英系光導波路における光方向性結合器について説明する。
【0029】
〔実施例1〕
本発明の第1の実施例に係る光方向性結合器の概略図及びその導波路コアの屈折率の分布を図1に示す。
本実施例の光方向性結合器は、入力導波路321及び322、第1曲げ導波路323及び324、直線導波路325及び326、第2曲げ導波路327及び328、出力導波路329及び330からなる。
【0030】
距離Sだけ離れた位置にある導波路幅Wの入力導波路321及び322は、第1曲げ導波路323及び324を介して直線導波路325及び326に接続される。
更に、直線導波路325及び326は第2曲げ導波路327及び328を介して、距離Sだけ離れた位置における出力導波路329及び330に接続される。直線導波路325及び336は間隔Gを隔てて、長さLに渡って平行に延在する。
【0031】
また、第1曲げ導波路323及び324は、それぞれ入力導波路321及び322から出力導波路325及び326にかけて、その屈折率がn2からn1へと変化する。
即ち、入力導波路321及び322と第1曲げ導波路323及び324の境界Aから第1曲げ導波路323及び324と直線導波路325及び326の境界Bにかけて、導波路の屈折率はn2からn1までに小さくなる。
【0032】
一方、直線導波路325及び326と第2曲げ導波路327及び328の境界Cから第2曲げ導波路327及び328と出力導波路329と330の境界Dにかけて、導波路の屈折率はn1からn2まで大きくなる。
また、入力導波路321及び322と出力導波路329及び330は一様なn2の屈折率を有し、直線導波路325及び326は一様な屈折率n1を有する。
【0033】
上述の構造を有する光方向性結合器をW=5μm,コア厚みH=5μm,G=2μm,R=10mm,S=250μm,n2=1.4804,n1=1.4692,クラッド屈折率n0=1.4582として作製した。
作製した光方向性結合器の結合率と直線導波路325及び326の長さLの関係を図2に示す。
前記第1曲げ導波路323,324における屈折率変化は、境界A及び境界Bでの連続性を保つため、下式(2)とした。
【0034】
【数6】
【0035】
ここで、x2は境界Aにおける伝搬方向位置,x1は境界Bにおける伝搬方向位置である。
更に、ここでは、第1曲げ導波路323,324にともに式(2)を適用した。即ち、第1曲げ導波路323及び第1曲げ導波路324におけるV値の伝搬方向変化率は等しく設定されることになる。
前記第2曲げ導波路327,328についても、境界C及び境界Dでの連続性を保つように設定した。
【0036】
上記パラメータにおけるV値は、同面積のコアを有する光ファイバのV値に換算して、光結合を生じない領域2ではV2=2.74、光結合を生じる領域1ではV1=1.93である。
50%結合長はL3dB=128μm、光方向性結合器単体の損失は0.05dBであった。
また、ビーム伝搬法による計算によれば、光方向性結合器以外の領域における、半径2mmの90度曲げの伝搬損失は、わずか0.1dBであった。
更に、本パラメータでは、第1曲げ導波路の始端から第2曲げ導波路の終端までの全長は4.6mmであった。
【0037】
本実施例の光方向性結合器は以下の方法により作製した。
本実施例における光方向性結合器の作製方法の概略を図3に示す。
まず、火炎堆積法及び反応性イオンエッチングによる一般的な石英系光導波路の作製法に基づいて、光方向性結合器339を作製した。
このとき、導波路パラメータは導波路屈折率をn2=n1=1.4606とした以外は、前出のパラメータと同様となるように作製した。
【0038】
次に、波長193nmのArFエキシマレーザ335からのレーザ光338を100%ミラー336及びレンズ337を介して光方向性結合器339へ垂直に照射した。
ここで、レンズ337を調整しレーザ光338を導波路コア333にて結像させ、導波路コア333での光強度を260mJ/cm2/pu1seとした。
レーザパルスの繰り返しは80ppsであった。
レーザ光照射にあたっては、レーザ光の結像位置が、入力導波路321,322から出力導波路329,330へ向かって移動するように、光方向性結合器339を図4に示す速度で矢印Aの方向へ移動させた。
【0039】
即ち、レーザ光338が入力導波路321,322に照射されているときは、一定速度v2で、第1曲げ導波路323,324に照射されているときは式(2)と逆の特性の速度で、直線導波路325,326に照射されているときは一定速度v1で、第2曲げ導波路に照射されているときには式(2)と逆の特性の速度で、更に出力導波路329,330に照射されているときには一定速度v2にて、光方向性結合器339を移動させた。
ここで、移動速度はv2=0.2mm/h,v1=2mm/hとした。
本設定により、導波路の初期屈折率1.4606を、光結合を生じない領域2での最大屈折率n2=1.4804へと、光結合を生じる領域1での最小屈折率n1=1.4692へと変化させた。
【0040】
本実施例では、導波路屈折率を調整可能なレーザとしてArFエキシマレーザを用いたが、例えばKrFエキシマレーザやCO2レーザなどの屈折率変化を誘起可能な光源であれば、光源の種類によらず本発明が適用可能であることは明らかである。
また、石英系光導波路の作製法として火炎堆積法及び反応性イオンエッチングによる方法を用いたが、CVD法などの気相堆積法やスピンオングラス(SOG)のようなゾルゲル法による堆積方法及びイオンミリングなどのエッチング方法を用いても本発明は実現可能であり、光導波路の作製方法によらないことも明らかである。
【0041】
〔実施例2〕
本発明の第2の実施例に係る光方向性結合器の概略図を図5に示す。
本実施例の光方向性結合器は、2つの入力導波路101及び102、第1曲げ導波路103及び104、直線導波路105及び106、第2曲げ導波路107及び108、出力導波路109及び110からなる。
距離Sだけ離れた位置にある導波路幅W1の入力導波路101及び102は、第1曲げ導波路103及び104を介して直線導波路105及び106へ接続される。
【0042】
第1曲げ導波路103は、入力導波路101及び直線導波路105と連続的に接続されつつ、その導波路幅がW1からW2へと断熱的に狭くなる構造を有する。
同様に第1曲げ導波路104は、入力導波路102及び直線導波路106と連続的に接続されつつ、その導波路幅がW1からW2へと断熱的に狭くなる構造を有する。
更に、直線導波路105及び106は長さLlに渡って平行に延在した後、第2曲げ導波路107及び108を経由して出力導波路109及び110へと接続される。
【0043】
ここで、第2曲げ導波路107及び108は第1曲げ導波路103及び104と線対称の構造を有する。
即ち、第2曲げ導波路107は、直線導波路105から出力導波路109に向かってその幅を断熱的にW2からW1まで広げる。
また、第2曲げ導波路108は直線導波路106から出力導波路110に向かって、第1曲げ導波路103(104)と対称に、その幅を断熱的にW2からW1まで広げる。
【0044】
第1、第2曲げ導波路では入力導波路101,102側、及び出力導波路109,110側における横方向V値に比べて、直線導波路105,106側での横方向V値は小さくなる。
即ち、後者の領域では光電界の染み出し成分を大きく設定することができ、同領域で大きな光結合を実現することができる。
本実施例では、W1=7μm,W2=3μm,S=250μm,第1曲げ導波路103,104及び第2曲げ導波路105及び106の曲げ半径R=10mm,導波路厚さH=6μm,導波路の比屈折率差Δ=0.75%として石英系光導波路による光方向性結合器を作製した。
【0045】
作製にあたっては、火炎堆積法、及び反応性イオンエッチングによる一般的な作製工程を採用した。
上記パラメータでは光結合を生じない領域2における横方向V値はV2=2.52であり、光結合を生じる領域1における横方向V値はV1=1.08である。
また、本実施例においては第1曲げ導波路103,104における導波路幅の変化は下式(3)に従った。
【0046】
【数7】
【0047】
導波路幅変化の概略を図5の下部に示す。
ここで、x2は入力導波路101,102と第1曲げ導波路103,104の接点Aの伝搬方向の位置であり、x1は第1曲げ導波路103,104と直線導波路105,106の接点Bの伝搬方向の位置である。
また、第2曲げ導波路107,108に対しても、式(3)と同様の特性を有する導波路幅変化を与えた。
【0048】
本実施例における光方向性結合器の結合率の直線部結合長L1依存性を図6に示す。
50%結合長は115μmであった。
これは従来の光方向性結合器の50%結合長である1439μmに比較して1/10以下の長さである。
また、第1曲げ導波路の始端から第2曲げ導波路の終端までの全長は4.6mmてあり、従来の光歩行性結合器に比較しておよそ3/4に短長化された。
また、本光方向性結合器単体の損失は、0.04dBであった。
これは、従来の光方向性結合器の損失0.02dBに比べて0.02dBの増加が見られるのみである。
【0049】
〔実施例3〕
本発明の第3の実施例に係る光方向性結合器の概略について上面図及び側面図を図7に示す。
本実施例の光方向性結合器は、入力導波路151及び152、第1曲げ導波路153及び154、直線導波路155及び156、第2曲げ導波路157及び158、出力導波路159及び160からなる。
距離S1だけ離れた位置にある導波路幅Wの入力導波路151及び152は、第1曲げ導波路153及び154を介して直線導波路155及び156に接続される。
【0050】
更に、直線導波路155及び156は第2曲げ導波路157及び158を介して距離S2だけ離れた位置にある出力導波路159及び160に接続される。
本実施例における光方向性結合器では、図7側面図に示すように、第1曲げ導波路153及び154、第2曲げ導波路157及び158に、それぞれ、入力導波路151及び152から、出力導波路159及び160から直線導波路155及び156に向かって、断熱的にその厚みがH1からH2となる構造を有する。
【0051】
この構造においては、第1、第2曲げ導波路では入力導波路151,152側、及び出力導波路159,160側における縦方向V値に比べて、直線導波路155,156側での縦方向V値は小さく設定できる。
即ち、後者の領域では光電界の染み出し成分を大きく設定することができ、同領域で大きな光結合を実現することができる。
【0052】
上記構造を有する光方向性結合器をW=6μm,H1=6μm,H2=3μm,S1=400μm,S2=250μm、導波路の比屈折率差Δ=0.75%の石英系光導波路により作製した。
本実施例の光方向性結合器の結合比と直線導波路長Lの関係を図8に示す。
50%結合長はL3dB=140μmであり、第1曲げ導波路の始端から第2曲げ導波路の終端までの全長は5.5mmであった。
また、90度曲げ導波路の損失も0.02dBと非常に低い値が得られた。
【0053】
本実施例の光方向性結合器は、図9に示す方法により作製した。
まず、図9(a)に示すように、工程1として、基板161上に、石英系ガラス微粒子を火炎堆積法により堆積した後、1000℃以上の高温にて溶融固化することで、厚さ30μmの下部クラッド層162を成膜した。
更に、図9(b)に示すように、工程2として、同様にゲルマニウムを添加した石英系ガラス微粒子を火炎堆積法により堆積した後、1000℃以上の高温にて溶融固化し、厚さ6μmのコア層163を成膜した。
本工程2においては、ゲルマニウムの添加量を適切に調整することで、導波路の比屈折率差Δを0.75%に設定した。
【0054】
引き続き、図9(c)に示すように、工程3として、反応性イオンエッチングにより導波路パターン164を形成した。
本工程3により、入力導波路151,152、第1曲げ導波路153,154、直線導波路155,156、第2曲げ導波路157,158及び出力導波路159,160を形成した。
更に、図9(d)に示すように、工程4として、長さLsの窓を有するシャドウマスク165を導波路パターン164の上面から距離Ds=1.2mmの位置に配置した後、工程5において再び反応性イオンエッチングにより、導波路パターン表面を異方性エッチングした。
ここで、シャドウマスク165はパイレックスガラスによるものを用いた。
【0055】
その後、図9(e)に示すように、工程5として、シャドウマスクの窓の直下のコア厚が3μmとなるようにエッチング時間を調整した。
最後に、図9(f)に示すように、工程6として、工程1,2と同様に火炎堆積法で石英系ガラス微粒子を堆積し、1000℃以上の高温にて溶融固化することで、厚さ30μmの上部クラッド層166を成膜した。
本実施例では、石英系光導波路による実現方法に基づいて説明したが、導波路材料及びその成腹方法には拠らず、例えばインジウムリン化合物などの半導体導波路やポリマー導波路を用いても実現可能であり、更にその作製方法はCVD法などの気相堆積法によっても可能である。
【0056】
このように説明したように、本発明は、光方向性結合器を構成している光導波路のV値を断熱的に(連続的に滑らかに)変化させ、光方向性結合器の長さを短く出来るものである。
V値の変化方法としては、屈折率を変化させる方法と、コア幅を変化させる方法、コアの高さを変化させる方法、及びその組み合わせがある。
本発明を用いることにより、結合比50%の通常の光方向性結合器の場合でも、任意の結合比のものでも方向性結合器全体の長さを短くする事が可能である。
【0057】
なお、実施例1では導波路の屈折率変化、実施例2では導波路のコア幅変化、実施例3では導波路のコア厚さ変化の例を示したが、これらV値を変化させる方法は単独に用いても良いし、適宜組み合わせても用いることもできる。
例えば、「コア幅と高さ」の両方とも変化させる、「コア幅と屈折率」の両方とも変化させる、「コア高さと屈折率」の両方とも変化させる、「コア幅と高さと屈折率」の全てを適宜変化させることも本発明の範囲である。
これらの変化方法を適宜組み合わせて用いれば、V値の変化を大きくすることができ、光回路全体の規模を小型化することができる。
また、小型化することにより基板1枚あたりの光回路数を多く取ることができ、価格的にも歩留まり的にも効果がある。
【0058】
【発明の効果】
以上、実施例に基づいて具体的に説明したように、本発明によれば、光方向性結合器以外の導波路領域での損失の増加及び光方向性結合器自体の損失の増加を招くことなく、光方向性結合器の短長化が可能となる。
【図面の簡単な説明】
【図1】 本発明の第1の実施例における光方向性結合器を示す概略図及びその屈折率分布を示すグラフである。
【図2】 本発明の第1の実施例における光方向性結合器の結合比と直線導波路長の関係を示すグラフである。
【図3】 本発明の第1の実施例の光方向性結合器の作製方法を示す説明図である。
【図4】 本発明の第1の実施例の光方向性結合器の作製方法におけるレーザ光の光方向性結合器への照射位置と照射位置の移動速度の関係を示すグラフである。
【図5】 本発明の第2の実施例における光方向性結合器を示す概略図及びその屈折率分布を示すグラフである。
【図6】 本発明の第2の実施例における光方向性結合器の結合比と直線導波路長の関係を示すグラフである。
【図7】 本発明の第3の実施例における光方向性結合器を示す概略図及び側面図である。
【図8】 本発明の第3の実施例の光方向性結合器の結合比と直線導波路長Lの関係を示す図である。
【図9】 本発明の第3の実施例の光方向性結合器の作製方法を示す工程図である。
【図10】 従来の光方向性結合器を示す概略図である。
【図11】 従来の光方向性結合器の50%結合長と導波路幅の関係、及び90度曲げ導波路の伝搬損失と導波路幅の関係を示すグラフである。
【符号の説明】
101,102,151,152,221,222,321,322 入力導波路
103,104,153,154,223,224,323,324 第1曲げ導波路
105,106,155,156,225,226,325,326 直線導波路
107,108,157,158,227,228,327,328 第2曲げ導波路
109,110,159,160,229,230,329,330 出力導波路
161 基板
162 下部クラッド層
163 コア層
164 導波路パターン
165 シャドウマスク
166 上部クラッド層[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an optical directional coupler and a method for manufacturing the optical directional coupler. Specifically, the present invention relates to an optical directional coupler that multiplexes and demultiplexes optical power in a waveguide optical metrology product used for optical fiber communication.
[0002]
[Prior art]
Due to the rapid development of optical communication technology, various optical components have been researched and developed. Among them, the waveguide type optical component based on the optical waveguide on the flat substrate occupies the most important position.
This is because the waveguide-type optical component has a feature that it can be mass-produced with good reproducibility with accuracy below the light wavelength by photolithography technology and microfabrication technology.
In particular, in recent years, waveguide-type optical components have been increased in scale and complexity.
As the waveguide scale becomes larger and more complicated, space saving per unit chip is eagerly desired in order to improve mass productivity.
[0003]
By the way, in such a waveguide type optical component, the optical directional coupler is the most basic circuit element.
For example, a large-scale gain equalizer using an optical waveguide used in a long-distance transmission experiment has 20 50% coupled optical directional couplers and 5 sets of delay lines in order to realize desired optical characteristics. It is configured by cascade connection, and its total circuit length reaches 27.9 cm (see Non-Patent Document 1).
[0004]
Hereinafter, an outline of a conventional optical directional coupler used in the above-described document will be described with reference to the drawings.
A schematic diagram of a conventional optical directional coupler is shown in FIG.
The conventional optical directional coupler includes two
[0005]
Two
Similarly, the two
[0006]
In the optical directional coupler, for example, the light wave incident from the
In general, the directional coupler coupling ratio C.I. R. Is given by the following equation (1).
[0007]
【number3]
[0008]
Here, L is the length of the
According to the numerical calculation using the beam propagation method, the waveguide parameters are as follows: width W = 7 μm, thickness H = 6 μm, R = 10 mm, relative refractive index difference Δ = 0.75%, linear waveguide spacing G = 3 μm. In the optical directional coupler having the structure shown in FIG. 9, L0 = 3349 μm and dL = −6463 μm, and 50% coupling length L3dB = 1439 μm is obtained in which the input light is equally distributed to the
The loss is 0.02 dB.
[0009]
In the aforementioned gain equalizer filter, the input waveguide interval S and the output waveguide interval S need to be about 250 μm in order to avoid thermal interference of the thermo-optic effect phase shifter. Using the waveguide parameter in this conventional example, when S = 250 μm, the circuit length of the unit optical directional coupler is 5900 μm from the start end of the first bending waveguide to the end of the second bending waveguide.
Therefore, in the gain equalizer filter, the optical directional coupler occupies 11.8 cm out of the total circuit length of 27.9 cm.
[0010]
On the other hand, by reducing the waveguide width of the optical circuit, the optical coupling can be strengthened and the optical directional coupler can be shortened.
The conventional method will be described below by giving numerical examples based on the beam propagation method.
FIG. 11 shows the relationship of the 50% coupling length L3 dB to the waveguide width W and the propagation loss of a 90-degree bent waveguide having a radius of 5 mm of the single waveguide in the waveguide width W.
Waveguide parameters other than the waveguide width W are the same as in the conventional example described above.
[0011]
By narrowing the waveguide width, the optical field in the
From FIG. 10, for example, when W = 3 μm, L3 dB = 105 μm. Therefore, under the above-described condition (S = 250 μm), from the start end of the first bending waveguide of the optical directional coupler to the end of the second bending waveguide. The circuit length can be shortened to 4570 μm.
However, in the optical waveguide of W = 3 μm, it can be seen that the propagation loss due to the 90 ° bending at the bending radius of 5 mm in the waveguide portion other than the optical directional coupler tends to increase to 2.5 dB.
[0012]
[Non-Patent Document 1]
T. Matsuda et al, “Ultra-broadband Raman-amplified transoceanic system with adaptive gain equalization”, the 4th International Convention on Undersea Communication (SubOptic 2001), PDP4, Kyoto, May, 2001.
[0013]
[Problems to be solved by the invention]
As described above, the conventional optical directional coupler is an indispensable component for configuring a functional circuit on the optical waveguide. For example, in the above-described example, the total length of the optical directional coupler is approximately 6 mm. However, shortening the length was a serious problem.
Furthermore, even if narrowing of the waveguide width, which is one of the measures for shortening the optical directional coupler, is applied, the propagation loss in the region other than the optical directional coupler becomes extremely large, which is practical. It was not a good solution.
An object of the present invention is to shorten the length of an optical directional coupler without increasing propagation loss in a region other than the optical directional coupler.
[0014]
[Means for Solving the Problems]
The outline of the invention disclosed in the present invention will be briefly described as follows.
The optical directional coupler according to the present invention is constituted by an optical waveguide formed on a substrate, and in a region other than the coupling region of the optical directional coupler, the propagation loss as an isolated waveguide is sufficiently small to be negligible.
[0015]
In addition, the optical directional coupler allows the two input waveguides to gradually approach through the first bending waveguide from an interval sufficiently separated so that optical coupling does not occur, while maintaining a constant interval in the linear waveguide. It has a structure that extends in parallel and separates to a position where optical coupling does not occur again through the second bending waveguide, and the waveguide parameters are adiabatic in the first bending waveguide and the second bending waveguide. The waveguide V value in the region where the optical coupling occurs is smaller than the waveguide V value in the region where the optical coupling does not occur, and the waveguide is single mode in the region where the optical coupling occurs. The rate of change in the propagation direction of the V value in the two waveguides constituting the first bent waveguide is equal, and the rate of change in the propagation direction of the V value in the two waveguides constituting the second bent waveguide. Are equalIn the region where the optical coupling occurs, the V value is 1 or more and less than the first zero of the zero-order Bessel functionHas optical properties.
By setting the minimum V value in the region where optical coupling occurs to 1 or more, an increase in radiation loss of the optical directional coupler itself can be prevented.
[0016]
Such an optical directional coupler is realized by adiabaticly reducing the refractive index of the waveguide from a region where no optical coupling occurs to a region where optical coupling occurs.
In this case, the V value in the region where optical coupling occurs is set smaller than the V value in the region where optical coupling does not occur.
As used herein, “adiabatic” means “adiabatic” used in the analysis of light propagation, and does not mean “adiabatic change” used in thermodynamics.
A contact point between the input waveguide and the first bending waveguide; a contact point between the output waveguide and the second bending waveguide; a contact point between the linear waveguide and the first bending waveguide; By changing the waveguide refractive index sufficiently smoothly while maintaining the continuity of the waveguide refractive index in the contact point of the second bending waveguide and the first and second bending waveguides, the optical directional coupler An increase in propagation loss can be avoided.
Furthermore, the refractive index change n in the input waveguide ( x ) Are the refractive index n1 in the linear waveguide, the refractive index n2 in the region where no optical coupling occurs, the propagation direction position x1 of the contact between the input waveguide and the first bending waveguide, and the contact between the linear waveguide and the first bending waveguide. About the propagation direction position x2 of the boundary of
[0017]
[Expression 4]
0018]
It is good also as composition which satisfies.
0019]
In such an optical directional coupler structure, in the optical waveguide formed on the substrate, the first bending waveguide and the second bending waveguide are irradiated with a laser whose waveguide refractive index can be adjusted. Thus, the refractive index of the waveguide is gradually adiabatically changed from the input waveguide to the linear waveguide and from the output waveguide to the linear waveguide.
Also, the rate of change in the refractive index of the first bending waveguide and the second bending waveguide is to move the irradiation position of the laser beam capable of adjusting the waveguide refractive index with respect to the optical directional coupler at an appropriate speed. It is realized by.
0020]
In addition to the above method, it can also be realized by adiabaticly reducing the width of the first bending waveguide and the second bending waveguide from a region where optical coupling does not occur to a region where optical coupling occurs.
In this case, the lateral V value in the region where optical coupling occurs is set smaller than the lateral V value in the region where optical coupling does not occur.
A contact point between the input waveguide and the first bending waveguide; a contact point between the output waveguide and the second bending waveguide; a contact point between the linear waveguide and the first bending waveguide; Propagation of the optical directional coupler by changing the waveguide width sufficiently smoothly while maintaining the continuity of the waveguide refractive index in the contact points of the second bending waveguide and the first and second bending waveguides. Increase in loss can be avoided.
Further, the waveguide width change W in the first bending waveguide ( x ) Is the waveguide width W1 in the region where no optical coupling occurs, the waveguide width W2 in the region where optical coupling occurs, the propagation direction position x1 of the contact with the region where no optical coupling occurs in the first bending waveguide, the first bending guidance Contact point with the optical coupling region of the waveguide About the propagation direction position x2 of
0021]
[Equation 5]
0022]
It is good also as composition which satisfies.
0023]
In addition to the above method, the thickness of the first bending waveguide and the second bending waveguide from the region where no optical coupling occurs to the region where optical coupling occursRefuseBy making it thermally thin, the vertical direction V value in the region where optical coupling occurs can be made smaller than the vertical direction V value in the region where optical coupling does not occur.
0024]
Further, the structure of the optical directional coupler includes a step of forming a lower clad layer, a step of forming a core film, a step of forming a waveguide core pattern, and a step of forming an upper clad. Between the step of forming a pattern and the step of forming the upper cladding layer, the region of the first bent waveguide on the straight waveguide side, the region of the second bent waveguide on the straight waveguide side, and the An area on the linear waveguide side of the first bending waveguide and the linear waveguide of the second bending waveguide are arranged by arranging a shadow mask at an appropriate height above the substrate excluding the entire linear waveguide. The thickness of the waveguide is gradually insulated from the input waveguide to the linear waveguide and from the output waveguide to the linear waveguide by anisotropic etching of the entire region and the linear waveguide. Changing process It is manufactured according to the manufacturing method having.
0025]
In the optical directional coupler of the present invention, the V value in the region where the optical coupling occurs is smaller than that in the region where the optical coupling does not occur, that is, the oozing component of the optical electric field from the waveguide core becomes large.
Therefore, the overlap of the modes of the two waveguides in the region where the optical coupling occurs is larger than that of the conventional optical directional coupler.
0026]
That is, the optical coupling between the two waveguides in the region where the optical coupling occurs is strengthened, and the optical directional coupler can be shortened.
In addition, this optical directional coupler does not cause an increase in loss in circuit elements other than the optical directional coupler.
This is because the mode converter is included in the bending waveguide portion of the optical directional coupler, so that a large V value can be secured in a region where no optical coupling occurs and in circuit elements other than the optical directional coupler. That is, confinement of a strong optical electric field with respect to the waveguide core can be maintained.
0027]
Also in the optical directional coupler itself, the mode converter of the bent waveguide section adiabatically changes the region where no optical coupling occurs and the region where optical coupling occurs, that is, gradually changes the waveguide confinement. Mode conversion is performed to prevent excessive loss even in the optical directional coupler..
Less thanAs described above, according to the present invention, it is possible to shorten the length of the optical directional coupler without causing deterioration of optical characteristics such as propagation loss increase in other circuit elements.
0028]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
Note that components having the same function are denoted by the same reference symbols throughout the drawings for describing the embodiments, and the repetitive description thereof is omitted.
In the following example, an optical directional coupler in a silica-based optical waveguide will be described.
0029]
[Example 1]
FIG. 1 shows a schematic diagram of the optical directional coupler according to the first embodiment of the present invention and the refractive index distribution of the waveguide core.
The optical directional coupler of this embodiment includes
0030]
The input waveguides 321 and 322 having the waveguide width W, which are separated by a distance S, are connected to the
Further, the
0031]
Further, the refractive indexes of the
That is, from the boundary A of the
0032]
On the other hand, from the boundary C of the
The input waveguides 321 and 322 and the
0033]
The optical directional coupler having the above-described structure is W = 5 μm, core thickness H = 5 μm, G = 2 μm, R = 10 mm, S = 250 μm, n2 = 1.4804, n1 = 1.4692, cladding refractive index n0 = It was produced as 1.4582.
FIG. 2 shows the relationship between the coupling rate of the produced optical directional coupler and the length L of the
The refractive index change in the
0034]
【number6]
0035]
Here, x2 is a propagation direction position at the boundary A, and x1 is a propagation direction position at the boundary B.
Further, here, the expression (2) is applied to both the
The
0036]
The V value in the above parameters is converted to the V value of an optical fiber having a core of the same area, V2 = 2.74 in the
The 50% coupling length was L3 dB = 128 μm, and the loss of the optical directional coupler alone was 0.05 dB.
Further, according to the calculation by the beam propagation method, the propagation loss of 90 ° bending with a radius of 2 mm in the region other than the optical directional coupler was only 0.1 dB.
Furthermore, with this parameter, the total length from the start end of the first bending waveguide to the end of the second bending waveguide was 4.6 mm.
0037]
The optical directional coupler of this example was manufactured by the following method.
An outline of a method for manufacturing the optical directional coupler in this embodiment is shown in FIG.
First, an optical
At this time, the waveguide parameters were made to be the same as those described above except that the waveguide refractive index was set to n2 = n1 = 1.4606.
0038]
Next, a
Here, the
The repetition of the laser pulse was 80 pps.
In the laser light irradiation, the optical
0039]
That is, when the
Here, the moving speed was set to v2 = 0.2 mm / h and v1 = 2 mm / h.
With this setting, the initial refractive index 1.4606 of the waveguide is changed to the maximum refractive index n2 = 1.4804 in the
0040]
In this embodiment, an ArF excimer laser is used as a laser capable of adjusting the refractive index of the waveguide. For example, any light source capable of inducing a refractive index change such as a KrF excimer laser or a CO2 laser can be used. It is clear that the present invention is applicable.
In addition, although a flame deposition method and a reactive ion etching method were used as a method for producing a quartz optical waveguide, a vapor deposition method such as a CVD method, a deposition method using a sol-gel method such as spin-on-glass (SOG), and ion milling. It is obvious that the present invention can be realized even by using an etching method such as the above, and is not based on a method for manufacturing an optical waveguide.
0041]
[Example 2]
FIG. 5 shows a schematic diagram of an optical directional coupler according to the second embodiment of the present invention.
The optical directional coupler of this embodiment includes two
The input waveguides 101 and 102 having the waveguide width W1 that are separated by a distance S are connected to the
0042]
The
Similarly, the
Further, the
0043]
Here, the
That is, the
In addition, the
0044]
In the first and second bending waveguides, the lateral V value on the
That is, in the latter region, the leakage component of the optical electric field can be set large, and a large optical coupling can be realized in the same region.
In this embodiment, W1 = 7 μm, W2 = 3 μm, S = 250 μm, the bending radius R of the
0045]
In the production, a general production process using a flame deposition method and reactive ion etching was adopted.
With the above parameters, the lateral V value in
In this embodiment, the change in the waveguide width in the
0046]
【number7]
0047]
An outline of the change in the waveguide width is shown in the lower part of FIG.
Here, x2 is the position in the propagation direction of the contact A between the
In addition, a change in the waveguide width having the same characteristics as the expression (3) was given to the
0048]
FIG. 6 shows the dependence of the coupling ratio of the optical directional coupler in this embodiment on the linear portion coupling length L1.
The 50% bond length was 115 μm.
This is 1/10 or less of the length of 1439 μm, which is the 50% coupling length of the conventional optical directional coupler.
Further, the total length from the start end of the first bending waveguide to the end of the second bending waveguide was 4.6 mm, which was shortened to about 3/4 compared with the conventional optical walking coupler.
The loss of the present optical directional coupler alone was 0.04 dB.
This is only an increase of 0.02 dB compared to the loss of 0.02 dB of the conventional optical directional coupler.
0049]
Example 3
FIG. 7 shows a top view and a side view of the outline of the optical directional coupler according to the third embodiment of the present invention.
The optical directional coupler of this embodiment includes
The input waveguides 151 and 152 having the waveguide width W at positions separated by the distance S1 are connected to the
0050]
Further, the
In the optical directional coupler in the present embodiment, as shown in the side view of FIG. 7, the
0051]
In this structure, in the first and second bending waveguides, the vertical direction on the
That is, in the latter region, the leakage component of the optical electric field can be set large, and a large optical coupling can be realized in the same region.
0052]
An optical directional coupler having the above structure is manufactured by a quartz optical waveguide having W = 6 μm, H1 = 6 μm, H2 = 3 μm, S1 = 400 μm, S2 = 250 μm, and a relative refractive index difference Δ = 0.75% of the waveguide. did.
FIG. 8 shows the relationship between the coupling ratio of the optical directional coupler of this embodiment and the straight waveguide length L.
The 50% coupling length was L3 dB = 140 μm, and the total length from the start end of the first bending waveguide to the end of the second bending waveguide was 5.5 mm.
Also, the loss of the 90-degree bent waveguide was 0.02 dB, a very low value.
0053]
The optical directional coupler of this example was manufactured by the method shown in FIG.
First, as shown in FIG. 9A, as
Further, as shown in FIG. 9B, as
In
0054]
Subsequently, as shown in FIG. 9C, as
By this
Further, as shown in FIG. 9D, in
Here, the
0055]
Thereafter, as shown in FIG. 9E, in
Finally, as shown in FIG. 9 (f), as
Although the present embodiment has been described based on a realization method using a silica-based optical waveguide, it does not depend on a waveguide material and its abdominal method, and for example, a semiconductor waveguide such as an indium phosphide compound or a polymer waveguide may be used. Further, it can be realized by a vapor deposition method such as a CVD method.
0056]
As described above, the present invention changes the length of the optical directional coupler by adiabatically (continuously and smoothly) changing the V value of the optical waveguide constituting the optical directional coupler. It can be shortened.
As a method of changing the V value, there are a method of changing the refractive index, a method of changing the core width, a method of changing the height of the core, and a combination thereof.
By using the present invention, the length of the entire directional coupler can be shortened even in the case of a normal optical directional coupler having a coupling ratio of 50% or an arbitrary coupling ratio.
0057]
In the first embodiment, the refractive index of the waveguide is changed, in the second embodiment, the core width of the waveguide is changed. In the third embodiment, the core thickness of the waveguide is changed. They may be used alone or in appropriate combinations.
For example, change both "core width and height", change both "core width and refractive index", change both "core height and refractive index", "core width and height and refractive index" It is also within the scope of the present invention to change all of these as appropriate.
If these changing methods are used in appropriate combination, the change of the V value can be increased, and the scale of the entire optical circuit can be reduced.
Further, by downsizing, it is possible to increase the number of optical circuits per substrate, which is effective in terms of price and yield.
0058]
【The invention's effect】
As described above based on the embodiments, according to the present invention, the loss in the waveguide region other than the optical directional coupler and the loss of the optical directional coupler itself are increased. Therefore, the optical directional coupler can be shortened.
[Brief description of the drawings]
FIG. 1 is a schematic diagram showing an optical directional coupler in a first embodiment of the present invention and a graph showing its refractive index distribution.
FIG. 2 is a graph showing the relationship between the coupling ratio of the optical directional coupler and the straight waveguide length in the first embodiment of the present invention.
FIG. 3 is an explanatory diagram showing a method of manufacturing the optical directional coupler according to the first embodiment of the present invention.
FIG. 4 is a graph showing the relationship between the irradiation position of laser light on the optical directional coupler and the moving speed of the irradiation position in the method of manufacturing the optical directional coupler according to the first embodiment of the present invention.
FIG. 5 is a schematic view showing an optical directional coupler according to a second embodiment of the present invention and a graph showing its refractive index distribution.
FIG. 6 is a graph showing the relationship between the coupling ratio of the optical directional coupler and the straight waveguide length in the second embodiment of the present invention.
7A and 7B are a schematic view and a side view showing an optical directional coupler according to a third embodiment of the present invention.
FIG. 8 is a diagram showing the relationship between the coupling ratio of the optical directional coupler according to the third embodiment of the present invention and the straight waveguide length L;
FIG. 9 is a process diagram showing a method of manufacturing an optical directional coupler according to a third embodiment of the present invention.
FIG. 10 is a schematic view showing a conventional optical directional coupler.
FIG. 11 is a graph showing the relationship between 50% coupling length and waveguide width of a conventional optical directional coupler, and the relationship between propagation loss and waveguide width of a 90-degree bent waveguide.
[Explanation of symbols]
101, 102, 151, 152, 221, 222, 321, 322 Input waveguide
103,104,153,154,223,224,323,324 1st bending waveguide
105, 106, 155, 156, 225, 226, 325, 326 linear waveguide
107, 108, 157, 158, 227, 228, 327, 328 Second bending waveguide
109, 110, 159, 160, 229, 230, 329, 330 Output waveguide
161 substrate
162 Lower cladding layer
163 Core layer
164 Waveguide pattern
165 shadow mask
166 Upper cladding layer
Claims (11)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002313722A JP3883118B2 (en) | 2002-10-29 | 2002-10-29 | Optical directional coupler and manufacturing method of optical directional coupler |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002313722A JP3883118B2 (en) | 2002-10-29 | 2002-10-29 | Optical directional coupler and manufacturing method of optical directional coupler |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004151175A JP2004151175A (en) | 2004-05-27 |
JP3883118B2 true JP3883118B2 (en) | 2007-02-21 |
Family
ID=32458240
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002313722A Expired - Lifetime JP3883118B2 (en) | 2002-10-29 | 2002-10-29 | Optical directional coupler and manufacturing method of optical directional coupler |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3883118B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US12092870B2 (en) | 2019-12-11 | 2024-09-17 | Nippon Telegraph And Telephone Corporation | Optical waveguide |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4636439B2 (en) * | 2005-11-30 | 2011-02-23 | 日立化成工業株式会社 | Calculation method of core width and distance between cores of two linear optical waveguides of directional optical coupler |
JPWO2021038643A1 (en) * | 2019-08-23 | 2021-03-04 | ||
CN113009621B (en) * | 2019-12-19 | 2024-09-24 | 中兴光电子技术有限公司 | Directional coupler and beam splitter thereof |
JP7558515B2 (en) | 2021-04-16 | 2024-10-01 | 日本電信電話株式会社 | Wavelength gain compensator and optical amplification system |
CN114355508B (en) * | 2022-01-24 | 2023-12-05 | 吉林大学 | A few-mode waveguide power divider based on directional coupling structure and its preparation method |
JP7548467B1 (en) * | 2022-10-14 | 2024-09-10 | 住友ベークライト株式会社 | Optical waveguides and optical wiring components |
-
2002
- 2002-10-29 JP JP2002313722A patent/JP3883118B2/en not_active Expired - Lifetime
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US12092870B2 (en) | 2019-12-11 | 2024-09-17 | Nippon Telegraph And Telephone Corporation | Optical waveguide |
Also Published As
Publication number | Publication date |
---|---|
JP2004151175A (en) | 2004-05-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4278597B2 (en) | Light control element | |
JP3563376B2 (en) | Manufacturing method of optical multiplexer / demultiplexer | |
JP2005274840A (en) | Optical delay element | |
Yamada et al. | Microphotonics devices based on silicon wire waveguiding system | |
JP3952696B2 (en) | Optical coupling structure | |
US20010036338A1 (en) | Optical transmission module and optical communication system using the same | |
CN107407776A (en) | High Refractive Index Contrast Photonic Devices and Their Applications | |
JP3883118B2 (en) | Optical directional coupler and manufacturing method of optical directional coupler | |
US10082623B2 (en) | Rib type optical waveguide and optical multiplexer / demultiplexer using same | |
US11048045B1 (en) | Integrated lens mode size converter | |
US20130183440A1 (en) | Optical waveguide-type wavelength dispersion compensation device and manufacturing method thereof | |
CN101881859A (en) | An Optical Delay Using Multimode Interference Coupling | |
CN114114681B (en) | A Numerical Design Method for Adiabatic Mode Coupler | |
JP4114791B2 (en) | Laminated optical waveguide | |
KR101788400B1 (en) | Planar lightwave circuit based integrated optical chip | |
Yamada et al. | Silicon wire waveguiding system: fundamental characteristics and applications | |
JP3969320B2 (en) | Waveguide type optical components | |
CN112630887A (en) | Method for manufacturing optical waveguide mode converter and mode converter | |
JP4003658B2 (en) | Lens array spot size conversion optical circuit | |
US20100254656A1 (en) | Optical waveguide, method for manufacturing the optical waveguide, and optical device provided with the optical waveguide | |
JP3925384B2 (en) | Optical component and manufacturing method thereof | |
TWI819725B (en) | Broadband ring resonator and design system thereof | |
Xu et al. | Ultra-Compact Fiber-to-Chip Metasurface-Based Edge Coupler | |
JP4569440B2 (en) | Temperature independent optical multiplexer / demultiplexer | |
JP2000221349A (en) | Waveguide type element |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050119 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20060518 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060523 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060724 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20061107 |
|
RD01 | Notification of change of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7426 Effective date: 20061110 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20061110 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20061110 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20061110 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 Ref document number: 3883118 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101124 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101124 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111124 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111124 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121124 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121124 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131124 Year of fee payment: 7 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
EXPY | Cancellation because of completion of term |