[go: up one dir, main page]

JP3876682B2 - Nitric oxide production method - Google Patents

Nitric oxide production method Download PDF

Info

Publication number
JP3876682B2
JP3876682B2 JP2001323122A JP2001323122A JP3876682B2 JP 3876682 B2 JP3876682 B2 JP 3876682B2 JP 2001323122 A JP2001323122 A JP 2001323122A JP 2001323122 A JP2001323122 A JP 2001323122A JP 3876682 B2 JP3876682 B2 JP 3876682B2
Authority
JP
Japan
Prior art keywords
nitric acid
weight
nitric oxide
platinum group
group metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001323122A
Other languages
Japanese (ja)
Other versions
JP2003128403A (en
Inventor
秀二 田中
宏文 井伊
一昭 三井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP2001323122A priority Critical patent/JP3876682B2/en
Publication of JP2003128403A publication Critical patent/JP2003128403A/en
Application granted granted Critical
Publication of JP3876682B2 publication Critical patent/JP3876682B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、硝酸から一酸化窒素を簡便にかつ効率よく製造する方法に関する。一酸化窒素は、亜硝酸アルキルを用いる酸化プロセス(シュウ酸ジアルキル、炭酸ジアルキル等の製造)において亜硝酸アルキル源として有用な化合物である。
【0002】
【従来の技術】
一酸化窒素を製造する方法として、濃硝酸を、ビスマス、銅、鉛、水銀などの金属、又は、酸化鉄(II)、三酸化二砒素で還元する方法が知られている(化学大辞典1縮刷版第32刷,665頁)。しかし、これらの方法は等モル反応を利用するもので上記の金属や酸化物を大量に要するため、工業的な方法としては好ましくない。
【0003】
【発明が解決しようとする課題】
本発明は、硝酸から一酸化窒素を簡便かつ効率的に製造できる、工業的に好適な一酸化窒素の製造方法を提供することを課題とする。
【0004】
【課題を解決するための手段】
本発明者らは、前記の課題を解決すべく鋭意検討した結果、本発明を完成するに至った。即ち、本発明は、硝酸を白金族金属触媒の存在下に一酸化炭素又は水素と反応させることを特徴とする一酸化窒素の製造方法に関する。
【0005】
【発明の実施の形態】
本発明で、硝酸としては、硝酸含有水溶液を好ましく用いることができる。硝酸含有水溶液は特に制限されるものではなく、高濃度の硝酸含有水溶液であってもよいが、触媒回収を考慮して(白金族金属又はその化合物の溶出や溶解による白金族金属成分の回収ロスを効果的に抑えるため)、硝酸濃度が60重量%以下、更には20重量%以下であるものが好ましい。また、硝酸含有水溶液は低濃度のものであってもよく、硝酸濃度が0.1重量%以上でも効率よく一酸化窒素を製造することができる。即ち、触媒回収等を考慮して工業的に一酸化窒素を製造する場合、硝酸含有水溶液としては、硝酸濃度が60重量%以下(特に0.1〜20重量%)、更には20重量%以下(特に0.1〜20重量%)であるものが好ましく、中でも1〜20重量%であるものが最も好ましい。
【0006】
本発明で、白金族金属触媒としては、パラジウム、白金、ルテニウム、ロジウム、オスミウムが挙げられるが、パラジウム、白金が好ましく、中でもパラジウムが特に好ましい。白金族金属触媒は、白金族金属又はその化合物を硝酸含有水溶液にそのまま(溶解又は懸濁させて)用いることもできるが、通常は、触媒回収を考慮して、白金族金属又はその化合物を担体に担持して固体触媒として(固定床又は懸濁床で)用いることが好ましい。
【0007】
その場合、白金族金属又はその化合物の担持量は、担体に対して金属換算で0.01〜20重量%、更には0.1〜15重量%であることが好ましい。なお、白金族金属の化合物としては、前記白金族金属の無機酸塩(硝酸塩、塩酸塩、硫酸塩等)や有機酸塩(酢酸塩等)などが挙げられる。担体としては、活性炭、アルミナ等が挙げられるが、活性炭が好ましい。担体の形状は固定床又は懸濁床に適用できるもの(粉末、粒状、破砕物等)であればよいが、中でも粉末が好ましい。担体の大きさも固定床又は懸濁床に適用できるものであればよい。
【0008】
白金族金属触媒の使用量は、硝酸含有水溶液に対して、金属換算で0.0001〜0.2重量%、更には0.0005〜0.1重量%、特に0.005〜0.05重量%であることが好ましい。具体的には、例えば、パラジウム金属が活性炭に10重量%担持されたもの(10重量%Pd/C)を用いる場合、その使用量は、硝酸含有水溶液に対して、金属換算で0.001〜2重量%、更には0.005〜1重量%、特に0.05〜0.5重量%であることが好ましい。
【0009】
本発明で、一酸化炭素や水素はそのままでも窒素等の不活性ガスで希釈されていてもよく、硝酸1モルに対して1〜20モル、更には1.5〜10モル、特に2〜5モル用いることが好ましい。
【0010】
硝酸と一酸化炭素又は水素を反応させる際の温度は、0〜300℃、更には20〜100℃であることが好ましい。一酸化炭素又は水素の圧力は常圧から200atm、更には常圧から30atm、特に3〜10atmであることが好ましい。また、反応は、反応液中の硝酸濃度(残存硝酸濃度)が1重量%以下、更には0.5重量%以下になるまで行うことが、白金族金属又はその化合物の溶出や溶解による白金族金属成分の回収ロスを抑える上で好ましい。この場合、必要であれば、反応器を複数又は多段にしてもよい。
【0011】
即ち、本発明では、硝酸濃度が60重量%以下(更に好ましくは前記範囲)の硝酸含有水溶液を用いて、白金属金属又はその化合物が担体に担持された固体触媒(好ましくは粉末)の存在下、反応液中の硝酸濃度(残存硝酸濃度)が1重量%以下(好ましくは前記範囲)になるまで反応させることが特に好ましい。その結果、硝酸との接触により反応液中に溶出又は溶解した白金属金属又はその化合物を再度担体に担持させることができ、白金族金属成分の回収ロスが実質的にないプロセスとすることができる。
【0012】
本発明で、硝酸と一酸化炭素又は水素との反応は液相でバッチ式でも連続式でも可能である。この反応は、例えば、反応器に硝酸含有水溶液と白金族金属触媒を入れて、液中に一酸化炭素又は水素を流通させながらその溶液を攪拌するか、或いは一酸化炭素又は水素加圧下でその溶液を攪拌することにより行われる。更に、反応器に白金族金属触媒を(固定床として)充填して、硝酸含有水溶液と一酸化炭素又は水素とを向流又は並流で流通させることによっても行うことができる。なお、反応器には、攪拌槽、充填塔、トリクルベッド形式のものなどが使用できる。生成した一酸化窒素は、一酸化炭素又は水素に同伴させて反応系外に導出されて(必要に応じて洗浄等により精製され)、他の反応に利用される。
【0013】
【実施例】
次に、実施例及び比較例を挙げて本発明を具体的に説明する。なお、一酸化窒素、二酸化炭素はガスクロマトグラフィーにより、硝酸はイオンクロマトグラフィーにより、溶解パラジウムは原子吸光法によりそれぞれ分析した。Pd/Cはパラジウム金属(Pd)が活性炭(C)に担持された固体触媒、Pt/Cは白金金属(Pt)が活性炭(C)に担持された固体触媒を意味する。
【0014】
実施例1
攪拌機、ガス供給ノズル、ガス抜き出しノズル、液抜き出しノズル(焼結金属フィルター付き)を備えた500ml容オートクレーブ(SUS316製)に、5重量%硝酸水溶液300gと10重量%Pd/C(NEケムキャット製;粉末)0.6gを仕込んで、一酸化炭素でパージした後、一酸化炭素で6atmまで加圧した。次いで、この圧力を維持するようにガス抜き出しノズルからガスを抜き出しつつ、攪拌下、一酸化炭素をガス供給ノズルから6NL(ノルマルリットル)/hで供給しながら、80℃まで昇温した。
【0015】
80℃になった時点から2時間後にガス抜き出しノズルから導出されるガスを分析したところ、一酸化窒素が19容量%、二酸化炭素が39容量%であった。また、4時間後では、一酸化窒素が3.5容量%、二酸化炭素が11容量%であった。この時点で、反応液中の硝酸濃度は0.3重量%に、仕込み硝酸の転化率は約98%になっていた。また、反応液中の溶解パラジウムは1.2ppmであった。
【0016】
実施例2
一酸化炭素に変えて水素を使用したほかは、実施例1と同様に反応を行った。80℃になった時点から2時間後にガス抜き出しノズルから導出されるガスを分析したところ、一酸化窒素が13容量%であった。また、4時間後では、一酸化窒素が12容量%であった。この時点で、反応液中の硝酸濃度は1.9重量%に、仕込み硝酸の転化率は約65%になっていた。また、反応液中の溶解パラジウムは47ppmであった。
【0017】
実施例3
攪拌機及びコンデンサーを備えた500ml容フラスコに、5重量%硝酸水溶液300mlと前記10重量%Pd/C0.6gを仕込み、攪拌下、その溶液に一酸化炭素を6NL/hで流通させながら、80℃まで昇温した。
80℃になった時点から7時間後にコンデンサーから導出されるガスを分析したところ、一酸化窒素が3.2容量%、二酸化炭素が5.1容量%であった。このとき、反応液中の硝酸濃度は3.6重量%で、仕込み硝酸の転化率は約33%であった。
【0018】
実施例4
触媒として3重量%Pt/C(NEケムキャット製;粉末)2.0gを用いたほかは、実施例3と同様にして反応を行った。
80℃になった時点から7時間後にコンデンサーから導出されるガスを分析したところ、一酸化窒素が0.8容量%、二酸化炭素が1.5容量%であった。このとき、反応液中の硝酸濃度は4.6重量%で、仕込み硝酸の転化率は約9%であった。
【0019】
【発明の効果】
本発明により、硝酸(硝酸含有水溶液など)から触媒反応により一酸化窒素を簡便かつ効率的に製造することができる。特に、白金族金属又はその化合物が担体に担持された固体触媒を用いて、原料の硝酸水溶液の硝酸濃度や残存硝酸濃度を制御すれば、白金族金属成分の回収ロスを抑えて触媒回収効率的に行うことができ、工業的に好適な一酸化窒素の製造方法を提供できる。また、本発明は、低濃度の硝酸含有水溶液であっても効率よく一酸化窒素を製造できるもので、低濃度の硝酸含有水溶液から窒素分を一酸化窒素として回収するのに非常に有用である。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for easily and efficiently producing nitric oxide from nitric acid. Nitric oxide is a useful compound as a source of alkyl nitrite in an oxidation process using alkyl nitrite (production of dialkyl oxalate, dialkyl carbonate, etc.).
[0002]
[Prior art]
As a method for producing nitric oxide, there is known a method in which concentrated nitric acid is reduced with a metal such as bismuth, copper, lead, mercury, iron oxide (II), or diarsenic trioxide (Chemical Dictionary 1). (Reduced edition 32nd edition, page 665). However, these methods utilize an equimolar reaction and require a large amount of the above metals and oxides, which is not preferable as an industrial method.
[0003]
[Problems to be solved by the invention]
This invention makes it a subject to provide the manufacturing method of nitric oxide suitable for industry which can manufacture nitric oxide from nitric acid simply and efficiently.
[0004]
[Means for Solving the Problems]
As a result of intensive studies to solve the above-mentioned problems, the present inventors have completed the present invention. That is, the present invention relates to a method for producing nitric oxide, wherein nitric acid is reacted with carbon monoxide or hydrogen in the presence of a platinum group metal catalyst.
[0005]
DETAILED DESCRIPTION OF THE INVENTION
In the present invention, nitric acid-containing aqueous solution can be preferably used as nitric acid. The nitric acid-containing aqueous solution is not particularly limited and may be a high-concentration nitric acid-containing aqueous solution. However, in consideration of catalyst recovery (recovery loss of platinum group metal component due to elution or dissolution of platinum group metal or a compound thereof) In order to effectively suppress the above), the nitric acid concentration is preferably 60% by weight or less, more preferably 20% by weight or less. Further, the nitric acid-containing aqueous solution may have a low concentration, and nitric oxide can be efficiently produced even when the nitric acid concentration is 0.1% by weight or more. That is, when nitric oxide is produced industrially in consideration of catalyst recovery, the nitric acid-containing aqueous solution has a nitric acid concentration of 60% by weight or less (particularly 0.1 to 20% by weight), and further 20% by weight or less. What is (especially 0.1-20 weight%) is preferable, and what is 1-20 weight% is the most preferable especially.
[0006]
In the present invention, examples of the platinum group metal catalyst include palladium, platinum, ruthenium, rhodium and osmium. Palladium and platinum are preferable, and palladium is particularly preferable. As the platinum group metal catalyst, the platinum group metal or a compound thereof can be used as it is (dissolved or suspended) in a nitric acid-containing aqueous solution. The catalyst is preferably used as a solid catalyst (in a fixed bed or suspension bed).
[0007]
In that case, the supported amount of the platinum group metal or the compound thereof is preferably 0.01 to 20% by weight, more preferably 0.1 to 15% by weight in terms of metal with respect to the carrier. Examples of platinum group metal compounds include inorganic acid salts (nitrates, hydrochlorides, sulfates, etc.) and organic acid salts (acetates, etc.) of the platinum group metals. Examples of the carrier include activated carbon and alumina, and activated carbon is preferable. The shape of the carrier is not particularly limited as long as it can be applied to a fixed bed or suspension bed (powder, granule, crushed material, etc.). The size of the carrier may be any as long as it can be applied to a fixed bed or a suspended bed.
[0008]
The platinum group metal catalyst is used in an amount of 0.0001 to 0.2% by weight, more preferably 0.0005 to 0.1% by weight, particularly 0.005 to 0.05% by weight in terms of metal based on the nitric acid-containing aqueous solution. % Is preferred. Specifically, for example, when 10% by weight of palladium metal supported on activated carbon (10% by weight Pd / C) is used, the amount used is 0.001 to 0.001 in terms of metal with respect to the nitric acid-containing aqueous solution. It is preferably 2% by weight, more preferably 0.005 to 1% by weight, and particularly preferably 0.05 to 0.5% by weight.
[0009]
In the present invention, carbon monoxide and hydrogen may be used as they are or may be diluted with an inert gas such as nitrogen, and 1 to 20 mol, more preferably 1.5 to 10 mol, particularly 2 to 5 mol with respect to 1 mol of nitric acid. It is preferable to use a mole.
[0010]
The temperature at which nitric acid reacts with carbon monoxide or hydrogen is preferably 0 to 300 ° C, more preferably 20 to 100 ° C. The pressure of carbon monoxide or hydrogen is preferably from atmospheric pressure to 200 atm, more preferably from atmospheric pressure to 30 atm, particularly from 3 to 10 atm. The reaction is carried out until the nitric acid concentration (residual nitric acid concentration) in the reaction solution is 1% by weight or less, and further 0.5% by weight or less. It is preferable for suppressing recovery loss of metal components. In this case, if necessary, the reactor may be plural or multi-staged.
[0011]
That is, in the present invention, a nitric acid-containing aqueous solution having a nitric acid concentration of 60% by weight or less (more preferably in the above range) is used in the presence of a solid catalyst (preferably powder) in which a white metal metal or a compound thereof is supported on a support. The reaction is particularly preferably carried out until the nitric acid concentration (residual nitric acid concentration) in the reaction solution is 1% by weight or less (preferably in the above range). As a result, it is possible to make the support again support the white metal metal or its compound eluted or dissolved in the reaction solution by contact with nitric acid, and it is possible to achieve a process with substantially no recovery loss of the platinum group metal component. .
[0012]
In the present invention, the reaction between nitric acid and carbon monoxide or hydrogen can be performed in a liquid phase, batchwise or continuously. For example, this reaction may be performed by putting a nitric acid-containing aqueous solution and a platinum group metal catalyst in a reactor and stirring the solution while circulating carbon monoxide or hydrogen in the liquid, or under pressure of carbon monoxide or hydrogen. This is done by stirring the solution. Furthermore, it can also be carried out by filling the reactor with a platinum group metal catalyst (as a fixed bed) and allowing the aqueous solution containing nitric acid and carbon monoxide or hydrogen to flow in countercurrent or cocurrent. The reactor may be a stirring tank, packed tower, trickle bed type, or the like. The produced nitric oxide is led out of the reaction system with carbon monoxide or hydrogen (purified by washing or the like as necessary) and used for other reactions.
[0013]
【Example】
Next, the present invention will be specifically described with reference to examples and comparative examples. Nitric oxide and carbon dioxide were analyzed by gas chromatography, nitric acid was analyzed by ion chromatography, and dissolved palladium was analyzed by atomic absorption. Pd / C means a solid catalyst in which palladium metal (Pd) is supported on activated carbon (C), and Pt / C means a solid catalyst in which platinum metal (Pt) is supported on activated carbon (C).
[0014]
Example 1
In a 500 ml autoclave (made of SUS316) equipped with a stirrer, gas supply nozzle, gas extraction nozzle, liquid extraction nozzle (with sintered metal filter), 300 g of 5 wt% nitric acid aqueous solution and 10 wt% Pd / C (manufactured by NE Chemcat; Powder) 0.6 g was charged, purged with carbon monoxide, and then pressurized to 6 atm with carbon monoxide. Next, while the gas was extracted from the gas extraction nozzle so as to maintain this pressure, the temperature was raised to 80 ° C. while stirring and supplying carbon monoxide from the gas supply nozzle at 6 NL (normal liter) / h.
[0015]
Analysis of the gas extracted from the gas extraction nozzle 2 hours after the temperature reached 80 ° C. revealed 19% by volume of nitrogen monoxide and 39% by volume of carbon dioxide. After 4 hours, nitric oxide was 3.5% by volume and carbon dioxide was 11% by volume. At this time, the nitric acid concentration in the reaction solution was 0.3% by weight, and the conversion rate of the charged nitric acid was about 98%. The dissolved palladium in the reaction solution was 1.2 ppm.
[0016]
Example 2
The reaction was performed in the same manner as in Example 1 except that hydrogen was used instead of carbon monoxide. When gas extracted from the gas extraction nozzle was analyzed 2 hours after the temperature reached 80 ° C., nitrogen monoxide was 13% by volume. In addition, after 4 hours, nitric oxide was 12% by volume. At this time, the nitric acid concentration in the reaction solution was 1.9% by weight, and the conversion rate of the charged nitric acid was about 65%. The dissolved palladium in the reaction solution was 47 ppm.
[0017]
Example 3
A 500 ml flask equipped with a stirrer and a condenser was charged with 300 ml of a 5% by weight nitric acid aqueous solution and 0.6 g of the 10% by weight Pd / C, and while stirring, carbon monoxide was passed through the solution at 6 NL / h at 80 ° C. The temperature was raised to.
When the gas derived from the condenser was analyzed 7 hours after the temperature reached 80 ° C., it was found that nitrogen monoxide was 3.2% by volume and carbon dioxide was 5.1% by volume. At this time, the nitric acid concentration in the reaction solution was 3.6% by weight, and the conversion rate of the charged nitric acid was about 33%.
[0018]
Example 4
The reaction was conducted in the same manner as in Example 3 except that 2.0 g of 3 wt% Pt / C (manufactured by NE Chemcat; powder) was used as the catalyst.
Analysis of the gas derived from the condenser 7 hours after the temperature reached 80 ° C. revealed that nitrogen monoxide was 0.8% by volume and carbon dioxide was 1.5% by volume. At this time, the nitric acid concentration in the reaction solution was 4.6% by weight, and the conversion rate of the charged nitric acid was about 9%.
[0019]
【The invention's effect】
According to the present invention, nitric oxide can be easily and efficiently produced from nitric acid (such as a nitric acid-containing aqueous solution) by a catalytic reaction. In particular, efficiency using a supported solid catalyst of platinum group metal or its compound on a carrier, by controlling the nitric acid concentration and residual nitric acid concentration of nitric acid aqueous solution of the raw material, the catalyst recovered by suppressing recovery loss of platinum group metal component Therefore, an industrially suitable method for producing nitric oxide can be provided. In addition, the present invention can efficiently produce nitric oxide even with a low concentration nitric acid-containing aqueous solution, and is very useful for recovering nitrogen as nitric oxide from a low concentration nitric acid-containing aqueous solution. .

Claims (5)

硝酸を白金族金属触媒の存在下に一酸化炭素又は水素と反応させることを特徴とする一酸化窒素の製造方法。Nitric oxide is produced by reacting nitric acid with carbon monoxide or hydrogen in the presence of a platinum group metal catalyst. 白金族金属触媒が白金族金属又はその化合物が担体に担持された固体触媒である、請求項1記載の一酸化窒素の製造方法。The method for producing nitric oxide according to claim 1, wherein the platinum group metal catalyst is a solid catalyst in which a platinum group metal or a compound thereof is supported on a carrier. 白金族金属がパラジウム又は白金である、請求項1又は2記載の一酸化窒素の製造方法。The method for producing nitric oxide according to claim 1 or 2, wherein the platinum group metal is palladium or platinum. 硝酸が硝酸濃度60重量%以下の硝酸含有水溶液である、請求項2記載の一酸化窒素の製造方法。The method for producing nitric oxide according to claim 2, wherein the nitric acid is a nitric acid-containing aqueous solution having a nitric acid concentration of 60% by weight or less. 反応液中の硝酸濃度が1重量%以下になるまで反応させる、請求項2記載の一酸化窒素の製造方法。The method for producing nitric oxide according to claim 2, wherein the reaction is carried out until the nitric acid concentration in the reaction solution is 1 wt% or less.
JP2001323122A 2001-10-22 2001-10-22 Nitric oxide production method Expired - Fee Related JP3876682B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001323122A JP3876682B2 (en) 2001-10-22 2001-10-22 Nitric oxide production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001323122A JP3876682B2 (en) 2001-10-22 2001-10-22 Nitric oxide production method

Publications (2)

Publication Number Publication Date
JP2003128403A JP2003128403A (en) 2003-05-08
JP3876682B2 true JP3876682B2 (en) 2007-02-07

Family

ID=19140060

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001323122A Expired - Fee Related JP3876682B2 (en) 2001-10-22 2001-10-22 Nitric oxide production method

Country Status (1)

Country Link
JP (1) JP3876682B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007038114A (en) * 2005-08-02 2007-02-15 Kobe Steel Ltd Method for subjecting nitric acid-containing waste water to reduction treatment
CN106984294B (en) * 2016-12-05 2018-04-10 武汉聚川科技有限公司 A kind of oxidative carbonylation synthesis technique, its liquid waste processing catalyst and preparation method thereof

Also Published As

Publication number Publication date
JP2003128403A (en) 2003-05-08

Similar Documents

Publication Publication Date Title
US6630118B2 (en) Process for the direct synthesis of hydrogen peroxide
CN101663242A (en) Method for recovering ruthenium from ruthenium-containing supported catalyst material
US20070292336A1 (en) Processes for the preparation of chlorine by gas phase oxidation
EP1901994B1 (en) Process for the continuous production of hydroxylammonium
KR100592011B1 (en) Improved method of preparing hexamethylenediamine
JP2009527523A (en) Direct amination of hydrocarbons
WO2007064027A1 (en) Method for production of supported ruthenium and method for production of chlorine
CN101160259B (en) Process for the production of hydrogen peroxide
JP4134761B2 (en) Production method of alkyl nitrite
JP4026350B2 (en) Method for producing alkyl nitrite
JP3876682B2 (en) Nitric oxide production method
KR20130100281A (en) Catalyst and method for the production of chlorine by gas phase oxidation
WO2011148976A1 (en) Method for producing 4-nitrodiphenylamine
US20080003173A1 (en) Processes for the preparation of chlorine by gas phase oxidation, catalysts therefor, and methods of making such catalysts
EP3323801B1 (en) Methods of preparing cyclohexanone and derivatives
US4242525A (en) Process for producing salts of pyruvic acid
JP2624990B2 (en) Method for producing 7-chloro-quinoline-8-carboxylic acid
KR100860538B1 (en) Copper-iron oxide catalyst and sulfuric acid decomposition method using the same
US8894960B2 (en) Process for removing NO and N2O from gas mixtures
JP3780555B2 (en) Method for producing hydrogen peroxide
JPH08151346A (en) Production of ketomalonic acid
JP4026521B2 (en) Method for producing alkyl nitrite
SK3632000A3 (en) Process for the preparation of nitrous oxide
JP2000103760A (en) Method for producing adipic acid
JPH06116209A (en) Method for producing carbonic acid diester

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060927

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061010

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061023

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees