JP3875736B2 - Wastewater treatment method and apparatus - Google Patents
Wastewater treatment method and apparatus Download PDFInfo
- Publication number
- JP3875736B2 JP3875736B2 JP31962695A JP31962695A JP3875736B2 JP 3875736 B2 JP3875736 B2 JP 3875736B2 JP 31962695 A JP31962695 A JP 31962695A JP 31962695 A JP31962695 A JP 31962695A JP 3875736 B2 JP3875736 B2 JP 3875736B2
- Authority
- JP
- Japan
- Prior art keywords
- water
- ultrasonic
- sludge
- treated
- tank
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Separation Of Suspended Particles By Flocculating Agents (AREA)
- Physical Water Treatments (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、下水や生活排水、産業廃水等の排水から懸濁物質を除去して清澄な処理水を得る排水処理方法に係り、特に生物学的処理法を利用して懸濁物質を沈降させる排水処理方法および装置に関する。
【0002】
【従来の技術】
図12は、排水を生物学的に処理する活性汚泥法の概要を示す説明図である。図12において、下水、生活排水などの原水10は、粗目スクリーン12を通されて沈砂槽14に流入し、砂や轢が沈殿、除去される。沈殿した砂や轢は、沈砂排出ポンプ16によって沈砂槽14から排出される。そして、原水10は、破砕機18や細目スクリーン20を介して原水ポンプ槽22に流入し、原水ポンプ24によって流量調整槽26に送られる。流量調整槽26内の原水10は、攪拌ポンプ28等によって攪拌されるとともに、流量調整ポンプ30によって汚水計量槽32に送られ、計量されて曝気槽34に流入する。
【0003】
曝気槽34は、後述する沈殿槽から戻され、注入された好気性微生物からなる活性汚泥を流入した原水10に混合するとともに、曝気ブロア36の吐出した空気が吹き込まれて微生物を増殖をしてフロックの形成が行なわる。そして、曝気槽34内の原水10と汚泥との混合水38は、沈殿槽40に導入される。沈殿槽40内の混合水38中のフロックは、センタウエル76内にて成長し、活性汚泥として分離槽77内にて汚泥と清澄な上澄水(処理水)42とに分離される。分離された上澄水42は、消毒槽44に送られて消毒器46を介して消毒剤と接触して消毒されたのち、消毒済処理水48として河川等に放流させる。
【0004】
沈殿槽40内に沈殿した活性汚泥50は、汚泥返送ポンプ52によって引き抜かれ、汚泥計量槽54において計量されて返送汚泥56として曝気槽34に戻されるとともに、余剰の汚泥が余剰汚泥58として汚泥濃縮槽60に送られる。また、沈殿槽40の表面に浮遊するスカム62は、スカムポンプ64によって流量調整槽26に戻される。一方、汚泥濃縮槽60に流入した余剰汚泥58は、濃縮されて濃縮汚泥66となり、濃縮汚泥引抜きポンプ68によって汚泥貯留槽70に移されて貯留されたのち、矢印72のようにバキューム車等で搬出される。そして、汚泥濃縮槽60において分離した分離水74は、原水ポンプ槽22に戻されるようになっている。
【0005】
ところで、従来の沈殿槽40は、図13に示したように、中心部に整流筒(センタウェル)76が上下方向に配設してあって、この整流筒76内に管78を介して被処理水である混合水38を導入するようになっている。そして、整流筒76は、上端が沈殿槽40の液面80より高くしてあって、管78より上方に向けて吐出された混合水38が整流筒76の周囲の上澄水42と混合しないようにしている。また、整流筒76は、導入された混合水38を矢印82のように層流状態にして整流筒76の下部から整流筒周囲の分離領域84に流出させる。分離領域84に移動した混合水38は、フロック86が生物のもつ自然の凝集作用によって凝集し、水と分離して沈降する。そして、汚泥と分離された水は、沈殿槽40の内側上部に設けた越流堰88を介して上澄水42として取り出される。
【0006】
【発明が解決しようとする課題】
しかし、従来の沈殿層40における汚泥と水との分離は、微生物による自然の凝集作用によっているために分離、沈降に時間がかかり、分離のために広い面積を必要とし、排水処理装置(設備)の大型化が避けられない。また、生物的な原因による汚泥の膨化(バルキング)が発生し、汚泥の沈降分離が妨げられて汚泥が越流堰88を越流する問題がある。そして、このバルキングを抑止する対策として、従来は、沈殿層40に凝集剤や殺菌剤などの薬品を投与することを行なっているが、薬品に対する細菌の耐性による効果の激減や有益微生物への影響が懸念され、好ましい方法とはいえない。
【0007】
本発明は、前記従来技術の欠点を解消するためになされたもので、処理装置の小型化を図ることを目的としている。
また、本発明は、汚泥のバルキングを抑止することを目的としている。
さらに、本発明は、汚泥濃縮槽における汚泥の沈降分離を促進させ、処理量の増加または設備を小型化することを目的としている。
【0008】
【課題を解決するための手段】
上記の目的を達成するために、本発明は、被処理水に超音波を照射して活性汚泥を物理的に凝集させるもので、本発明に係る排水処理方法は、被処理水を沈殿槽および汚泥濃縮槽に導入して浮遊物を沈降させる排水処理方法において、前記沈殿槽内の被処理水または前記汚泥濃縮槽の汚泥に超音波を照射して定在波を形成し、前記被処理水中の浮遊物を凝集させて沈降させる構成となっている。超音波の周波数が低いと波長が長くなるため、凝集の間隔が広くなり、細かな粒子や結合力の弱い粒子は凝集しずらくなる。一方、上澄水中の浮遊物質量(SS)は、超音波の周波数が高いほど小さくなる。しかし、周波数が高いほど音波の減衰が大きくなり、伝播距離が短くなるため、凝集の影響範囲が狭くなる。従って、上澄水中のSSと汚泥の沈降速度とを勘案すると、照射する超音波の周波数は、300kHz〜2.5MHz程度がよく、特に500kHz〜1.2MHz程度が望ましい。そして、超音波は、被処理水の流れに直交させて照射するとよい。
【0009】
また、本発明に係る排水処理装置は、被処理水を流入させる沈殿槽と、この沈殿槽内に配設され、前記被処理水中に超音波を放射する超音波振動子と、この超音波振動子に対面して設けられ、超音波振動子が放射した超音波が反射され、超音波振動子との間に定在波を形成する反射壁と、この反射壁と前記超音波振動子との間に被処理水を送り込む送水管とを有する構成となっている。超音波振動子と反射壁とは、処理槽内に沈殿させた汚泥を流入させて濃縮する汚泥濃縮槽にも設けることができる。
【0010】
超音波振動子は、沈殿槽の大きさ、沈殿槽への被処理水の流入量に応じて複数設けることができる。そして、複数の超音波振動子は、被処理水の流れに沿って配置したり、円形状またはマトリックス状等に配置することができる。超音波振動子を円形状に配置した場合、反射壁は複数の超音波振動子に沿って二重円筒状に形成することができる。また、超音波振動子と反射壁との間の距離は定在波ができればよく、周波数により超音波の伝播距離が異なるため、定在波を形成できる最大距離は周波数によって異なる。ただし、超音波の出力が大き過ぎると、キャビテーションが発生して懸濁液を分散する。
【0011】
【作用】
上記のごとく構成した本発明は、被処理水に超音波を照射して定在波を発生させると、この定在波の音圧の節の部分に汚泥フロックが層状に集る。すなわち、図2に模式的に示したように、超音波振動子90と反射壁94とを対面して配置し、矢印92のように反射壁94と直交する方向に超音波を伝播し、超音波振動子90と反射壁94との間に定在波を発生させると、定在波の音圧分布が符号96のようになる。ただし、図中P0 は、定在波の振幅である。
【0012】
このとき、被処理水中の汚泥フロック86は、図2に斜線で示したように音圧の節部に層状に集る。そして、フロック86は、相互の接触回数が増加して凝集するとともに、超音波の音圧により圧縮させられ、見掛け比重が大きくなって沈降しやすくなる。従って、汚泥を沈降させるための時間の短縮が図れ、処理量の増大や装置の小型化を図ることができ、また処理量を増大させることができる。
【0013】
さらに、超音波によるフロックの圧縮作用によってバルキングが抑止され、汚泥の沈降性を向上することができる。しかも、超音波を利用した物理的凝集であるため、薬品等の使用に比較して特に専門的な知識を必要としせず、汚泥量の増加もない。なお、被処理水の流れに直交して超音波を照射するようにすると、沈殿槽に被処理水を導入した部分において汚泥を沈殿させることができ、被処理水の連続的な処理が可能となる。そして、被処理水の流入量に応じて超音波振動子を複数設けることにより、被処理水の迅速な処理が可能となる。
なお、汚泥濃縮槽に超音波を照射して定在波を発生させることにより、上記処理槽におけるフロックの凝集と同様に、汚泥濃縮槽内の汚泥の濃縮を迅速に行うことが可能となり、汚泥濃縮槽の小型化、処理量の増大を図ることができる。
【0014】
【発明の実施の形態】
本発明の排水処理方法および装置の好ましい実施の形態を添付図面に従って詳細に説明する。なお、前記従来技術において説明した部分に相当する部分については、同一の符号を付し、その説明を省略する。
【0015】
図1は、本発明の実施の形態に係る排水処理装置の要部の説明図である。
図1において、沈殿槽40は、槽本体100が円形に形成してあって、中心部に超音波振動子90が配設してある。この超音波振動子90は、詳細を後述するように沈殿槽40に導入された原水と汚泥との混合水(被処理水)に超音波を照射して汚泥を凝集させるもので、水没させて配置してあり、槽本体100の半径方向に超音波を伝播するようにしてある。そして、超音波振動子90の周囲には、振動子90との間に超音波の定在波を発生させるための円筒状反射壁104が設けてある。この円筒状反射壁104は、槽本体100と同心状に配置しある。
【0016】
反射壁104の下部には、曝気槽に連通している送水管106が設けてある。この送水管106は、先端が上方に屈曲していて、屈曲した先端部が反射壁104の下端部に挿入してある。そして、円筒状反射壁104は、上端が沈殿槽40の水面80より低く、水没した状態で設けてあって、送水管106から吐出された被処理水(混合水)が矢印108のように上部から円筒反射壁104の外部に流出できるようにしてある。また、円筒反射壁104の上部は、同心状に設けた円筒状のセンタウェル110内に挿入してある。このセンタウェル110は、上端が水面80から突出していて、円筒反射壁104内を上昇してきた被処理水が直接センタウェル周囲の水と混合するのを防止している。
【0017】
上記のごとく構成した実施の形態においては、超音波振動子90を発振させ、図3(1)の矢印112、114ように円筒状反射壁104の半径方向に超音波を伝播させる。超音波振動子90の放射した超音波は、円筒状反射壁104によって反射され、超音波振動子40の放射する超音波と干渉して超音波振動子90と円筒反射壁104の内壁との間に定在波を形成する。一方、曝気槽において原水と活性汚泥とを混合した混合水(被処理水)38は、送水管106を介して円筒状反射壁104内に供給される。反射壁104内に導入された混合水38は、円筒状反射壁104内を上昇して反射壁104と超音波振動子90との間を通り、図1の矢印108のように、円筒状反射壁104の上部から反射壁104の外部に流出する。そして、混合水38中の汚泥フロック86は、超音波振動子104と反射壁104との間を通る際に超音波によって凝集し、混合水の流れ108に乗って図1の矢印116のように円筒状反射壁104の上方から反射壁104の外部に流出し、センタウエル110の内部を下降して沈殿槽40の下部に分離沈降し、沈殿汚泥118として堆積する。
【0018】
なお、反射壁104は、槽本体100と同心でなくともよい。そして、送水管106から円筒状反射壁104内に供給される混合水38の供給量が多く、1つの超音波振動子90によっては水と汚泥とを十分に分離することができない場合には、図3(2)に示したように、複数の超音波振動子90を円筒状反射壁104の上下方向に、すなわち混合水38の流れの方向に沿って配置し、混合水38への超音波の照射時間を長くするとよい。また、図3(3)に示したように、反射壁120を外壁122と内壁124とからなる二重円筒状に形成し、外壁122と内壁124との間に複数の超音波振動子90を円形に配置し、これら外壁122と内壁124との間に混合水38を供給して処理量の増大を図ってもよい。
【0019】
さらに、図3(4)に示したように、円筒状の反射壁104を複数個並列に設け、その各々に超音波振動子90を配置するとともに、送水管106を各円筒状反射壁104に対応させて分岐し、それぞれの反射壁104に混合水38を供給するようにしてもよい。また、図3(5)に示したように、反射壁本体130を平面視正方形または矩形に形成し、その内部を縦、横の仕切壁132によって複数(例えば9個)の分割領域136に区画し、各分割領域136に超音波振動子90を配置するようにしてもよい。この場合、仕切壁132を反射壁本体130より短くし、反射壁本体130によって囲った領域138の中央部に送水管106から混合水38を供給するようにしてもよい。また、混合水38の流路を図3(6)に示したように斜板140によって形成し、この斜板140に超音波振動子60を取り付けてもよいし、各斜板140間に超音波振動子90を配置してもよい。
【0020】
図4は、混合水の流路の形状と超音波振動子の配置状態を示す平面図である。図4(1)は、反射壁本体130内を縦、横の仕切壁132、134によって正方形状の分割領域136を複数形成し、各分割領域に超音波振動子90を配置したものである。また、図4(2)は、混合水の流路142が6角形のハニカム構造に形成してあって、各流路142の対向した一対の壁間に超音波振動子90が配置してある。なお、図4(3)に示したように、隣接した2つの流路142を仕切っている共通壁144に超音波振動子90を設けてもよい。
【0021】
図5は、他の実施形態を示したものである。本実施形態においては、沈殿槽40のセンタウエル150内に直接超音波振動子90を配置したもので、センタウエル50を超音波の反射壁としたもので、超音波振動子90とセンタウエル150の内壁との間に超音波による定在波を形成する。この実施の形態においては、送水管106から吐出された混合水は、センタウエル150の上部において矢印152のように反転して下方に向かう。そして、混合水中の汚泥フロック86は、超音波振動子90によって発生させた超音波によって凝集し、矢印154のようにセンタウエル150の下方から沈殿槽40の下部に分離沈降する。
【0022】
【実施例】
上記した超音波凝集による混合水38の処理効果を確認する実験を行なった。ただし、下記の実験結果は一例であって、汚泥の状態によって異なる。
実験は、500mlのメスシリンダに活性汚泥が分散している混合水(被処理水)を入れ、その混合水中に直径3cmの超音波振動子をケーブルで吊るし、混合水に超音波を照射して超音波振動子とメスシリンダの内壁との間に超音波の定在波を発生させて行なった。超音波振動子は、振動子の上端が混合水の水面下1〜2cmとなる深さの位置に配置した。
【0023】
図6は、混合水に照射した超音波の周波数と汚泥の沈降量との関係を示したものである。使用した被処理水である混合水38は、浮遊物量(SS)が1リットル当り6150mgである。また、発振器の出力電圧は、実効値(rms、以下同様)で80mVであり、パワーアンプで50db増幅して振動子に入力した。そして、沈降高の目盛りhは、目視による活性汚泥が分散している懸濁液と上澄水との境界のメスシリンダの目盛りを示している。なお、SSは、10mlの混合水を乾燥した濾紙で濾し、この濾紙を乾燥させて濾す前と後との重量を計測してその重量差を求め、これを1l当りに換算して求めた。
【0024】
図6から明らかなように、自然に沈降させるよりも、超音波を照射した方が沈降速度が大きくなる。また、照射する周波数が低いほど汚泥の沈降量が大きくなっている。すなわち、図6に示したように、自然沈降の場合、5分経したときの沈降高の目盛りは、約495mlであり、10分経過したときの目盛りは約491ml、15分経過したときの沈降高の目盛りは約485mlであった。これに対して、周波数が2.5MHzのときの沈降高の目盛りは、5分経過時が約492ml、10分経過時が485ml、15分経過時が約477mlであった。また、周波数が2MHzの場合の沈降高の目盛りは、5分経過時が約492ml、10分経過時が約483ml、15分経過時が約472mlであった。さらに、周波数が1.5MHzの場合の沈降高の目盛りは、5分経過時が約490ml、10分経過時が約478ml、15分経過時が約467mlであった。そして、周波数が1.2MHzの場合の沈降高の目盛りは、5分経過時が約489ml、10分経過時が約471ml、15分経過時が約455mlであり、周波数が1MHzの場合、沈降高の目盛りは5分経過時が約475ml、10分経過時が約447ml、15分経過時が約435mlであった。
【0025】
このように周波数が低くなるのに従って汚泥が迅速に沈降するのは、周波数が低くなるに従って超音波の伝播距離が大きくなり、より多くのフロックを凝集させることができるためである。
【0026】
図7は、混合水に照射した超音波の周波数と上澄水のSSとの関係を示したものである。使用した混合水のSSは、5030mg/lであり、入力電圧は100mVrmsである。そして、上澄水のSSの測定は、各周波数の超音波を15分間混合水に照射したのち、上澄水を10ml採取して乾燥した濾紙で濾し、これを乾燥させて濾紙の重量を計測して求めた。なお、周波数0は、自然沈降による上澄水中のSSを示している。
【0027】
図7から明らかなように、周波数が高くなるのに従って上澄水中のSSは少なくなる傾向が見られるが、周波数が1.2MHzを超えると、上澄水中のSSの値にあまり大きな変化は見られない。すなわち、上澄水中のSSは、自然沈降の場合約291mg/l、500kHzの場合約304mg/l、1MHzの場合約140mg/l、1.2MHzの場合約84mg/l、1.5MHzの場合約77mg/l、2MHzの場合約66mg/l、そして2.5MHzの場合約70mg/lであった。なお、周波数が500kHzの場合、入力が大き過ぎて懸濁液が巻き上げられ、上澄水中のSSが自然沈降より多くなった。
【0028】
図8は、発振器への入力電圧、すなわち超音波の出力と沈降量との関係を示したものである。使用した混合水のSSは6150mg/l、混合水に照射した超音波の周波数は2MHzである。さらに、沈降高の目盛りhは、前記図6と同様である。また、自然沈降による沈降高の目盛りのデータは、図6に示したものを使用している。
【0029】
図8に示したように、入力電圧(超音波出力)が大きくなるほど沈降量が大きくなっており、入力電圧が30mVの場合、2MHzの超音波を混合水に照射して5分を経過したときの沈降高の目盛りは約494ml、10分経過したときの目盛りは約489ml、15分を経過したときの目盛りは約483mlであった。また、入力電力が40mVの場合の沈降高の目盛りは、5分経過時が約494ml、10分経過時が約488ml、15分経過時が約481mlであった。そして、入力電圧が50mVの場合の沈降高の目盛りは、5分経過時が約495ml、10分経過時が約488ml、15分経過時が約480mlであった。さらに、入力電圧が80mVの場合の沈降高の目盛りは、5分経過時が約492ml、10分経過時が約483ml、15分経過時が約472mlであった。また、入力電圧が100mVの場合の沈降高の目盛りは、5分経過時が約487ml、10分経過時が約473ml、15分経過時が約464mlであった。そして、入力電圧が120mVの場合の沈降高の目盛りは、5分経過時が約480ml、10分経過時が約469ml、15分経過時が約459mlであった。さらに、入力電圧が140mVの場合の沈降高の目盛りは、5分経過時が約475ml、10分経過時が約459ml、15分経過時が約452mlであった。
【0030】
従って、入力電圧が大きいほど、すなわち超音波の出力が大きくなるほど汚泥が速やかに沈降する。ただし、超音波の出力があまり大きくなりすぎると、キャビテーションが発生して懸濁液が分散される。
【0031】
図9は、発振器の出力電圧と上澄水中のSSとの関係を示したものである。
使用した混合水は、SSが5030mg/lであり、照射した超音波の周波数は2.5MHzである。自然沈降の場合、15分経過したときの上澄水中のSSは、約290mg/lであるが、入力電圧50mVで2MHzの超音波を15分間混合水に照射した場合、上澄水中のSSは約190mg/lであった。また、入力電圧が80mVのときは約127mg/l、入力電圧が100mVのときは約70mg/l、入力電圧が120mVのときは約65mg/l、入力電圧が140mVのときは約70mg/lであった。
【0032】
図10と図11とは、他の実験例を示したもので、図10が超音波の周波数と汚泥の沈降量との関係を示したもので、図11が超音波の周波数と上澄水中のSSとの関係を示したものである。実験条件は、前記とほぼ同様であるが、混合水のSSは6171mg/lであり、発振器の入力電圧は40mVrである。これらの図によると、周波数が300kHzの場合、周波数が500kHzのときとほぼ同様の沈降量を得ることができる。しかし、周波数300kHzにおける上澄水中のSSは、自然沈降に比較しても悪かった。また、発信器の出力が小さいため、1MHz以上の周波数では、凝集効果があまり見られず、上澄水中のSSも、1MHz以上ではほとんど変化が見られなかった。
【0033】
なお、前記実施例においては、混合水に超音波のみを照射して凝集、沈降処理を行なった場合について説明したが、凝集剤の使用と超音波の照射とを併用してもよい。そして、前記実施例においては、超音波振動子が円形である場合について説明したが、振動子の形状は円形に限定されない。また、前記実施の形態においては、沈殿槽40に超音波振動子90を配置した場合について説明したが、汚泥濃縮槽に超音波振動子と反射壁とを設け、汚泥濃縮槽内に超音波による定在はを発生させて汚泥を濃縮するようにしてもよい。
【0034】
【発明の効果】
以上に説明したようには、本発明によれば、被処理水に超音波を照射して定在波を発生させることにより、この定在波の音圧の節部に汚泥が集り、容易に凝集して沈降しやすくなり、汚泥の沈降時間を短縮できるため、処理量の増大や装置を小型化を図ることができる。また、バルキングが抑止されて沈降性を向上することができる。しかも、汚泥の沈降速度を大きくできるために汚泥を沈殿させておく時間の短縮が図れ、汚泥中のりんの溶出を防止できて処理水の水質を向上することができる。
【0035】
周波数が300kHz〜2.5MHzの超音波を被処理水に照射すると、被処理水中の浮遊物を迅速に沈降させることができるとともに、上澄水中のSSを低下させることができる。さらに、被処理水の流れに直交して超音波を照射するようにすると、沈殿槽に被処理水を導入した部分において汚泥を沈殿させることができ、被処理水の連続的な処理が可能となる。そして、被処理水の流入量に応じて超音波振動子を複数設けることにより、被処理水の迅速な処理が可能となる。
【図面の簡単な説明】
【図1】本発明の実施の形態に係る沈殿槽の説明図である。
【図2】本発明の排水処理方法の原理を模式的に示した説明図である。
【図3】実施の形態に係る超音波振動子の配置例の側方から見た図である。
【図4】実施の形態に係る超音波振動子の配置例の上方から見た図である。
【図5】他の実施形態に係る沈殿槽の説明図である。
【図6】実施例における被処理水に超音波を照射したときの、超音波の周波数と汚泥の沈降量との関係を示す図である。
【図7】実施例における被処理水に超音波を照射したときの、超音波の周波数と上澄水中のSSとの関係を示す図である。
【図8】実施例における被処理水に超音波を照射したときの、超音波の出力と汚泥の沈降量との関係を示す図である。
【図9】実施例における被処理水に超音波を照射したときの、超音波の出力と上澄水中のSSとの関係を示す図である。
【図10】入力電圧が40mVrのときの超音波の周波数と汚泥の沈降量との関係を示す図である。
【図11】入力電圧が40mVrのときの超音波の周波数と上澄水中のSSとの関係を示す図である。
【図12】従来の活性汚泥法による排水処理方法の説明図である。
【図13】従来の沈殿槽の説明図である。
【符号の説明】
40 排水処理装置(沈殿槽)
42 上澄水
86 汚泥フロック
90 超音波振動子
100 槽本体
104 円筒状反射壁
106 送水管
118 沈殿汚泥[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a wastewater treatment method for obtaining a clear treated water by removing suspended substances from wastewater such as sewage, domestic wastewater, and industrial wastewater, and in particular, sedimenting suspended substances using a biological treatment method. The present invention relates to a wastewater treatment method and apparatus.
[0002]
[Prior art]
FIG. 12 is an explanatory diagram showing an outline of an activated sludge method for biologically treating wastewater. In FIG. 12,
[0003]
The
[0004]
The activated
[0005]
Meanwhile, as shown in FIG. 13, the
[0006]
[Problems to be solved by the invention]
However, the separation of sludge and water in the
[0007]
The present invention has been made to solve the above-mentioned drawbacks of the prior art, and aims to reduce the size of the processing apparatus.
Another object of the present invention is to suppress bulking of sludge.
Furthermore, an object of the present invention is to promote sedimentation and separation of sludge in a sludge concentration tank, and to increase the throughput or downsize equipment.
[0008]
[Means for Solving the Problems]
In order to achieve the above object, the present invention physically irradiates the activated water sludge by irradiating the water to be treated, and the wastewater treatment method according to the present invention comprises a treatment tank containing the treated water and a sedimentation tank. In the wastewater treatment method for introducing suspended sludge into the sludge concentration tank, the standing water is formed by irradiating the treated water in the settling tank or the sludge in the sludge concentration tank with ultrasonic waves, and the treated water. It is configured to aggregate and settle the suspended matter. If the frequency of the ultrasonic wave is low, the wavelength becomes long, so that the interval between aggregation is widened, and fine particles and particles with weak binding force are difficult to aggregate. On the other hand, the suspended matter amount (SS) in the supernatant water becomes smaller as the ultrasonic frequency is higher. However, the higher the frequency, the greater the attenuation of the sound wave and the shorter the propagation distance, so the range of influence of aggregation becomes narrower. Therefore, considering the SS in the supernatant water and the sedimentation rate of the sludge, the frequency of the ultrasonic wave to be irradiated is preferably about 300 kHz to 2.5 MHz, and particularly preferably about 500 kHz to 1.2 MHz. And it is good to irradiate an ultrasonic wave orthogonally to the flow of to-be-processed water.
[0009]
Further, the waste water treatment apparatus according to the present invention includes a precipitation tank into which the water to be treated is introduced, an ultrasonic vibrator that is disposed in the precipitation tank and emits ultrasonic waves into the water to be treated, and this ultrasonic vibration. A reflection wall that is provided facing the child and reflects the ultrasonic wave radiated from the ultrasonic transducer and forms a standing wave between the ultrasonic transducer and the reflection wall and the ultrasonic transducer. It has the structure which has the water pipe which sends in to-be-processed water in between. The ultrasonic vibrator and the reflection wall can also be provided in a sludge concentration tank that allows the sludge precipitated in the treatment tank to flow in and concentrate.
[0010]
A plurality of ultrasonic vibrators can be provided according to the size of the sedimentation tank and the amount of water to be treated flowing into the sedimentation tank. The plurality of ultrasonic transducers can be arranged along the flow of the water to be treated, or arranged in a circular shape or a matrix shape. When the ultrasonic transducers are arranged in a circular shape, the reflection wall can be formed in a double cylindrical shape along the plurality of ultrasonic transducers. Further, the distance between the ultrasonic transducer and the reflecting wall only needs to be a standing wave, and since the propagation distance of the ultrasonic wave varies depending on the frequency, the maximum distance at which the standing wave can be formed varies depending on the frequency. However, if the output of the ultrasonic wave is too large, cavitation occurs and the suspension is dispersed.
[0011]
[Action]
In the present invention configured as described above, when a standing wave is generated by irradiating the water to be treated, sludge flocs gather in a layered manner at the node of the sound pressure of the standing wave. That is, as schematically shown in FIG. 2, the
[0012]
At this time, the
[0013]
Furthermore, bulking is suppressed by the compression action of flocs by ultrasonic waves, and the sedimentation property of sludge can be improved. And since it is physical aggregation using an ultrasonic wave, especially specialized knowledge is not required compared with use of a chemical | medical agent etc., and the amount of sludge does not increase. In addition, if ultrasonic waves are irradiated orthogonally to the flow of the water to be treated, sludge can be precipitated at the portion where the water to be treated is introduced into the settling tank, and continuous treatment of the water to be treated is possible. Become. Then, by providing a plurality of ultrasonic vibrators according to the inflow amount of the water to be treated, it is possible to quickly treat the water to be treated.
In addition, by irradiating the sludge concentration tank with ultrasonic waves and generating a standing wave, it is possible to quickly concentrate the sludge in the sludge concentration tank, similar to the floc aggregation in the treatment tank. The concentration tank can be downsized and the amount of processing can be increased.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Preferred embodiments of the waste water treatment method and apparatus of the present invention will be described in detail with reference to the accompanying drawings. Note that portions corresponding to the portions described in the prior art are denoted by the same reference numerals, and description thereof is omitted.
[0015]
FIG. 1 is an explanatory diagram of a main part of a wastewater treatment apparatus according to an embodiment of the present invention.
In FIG. 1, the
[0016]
A
[0017]
In the embodiment configured as described above, the
[0018]
The
[0019]
Further, as shown in FIG. 3 (4), a plurality of
[0020]
FIG. 4 is a plan view showing the shape of the flow path of the mixed water and the arrangement state of the ultrasonic transducers. In FIG. 4A, a plurality of square divided
[0021]
FIG. 5 shows another embodiment. In the present embodiment, the
[0022]
【Example】
An experiment was conducted to confirm the treatment effect of the
In the experiment, mixed water (treated water) in which activated sludge is dispersed is placed in a 500 ml measuring cylinder, an ultrasonic vibrator having a diameter of 3 cm is hung with a cable in the mixed water, and the mixed water is irradiated with ultrasonic waves. An ultrasonic standing wave was generated between the ultrasonic transducer and the inner wall of the measuring cylinder. The ultrasonic transducer was placed at a depth where the upper end of the transducer would be 1 to 2 cm below the surface of the mixed water.
[0023]
FIG. 6 shows the relationship between the frequency of ultrasonic waves applied to the mixed water and the amount of sludge settling. The
[0024]
As is clear from FIG. 6, the sedimentation speed is higher when the ultrasonic wave is irradiated than when the sedimentation is naturally performed. Moreover, the amount of sludge settling increases as the frequency of irradiation decreases. That is, as shown in FIG. 6, in the case of natural sedimentation, the scale of sedimentation height after 5 minutes is about 495 ml, the scale after 10 minutes is about 491 ml, and the sedimentation after 15 minutes. The high scale was about 485 ml. In contrast, the scale of sedimentation height when the frequency was 2.5 MHz was about 492 ml when 5 minutes passed, 485 ml after 10 minutes, and about 477 ml after 15 minutes. The scale of sedimentation height when the frequency was 2 MHz was about 492 ml after 5 minutes, about 483 ml after 10 minutes, and about 472 ml after 15 minutes. Further, the scale of sedimentation height when the frequency was 1.5 MHz was about 490 ml when 5 minutes passed, about 478 ml after 10 minutes, and about 467 ml after 15 minutes. And when the frequency is 1.2 MHz, the scale of sedimentation height is about 489 ml at the time of 5 minutes, about 471 ml at the time of 10 minutes, and about 455 ml at the time of 15 minutes. The scale was about 475 ml after 5 minutes, about 447 ml after 10 minutes, and about 435 ml after 15 minutes.
[0025]
The reason why the sludge settles rapidly as the frequency is lowered is that the propagation distance of the ultrasonic wave is increased as the frequency is lowered, and more flocs can be aggregated.
[0026]
FIG. 7 shows the relationship between the frequency of the ultrasonic wave irradiated to the mixed water and the SS of the supernatant water. The SS of the mixed water used is 5030 mg / l, and the input voltage is 100 mVrms. The SS of the supernatant water is measured by irradiating the mixed water with ultrasonic waves of each frequency for 15 minutes, collecting 10 ml of the supernatant water, filtering it with a dry filter paper, drying it, and measuring the weight of the filter paper. Asked. In addition, the
[0027]
As is apparent from FIG. 7, the SS in the supernatant water tends to decrease as the frequency increases. However, when the frequency exceeds 1.2 MHz, the SS value in the supernatant water does not change significantly. I can't. That is, SS in supernatant water is about 291 mg / l for natural sedimentation, about 304 mg / l for 500 kHz, about 140 mg / l for 1 MHz, about 84 mg / l for 1.2 MHz, and about 1.5 mg for 1.5 MHz. It was about 66 mg / l at 77 mg / l and 2 MHz, and about 70 mg / l at 2.5 MHz. In addition, when the frequency was 500 kHz, the input was too large and the suspension was wound up, and the SS in the supernatant water was larger than the natural sedimentation.
[0028]
FIG. 8 shows the relationship between the input voltage to the oscillator, that is, the output of the ultrasonic wave and the amount of sedimentation. The SS of the mixed water used was 6150 mg / l, and the frequency of the ultrasonic wave irradiated to the mixed water was 2 MHz. Furthermore, the scale h of the sedimentation height is the same as in FIG. Moreover, the data shown in FIG. 6 is used for the data of the scale of sedimentation height by natural sedimentation.
[0029]
As shown in FIG. 8, as the input voltage (ultrasonic output) increases, the sedimentation amount increases. When the input voltage is 30 mV, 5 minutes have passed after the 2 MHz ultrasonic wave is irradiated to the mixed water. The scale of sedimentation height was about 494 ml, the scale after 10 minutes was about 489 ml, and the scale after 15 minutes was about 483 ml. The scale of sedimentation height when the input power was 40 mV was about 494 ml after 5 minutes, about 488 ml after 10 minutes, and about 481 ml after 15 minutes. The scale of sedimentation height when the input voltage was 50 mV was about 495 ml after 5 minutes, about 488 ml after 10 minutes, and about 480 ml after 15 minutes. Further, when the input voltage was 80 mV, the scale of sedimentation height was about 492 ml after 5 minutes, about 483 ml after 10 minutes, and about 472 ml after 15 minutes. The scale of sedimentation height when the input voltage was 100 mV was about 487 ml after 5 minutes, about 473 ml after 10 minutes, and about 464 ml after 15 minutes. When the input voltage was 120 mV, the sedimentation height scale was about 480 ml after 5 minutes, about 469 ml after 10 minutes, and about 459 ml after 15 minutes. Further, when the input voltage was 140 mV, the sedimentation height scale was about 475 ml after 5 minutes, about 459 ml after 10 minutes, and about 452 ml after 15 minutes.
[0030]
Therefore, as the input voltage increases, that is, as the output of the ultrasonic wave increases, the sludge settles quickly. However, if the output of the ultrasonic wave becomes too large, cavitation occurs and the suspension is dispersed.
[0031]
FIG. 9 shows the relationship between the output voltage of the oscillator and SS in the supernatant.
The mixed water used has an SS of 5030 mg / l and the frequency of the irradiated ultrasonic wave is 2.5 MHz. In the case of natural sedimentation, SS in the supernatant water after 15 minutes is about 290 mg / l. However, when 2 MHz ultrasonic waves are irradiated to the mixed water for 15 minutes at an input voltage of 50 mV, the SS in the supernatant water is About 190 mg / l. When the input voltage is 80 mV, it is about 127 mg / l, when the input voltage is 100 mV, it is about 70 mg / l, when the input voltage is 120 mV, it is about 65 mg / l, and when the input voltage is 140 mV, it is about 70 mg / l. there were.
[0032]
FIGS. 10 and 11 show other experimental examples. FIG. 10 shows the relationship between the ultrasonic frequency and the amount of sludge settling. FIG. 11 shows the ultrasonic frequency and the supernatant water. This shows the relationship with SS. The experimental conditions are almost the same as described above, but the SS of the mixed water is 6171 mg / l and the input voltage of the oscillator is 40 mVr. According to these figures, when the frequency is 300 kHz, almost the same amount of sedimentation can be obtained as when the frequency is 500 kHz. However, the SS in the supernatant water at a frequency of 300 kHz was worse than natural sedimentation. Moreover, since the output of the transmitter was small, the coagulation effect was not so much observed at frequencies of 1 MHz or higher, and the SS in the supernatant water was hardly changed at 1 MHz or higher.
[0033]
In the above-described embodiment, the case where the mixed water is irradiated with only ultrasonic waves to perform the aggregation and sedimentation treatment has been described. However, the use of the flocculant and the ultrasonic irradiation may be used in combination. In the embodiment, the case where the ultrasonic transducer is circular has been described, but the shape of the transducer is not limited to a circle. Moreover, in the said embodiment, although the case where the ultrasonic transducer |
[0034]
【The invention's effect】
As described above, according to the present invention, the standing water is generated by irradiating the water to be treated with sludge, so that sludge collects at the node of the sound pressure of the standing wave, and easily. Since it is easy to aggregate and settle and the sedimentation time of sludge can be shortened, the amount of processing can be increased and the apparatus can be downsized. Moreover, bulking is suppressed and sedimentation can be improved. Moreover, since the sedimentation rate of the sludge can be increased, the time for precipitating the sludge can be shortened, the elution of phosphorus in the sludge can be prevented, and the quality of the treated water can be improved.
[0035]
When the treatment water is irradiated with ultrasonic waves having a frequency of 300 kHz to 2.5 MHz, suspended matters in the treatment water can be quickly settled and SS in the supernatant water can be reduced. Furthermore, if ultrasonic waves are irradiated orthogonally to the flow of the water to be treated, sludge can be precipitated at the portion where the water to be treated is introduced into the settling tank, and continuous treatment of the water to be treated is possible. Become. Then, by providing a plurality of ultrasonic vibrators according to the inflow amount of the water to be treated, it is possible to quickly treat the water to be treated.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram of a sedimentation tank according to an embodiment of the present invention.
FIG. 2 is an explanatory view schematically showing the principle of the wastewater treatment method of the present invention.
FIG. 3 is a side view of an arrangement example of ultrasonic transducers according to the embodiment.
FIG. 4 is a view from above of an arrangement example of ultrasonic transducers according to the embodiment.
FIG. 5 is an explanatory diagram of a sedimentation tank according to another embodiment.
FIG. 6 is a diagram showing the relationship between the frequency of ultrasonic waves and the amount of sludge settling when ultrasonic waves are applied to the water to be treated in the examples.
FIG. 7 is a diagram showing the relationship between the frequency of ultrasonic waves and SS in supernatant water when ultrasonic waves are applied to the water to be treated in the examples.
FIG. 8 is a diagram showing the relationship between the output of ultrasonic waves and the amount of sludge settling when the water to be treated is irradiated with ultrasonic waves in an example.
FIG. 9 is a diagram showing a relationship between the output of ultrasonic waves and SS in supernatant water when ultrasonic waves are applied to the water to be treated in Examples.
FIG. 10 is a diagram showing the relationship between the frequency of ultrasonic waves and the amount of sludge settling when the input voltage is 40 mVr.
FIG. 11 is a diagram showing the relationship between the frequency of ultrasonic waves when the input voltage is 40 mVr and SS in the supernatant water.
FIG. 12 is an explanatory view of a wastewater treatment method by a conventional activated sludge method.
FIG. 13 is an explanatory view of a conventional sedimentation tank.
[Explanation of symbols]
40 Wastewater treatment equipment (sedimentation tank)
42
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP31962695A JP3875736B2 (en) | 1995-11-14 | 1995-11-14 | Wastewater treatment method and apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP31962695A JP3875736B2 (en) | 1995-11-14 | 1995-11-14 | Wastewater treatment method and apparatus |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH09136090A JPH09136090A (en) | 1997-05-27 |
JP3875736B2 true JP3875736B2 (en) | 2007-01-31 |
Family
ID=18112391
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP31962695A Expired - Fee Related JP3875736B2 (en) | 1995-11-14 | 1995-11-14 | Wastewater treatment method and apparatus |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3875736B2 (en) |
Families Citing this family (51)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100316683B1 (en) * | 1998-12-17 | 2002-10-04 | 손종렬 | Treatment of degradable materials in wastewater by ultrasonic irradiation |
DE19928600C1 (en) * | 1999-06-22 | 2001-05-03 | Thermoselect Ag Vaduz | Separation device and its use |
DE10224172B4 (en) * | 2002-05-31 | 2006-05-11 | Alpha-Maschinen- & Anlagenbau Gmbh | Apparatus and method for the separation of solids from liquids or for the purification of liquids or solid-liquid mixtures |
JP4808113B2 (en) * | 2006-09-11 | 2011-11-02 | 中国電力株式会社 | Desulfurization gypsum precipitation accelerator |
CL2008003900A1 (en) * | 2008-12-24 | 2009-03-13 | Crystal Lagoons Curacao Bv | Water filtration process of a pond, without filtering the entire water, which comprises a) emitting ultrasonic waves in the pond; b) add a flocculant; c) suction the floccules with a vacuum cleaner towards an effluent collection line; d) filter said effluent and return the filtered flow to the pond. |
US8691145B2 (en) | 2009-11-16 | 2014-04-08 | Flodesign Sonics, Inc. | Ultrasound and acoustophoresis for water purification |
EP2582631A4 (en) | 2010-06-16 | 2016-05-25 | Flodesign Sonics Inc | Phononic crystal desalination system and method of use |
US9421553B2 (en) | 2010-08-23 | 2016-08-23 | Flodesign Sonics, Inc. | High-volume fast separation of multi-phase components in fluid suspensions |
KR101410237B1 (en) * | 2011-12-28 | 2014-06-23 | 한국건설기술연구원 | Purification apparatus for wastewater using standing wave |
US10370635B2 (en) | 2012-03-15 | 2019-08-06 | Flodesign Sonics, Inc. | Acoustic separation of T cells |
US9458450B2 (en) | 2012-03-15 | 2016-10-04 | Flodesign Sonics, Inc. | Acoustophoretic separation technology using multi-dimensional standing waves |
US9752114B2 (en) | 2012-03-15 | 2017-09-05 | Flodesign Sonics, Inc | Bioreactor using acoustic standing waves |
US9745548B2 (en) | 2012-03-15 | 2017-08-29 | Flodesign Sonics, Inc. | Acoustic perfusion devices |
US9783775B2 (en) | 2012-03-15 | 2017-10-10 | Flodesign Sonics, Inc. | Bioreactor using acoustic standing waves |
US9567559B2 (en) | 2012-03-15 | 2017-02-14 | Flodesign Sonics, Inc. | Bioreactor using acoustic standing waves |
US9688958B2 (en) | 2012-03-15 | 2017-06-27 | Flodesign Sonics, Inc. | Acoustic bioreactor processes |
US9950282B2 (en) | 2012-03-15 | 2018-04-24 | Flodesign Sonics, Inc. | Electronic configuration and control for acoustic standing wave generation |
US10322949B2 (en) | 2012-03-15 | 2019-06-18 | Flodesign Sonics, Inc. | Transducer and reflector configurations for an acoustophoretic device |
US10967298B2 (en) | 2012-03-15 | 2021-04-06 | Flodesign Sonics, Inc. | Driver and control for variable impedence load |
US9796956B2 (en) | 2013-11-06 | 2017-10-24 | Flodesign Sonics, Inc. | Multi-stage acoustophoresis device |
US10704021B2 (en) | 2012-03-15 | 2020-07-07 | Flodesign Sonics, Inc. | Acoustic perfusion devices |
US10689609B2 (en) | 2012-03-15 | 2020-06-23 | Flodesign Sonics, Inc. | Acoustic bioreactor processes |
US9752113B2 (en) | 2012-03-15 | 2017-09-05 | Flodesign Sonics, Inc. | Acoustic perfusion devices |
US9272234B2 (en) | 2012-03-15 | 2016-03-01 | Flodesign Sonics, Inc. | Separation of multi-component fluid through ultrasonic acoustophoresis |
US10953436B2 (en) | 2012-03-15 | 2021-03-23 | Flodesign Sonics, Inc. | Acoustophoretic device with piezoelectric transducer array |
US10737953B2 (en) | 2012-04-20 | 2020-08-11 | Flodesign Sonics, Inc. | Acoustophoretic method for use in bioreactors |
US11324873B2 (en) | 2012-04-20 | 2022-05-10 | Flodesign Sonics, Inc. | Acoustic blood separation processes and devices |
RU2531931C1 (en) * | 2013-06-05 | 2014-10-27 | Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Мурманский государственный технический университет" (ФГОУВПО "МГТУ") | Method of physical and chemical wastewater treatment |
US9745569B2 (en) | 2013-09-13 | 2017-08-29 | Flodesign Sonics, Inc. | System for generating high concentration factors for low cell density suspensions |
JP6268669B2 (en) * | 2013-10-24 | 2018-01-31 | 株式会社Ihi | Apparatus and method for controlling sedimentation of foreign matter in liquid |
EP3092049A1 (en) | 2014-01-08 | 2016-11-16 | Flodesign Sonics Inc. | Acoustophoresis device with dual acoustophoretic chamber |
US9744483B2 (en) | 2014-07-02 | 2017-08-29 | Flodesign Sonics, Inc. | Large scale acoustic separation device |
US10106770B2 (en) | 2015-03-24 | 2018-10-23 | Flodesign Sonics, Inc. | Methods and apparatus for particle aggregation using acoustic standing waves |
US11377651B2 (en) | 2016-10-19 | 2022-07-05 | Flodesign Sonics, Inc. | Cell therapy processes utilizing acoustophoresis |
CN107921332A (en) | 2015-04-29 | 2018-04-17 | 弗洛设计超声波公司 | Acoustophoresis device for oblique wave particle deflection |
US11420136B2 (en) | 2016-10-19 | 2022-08-23 | Flodesign Sonics, Inc. | Affinity cell extraction by acoustics |
US11021699B2 (en) | 2015-04-29 | 2021-06-01 | FioDesign Sonics, Inc. | Separation using angled acoustic waves |
US11708572B2 (en) | 2015-04-29 | 2023-07-25 | Flodesign Sonics, Inc. | Acoustic cell separation techniques and processes |
RU2708048C2 (en) | 2015-05-20 | 2019-12-03 | Флодизайн Соникс, Инк. | Method for acoustic manipulation of particles in standing wave fields |
US10161926B2 (en) | 2015-06-11 | 2018-12-25 | Flodesign Sonics, Inc. | Acoustic methods for separation of cells and pathogens |
CA2995043C (en) | 2015-07-09 | 2023-11-21 | Bart Lipkens | Non-planar and non-symmetrical piezoelectric crystals and reflectors |
US11474085B2 (en) | 2015-07-28 | 2022-10-18 | Flodesign Sonics, Inc. | Expanded bed affinity selection |
US11459540B2 (en) | 2015-07-28 | 2022-10-04 | Flodesign Sonics, Inc. | Expanded bed affinity selection |
US10710006B2 (en) | 2016-04-25 | 2020-07-14 | Flodesign Sonics, Inc. | Piezoelectric transducer for generation of an acoustic standing wave |
US11085035B2 (en) | 2016-05-03 | 2021-08-10 | Flodesign Sonics, Inc. | Therapeutic cell washing, concentration, and separation utilizing acoustophoresis |
WO2017192760A1 (en) | 2016-05-03 | 2017-11-09 | Flodesign Sonics, Inc. | Therapeutic cell washing, concentration, and separation utilizing acoustophoresis |
US11214789B2 (en) | 2016-05-03 | 2022-01-04 | Flodesign Sonics, Inc. | Concentration and washing of particles with acoustics |
JP2021507561A (en) | 2017-12-14 | 2021-02-22 | フロデザイン ソニックス, インク.Flodesign Sonics, Inc. | Acoustic Transducer Driver and Controller |
JP6940448B2 (en) * | 2018-03-29 | 2021-09-29 | 株式会社日立製作所 | Turbidity separator, turbidity separation method, and turbidity separation system |
CN116077987B (en) * | 2023-02-07 | 2023-09-26 | 泰兴金江化学工业有限公司 | Production and processing equipment with raw material-controllable ethyl acetate |
CN117756373B (en) * | 2023-11-30 | 2024-10-18 | 长三角国创超声(上海)有限公司 | Ultrasonic sludge reduction system, method and reduction equipment thereof |
-
1995
- 1995-11-14 JP JP31962695A patent/JP3875736B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH09136090A (en) | 1997-05-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3875736B2 (en) | Wastewater treatment method and apparatus | |
US5164094A (en) | Process for the separation of substances from a liquid and device for effecting such a process | |
KR100988474B1 (en) | Flocculation basin for treatment of drinking water and wastewater | |
KR102225653B1 (en) | membrane unit with ultrasonic washing function and water treating system using the same | |
KR101184174B1 (en) | Air floatation type algae removing apparatus | |
JP2010158679A (en) | Device and process for treating liquid medium | |
JP3233563B2 (en) | Wastewater treatment device and wastewater treatment method | |
KR101133174B1 (en) | Movable water treatment system and automatic control method using DAF with an independent power supply for small water bodies | |
KR101393028B1 (en) | Water purify system using plasma underwater discharge | |
RU2004126245A (en) | INSTALLATION FOR FLOTATION CLEANING OF WATER | |
US20110192801A1 (en) | Method for Treating a Liquid by Flotation Induced by Floating Particles | |
CN104529090A (en) | Paper-making waste water deep processing system | |
JPS6115722B2 (en) | ||
KR101217167B1 (en) | Apparatus for mixing chemicals using ultrasonic waves | |
RU2651197C1 (en) | Method of aqueous solutions conditioning | |
FR2832400B1 (en) | METHOD AND DEVICE FOR TREATMENT OF HYDROPHILIC SLUDGE BY HYDRAULIC TURBULENCE EFFECT ASSOCIATED WITH OXIDATION AND CHEMICAL REACTIONS BY SUPPLY OF ADDITIVES | |
CN104817218B (en) | A kind of ozone pre-oxidation method for treating water | |
ZA200400398B (en) | Water-treating device. | |
CN110950498B (en) | Frequency conversion direct current side position water treatment integration equipment | |
JP2015100719A (en) | Suspension processing apparatus and suspension processing method | |
KR101931261B1 (en) | Foul water treatment method using ultrasonic wave cleaning | |
JPH0231895A (en) | Process and apparatus for treating filthy water | |
CN118684356B (en) | System and method for synchronously removing organic matters through reverse osmosis strong brine crystallization and hardness removal | |
RU2467956C1 (en) | Method of water treatment | |
SU394320A1 (en) | METHOD OF LIGHTING SUSPENSIONS |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20050825 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060501 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20060927 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20061027 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121102 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131102 Year of fee payment: 7 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |