[go: up one dir, main page]

JP3875616B2 - Liquid crystal polymer - Google Patents

Liquid crystal polymer Download PDF

Info

Publication number
JP3875616B2
JP3875616B2 JP2002296964A JP2002296964A JP3875616B2 JP 3875616 B2 JP3875616 B2 JP 3875616B2 JP 2002296964 A JP2002296964 A JP 2002296964A JP 2002296964 A JP2002296964 A JP 2002296964A JP 3875616 B2 JP3875616 B2 JP 3875616B2
Authority
JP
Japan
Prior art keywords
liquid crystal
general formula
crystal polymer
optical element
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002296964A
Other languages
Japanese (ja)
Other versions
JP2003201320A (en
Inventor
弘則 本村
今日子 泉
秀作 中野
周 望月
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Denko Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Denko Corp filed Critical Nitto Denko Corp
Priority to JP2002296964A priority Critical patent/JP3875616B2/en
Publication of JP2003201320A publication Critical patent/JP2003201320A/en
Application granted granted Critical
Publication of JP3875616B2 publication Critical patent/JP3875616B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Liquid Crystal (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Polarising Elements (AREA)

Description

【0001】
【発明の技術分野】
本発明は、円偏光二色性の光学素子の形成に好適な液晶ポリマーに関する。
【0002】
【背景技術】
従来、低分子量体からなる液状のコレステリック液晶をガラス等の基板間に配向状態で封入してなる円偏光二色性の光学素子が知られていた。これは、液晶分子の螺旋軸が光学素子に対して垂直なグランジャン配向したものであり、当該螺旋軸に対して平行に入射する(入射角0度)自然光の内、ある波長域の光を右(又は左)円偏光として反射し、残りを左(又は右)円偏光として透過する。その反射光の波長λは、式:λ=n・pで決定され(式中、nは液晶の平均屈折率、pはコレステリック相の螺旋ピッチである)、反射円偏光の左右は、コレステリック相の螺旋状態で決定されて螺旋の旋回方向と一致する。
【0003】
前記した円偏光二色性の光学素子は、透過光と分離された反射光も利用できる可能性があり、ポリビニルアルコール等の延伸フィルムに二色性染料等を吸着させてなる、吸収ロスを生じる偏光板の代替品として期待されている。
【0004】
しかしながら、従来の円偏光二色性光学素子には、前記したように液状のコレステリック液晶を挟持するための基板を併用する必要があるため厚くて重いものとなり、液晶表示装置の軽量性や薄型性等を阻害する問題点があった。またコレステリック液晶の配向状態、例えばピッチが温度等で変化しやすい問題点もあった。
【0005】
一方、コレステリック系の液晶ポリマーも知られているが(特開昭55−21479号公報、米国特許明細書第5332522号)、低分子量体の如くに良好な配向状態のフィルム等の固化物を得ることが困難であったり、配向処理に数時間等の長時間を要したり、ガラス転移温度が低く耐久性不足で実用性に乏しかったりして、いずれの場合にもフィルム等の固化状態のものからなる円偏光二色性光学素子を得ることは困難であった。
【0006】
【発明の技術的課題】
本発明は、成膜性に優れグランジャン配向を良好なモノドメイン状態で形成できて、その配向処理を数分間等の短時間で達成でき、ガラス状態に安定して固定化できて耐久性や保存安定性に優れる円偏光二色性光学素子を形成でき、そのコレステリック相の螺旋ピッチを容易に制御できて、薄くて軽くピッチ等の配向状態が実用温度で変化しにくい固化物を形成できる液晶ポリマーを得ることを課題とする。
【0007】
【課題の解決手段】
本発明は、下記の一般式(a)で表わされるモノマー単位と、一般式(b)で表わされるモノマー単位を含有する共重合体を成分とすることを特徴とする液晶ポリマーを提供するものである。
一般式(a):

Figure 0003875616
(ただし、Rは水素又はメチル基、mは1〜6の整数、XはCO基又はOCO基であり、p及びqは1又は2で、かつp+q=3を満足する。)
一般式(b):
Figure 0003875616
(ただし、Rは水素又はメチル基、nは1〜6の整数、XはCO基又はOCO基、Xは−CO−R又は−Rであり、そのR
Figure 0003875616

Figure 0003875616
であり、Rは下記のものである。)
Figure 0003875616
【0008】
【発明の効果】
前記の液晶ポリマーを用いて、良好なモノドメイン状態のグランジャン配向の膜を成膜性よく容易に形成でき、その配向処理も数分間等の短時間で達成できてガラス状態に安定して固定化でき、そのコレステリック相の螺旋ピッチも容易に制御できて可視光域で円偏光二色性を示す固化物も容易に形成でき、その固化物からなる薄くて軽く、耐久性や保存安定性に優れてピッチ等の配向状態が実用温度で変化しにくい円偏光二色性光学素子を効率よく形成することができる。
【0009】
【発明の実施形態】
本発明の液晶ポリマーは、下記の一般式(a)で表わされるモノマー単位と、一般式(b)で表わされるモノマー単位を含有する共重合体を成分とするものである。
【0010】
一般式(a):
Figure 0003875616
(ただし、Rは水素又はメチル基、mは1〜6の整数、XはCO基又はOCO基であり、p及びqは1又は2で、かつp+q=3を満足する。)
【0011】
一般式(b):
Figure 0003875616
(ただし、Rは水素又はメチル基、nは1〜6の整数、XはCO基又はOCO基、Xは−CO−R又は−Rであり、そのR
Figure 0003875616

Figure 0003875616
であり、Rは下記のものである。)
Figure 0003875616
【0012】
前記の一般式(a)、一般式(b)で表わされるモノマー単位を形成しうるアクリル系モノマーは、適宜な方法で合成することができる。ちなみに、式(a1)で表わされるアクリル系モノマーの合成例を下記に示した。
【0013】
Figure 0003875616
【0014】
すなわち前記においては、先ずエチレンクロロヒドリンと4−ヒドロキシ安息香酸を、ヨウ化カリウムを触媒としてアルカリ水溶液中で加熱還流させてヒドロキシカルボン酸を得た後、それをアクリル酸又はメタクリル酸と脱水反応させて(メタ)アクリレートとし、その(メタ)アクリレートを4−シアノ−4'−ヒドロキシビフェニルでDCC(ジシクロヘキシルカルボジイミド)とDMAP(ジメチルアミノピリジン)の存在下にエステル化することにより目的物の(a1)を得ることができる。
【0015】
また、式(b1)で表わされるアクリル系モノマーの合成例を下記に示した。
Figure 0003875616
【0016】
前記においては、先ずヒドロキシアルキルハライドと4−ヒドロキシ安息香酸を、ヨウ化カリウムを触媒としてアルカリ水溶液中で加熱還流させてヒドロキシカルボン酸を得た後、それをアクリル酸又はメタクリル酸と脱水反応させて(メタ)アクリレートとしその(メタ)アクリレートを、4位にR基含有のCO基を有するフェノールでDCCとDMAPの存在下にエステル化することにより目的物の(b1)を得ることができる。
【0017】
なお4位にR基含有のCO基を有するフェノールは、例えば下記の如く、先ずクロロ蟻酸メチルと4−ヒドロキシ安息香酸をアルカリ水溶液中で反応させてカルボン酸とし、それをオキサリルクロリドで酸クロライドとした後、ピリジン/テトラヒドロフラン中でH−Rと反応させてR基を導入し、ついでそれをアンモニア水で処理して保護基を除去することにより得ることができる。
Figure 0003875616
【0018】
上記した式(b1)の合成において、最終工程で加える次の化合物
Figure 0003875616
を、下記のものに代えることにより式(b2)で表されるアクリル系モノマーを得ることができる。
Figure 0003875616
【0019】
すなわち、ヒドロキシカルボン酸を(メタ)アクリル酸と脱水反応させて(メタ)アクリレートとした後、その(メタ)アクリレートを4位に不斉炭素基を有するフェノールでDCCとDMAPの存在下にエステル化することにより目的物の(b2)を得ることができる。
【0020】
なお4位に不斉炭素基を有するフェノールは、例えば下記の如く、4−ヒドロキシベンズアルデヒドと(S)−(−)−1−フェニルエチルアミンをトルエン中で共沸脱水することにより得ることができる。
Figure 0003875616
【0021】
従って一般式(a)、一般式(b)で表わされるモノマー単位を形成しうる他のアクリル系モノマーも、目的の導入基を有する適宜な原料を用いて上記に準じて合成することができる。
【0022】
光学素子の形成に用いうる液晶ポリマーは、上記した一般式(a)で表わされるモノマー単位の1種又は2種以上と、一般式(b)で表わされるモノマー単位の1種又は2種以上とが共重合したものである。その共重合割合は、一般式(b)で表わされるモノマー単位の含有率が過多では液晶性に乏しくなり、過少ではコレステリック液晶性に乏しくなることより、一般式(a)で表わされるモノマー単位60〜95重量%、一般式(b)で表わされるモノマー単位40〜5重量%が好ましい。
【0023】
共重合体の分子量は、過少では成膜性に乏しくなり、過多では液晶としての配向性、モノドメイン化に乏しくなって均一な配向状態を形成しにくくなることより、重量平均分子量に基づき2千〜10万、就中2.5千〜5万が好ましい。
【0024】
共重合体の調製は、例えばラジカル重合方式、カチオン重合方式、アニオン重合方式などの通例のアクリル系モノマーの重合方式に準じて行うことができる。なおラジカル重合方式を適用する場合、各種の重合開始剤を用いうるが、就中アゾビスイソブチロニトリルや過酸化ベンゾイルなどの分解温度が高くもなく、かつ低くもない中間的温度で分解するものが好ましく用いられる。
【0025】
共重合体は、その一般式(b)で表わされるモノマー単位の含有率に基づいてコレステリック液晶のピッチが変化する。図1、図2に当該含有率と円偏光二色性を示す中心波長との関係を例示した。なお図1におけるグラフは、共重合体のモノマー成分に後記実施例における化学式で表わされる(a2)と(b3)を、図2の場合は(a2)と(b6)を用いたものである。円偏光二色性を示す波長は、当該ピッチで決定されることより、一般式(b)で表わされるモノマー単位の含有率の制御で円偏光二色性を示す波長を調節することができる。従って後記する実施例の如く、可視光域の光に対して円偏光二色性を示す光学素子も容易に得ることができる。
【0026】
共重合体は、その1種、又は2種以上を混合して光学素子の形成に用いることができる。円偏光二色性を示す波長域の異なる2種以上の共重合体を混合することによっても、円偏光二色性を示す波長域を調節することができる。本発明においては、得られる光学素子の耐久性や、ピッチ等の配向特性の実用時における温度変化等に対する安定性、ないし無変化性などの点よりガラス転移温度が80℃以上の液晶ポリマーとしたものが光学素子の形成に好ましく用いうる。
【0027】
なお本発明においては、上記した一般式(a)又は一般式(b)で表わされるモノマー単位の1種又は2種以上からなる、その一般式に基づいたホモ型ポリマーを一般式(a)系のポリマーと一般式(b)系のポリマーとの混合系の液晶ポリマーとして光学素子の形成に用いることもできる。その混合割合や分子量等については上記した共重合体に準じることができる。
【0028】
円偏光二色性を示す光学素子の形成は、従来の配向処理に準じた方法で行いうる。ちなみにその例としては、基板上にポリイミドやポリビニルアルコール等からなる配向膜を形成してそれをレーヨン布等でラビング処理した後、その上に液晶ポリマーを展開してガラス転移温度以上、等方相転移温度未満に加熱し、液晶ポリマー分子がグランジャン配向した状態でガラス転移温度未満に冷却してガラス状態とし、当該配向が固定化された固化層を形成する方法などがあげられる。
【0029】
前記の基板としては、例えばトリアセチルセルロースやポリビニルアルコール、ポリイミドやポリアリレート、ポリエステルやポリカーボネート、ポリスルホンやポリエーテルスルホン、エポキシ系樹脂の如きプラスチックからなるフイルム、あるいはガラス板などの適宜なものを用いうる。基板上に形成した液晶ポリマーの固化層は、基板との一体物としてそのまま光学素子に用いうるし、基板より剥離してフィルム等からなる光学素子として用いることもできる。
【0030】
液晶ポリマーの展開は、加熱溶融方式によってもよいし、溶剤による溶液として展開することもできる。その溶剤としては、例えば塩化メチレンやシクロヘキサノン、トリクロロエチレンやテトラクロロエタン、N−メチルピロリドンやテトラヒドロフランなどの適宜なものを用いうる。展開は、バーコーターやスピナー、ロールコーターなどの適宜な塗工機にて行うことができる。
【0031】
形成する液晶ポリマーの固化層の厚さは、薄すぎると円偏光二色性を示しにくくなり、厚すぎると均一配向性に劣って円偏光二色性を示さなかったり、配向処理に長時間を要することなどより、0.5〜20μm、就中1〜10μmが好ましい。なお光学素子の形成に際しては、当該共重合体以外のポリマーや安定剤、可塑剤などの無機や有機、あるいは金属類などからなる種々の添加剤を必要に応じて配合することができる。
【0032】
単層の液晶ポリマー固化層では通例、円偏光二色性を示す波長域に限界がある。その限界は通常、約100nmの波長域に及ぶ広いものであるが、液晶表示装置等に適用する光学素子を得る場合には可視光の全域で円偏光二色性を示すことが望まれる。
【0033】
前記の場合、異なる波長の光に対して円偏光二色性を示す液晶ポリマーの固化層を積層することで、円偏光二色性を示す波長域を拡大することができる。かかる積層化は、当該波長域の拡大のほか、斜め入射光の波長シフトに対処する点などにも有利である。積層化は、反射円偏光の中心波長が異なる組合せで2層以上積層することができる。積層に際しては、粘着剤などを用いて各界面での表面反射損の低減を図ることが好ましい。
【0034】
ちなみに、反射円偏光の中心波長が300〜900nmの液晶ポリマー固化層を同じ方向の円偏光を反射する組合せで、かつ選択反射の中心波長が異なる、就中それぞれ50nm以上異なる組合せで用いて、その2〜6種類を積層することで広い波長域で円偏光二色性を示す光学素子を形成することができる。なお同じ方向の円偏光を反射するものの組合せとする点は、各層で反射される円偏光の位相状態を揃えて各波長域で異なる偏光状態となることを防止し、反射層等を介して反射円偏光を再利用する場合にその効率の向上を目的とする。
【0035】
光学素子は、その円偏光二色性に基づいて入射光を左右の円偏光に分離して透過光及び反射光として供給し、視野角の広さに優れ、視角変化に対する光学特性の変化が小さくて、斜め方向からも直接観察される直視型等の液晶表示装置などの種々の装置に好ましく適用することができる。特に反射層等を介して反射円偏光を再利用することで光の利用効率の向上を図ることができ、大面積化等も容易であることより液晶表示装置等におけるバックライトシステムなどとして好ましく用いうる。
【0036】
【実施例】
実施例1
Figure 0003875616
【0037】
前記の化学式(a2)で表わしたモノマー33.9重量部(82ミリモル)と化学式(b3)で表わしたモノマー9.16重量部(18ミリモル)をテトラヒドロフラン430mlに加熱溶解させ、55〜60℃に安定させて反応器内部を窒素ガスで置換し、酸素不存在下にアゾビスイソブチロニトリル0.5重量部を溶解したテトラヒドロフラン溶液5mlを滴下して6時間重合処理し、その反応液をジエチルエーテル3000ml中に撹拌下に徐々に注いで白色ポリマーの沈殿物を得、それを遠心分離後乾燥してさらに2回、再沈精製し重量平均分子量7000の共重合体を得た。この共重合体は、ガラス転移温度が88℃で、等方相転移温度が225℃であり、その間の温度でコレステリック構造を示すものであった。
【0038】
厚さ50μmのトリアセチルセルロースフィルムに厚さ約0.1μmのポリビニルアルコール層を設け、それをレーヨン布でラビング処理し、その処理面に前記共重合体の10重量%塩化メチレン溶液をバーコーターにて塗工し、乾燥後140℃で15分間加熱配向処理して室温にて放冷して液晶ポリマーの配向をガラス状態に固定化した。この液晶ポリマーの厚さは2μmであり、トリアセチルセルロースフィルムとの一体物からなるフィルム状の光学素子は、鏡面的に青色光を反射する円偏光二色性を示し、その反射光は波長410〜485nmの左円偏光であった。なお当該光学素子の透過特性を図3に示した。
【0039】
実施例2
化学式(a2)のモノマー36.3重量部(88ミリモル)、化学式(b3)のモノマー6.11重量部(12ミリモル)の割合で用いたほかは実施例1に準じて重量平均分子量7500の共重合体を得、光学素子を得た。この共重合体は、ガラス転移温度が92℃で、等方相転移温度が240℃であり、その間の温度でコレステリック構造を示すものであった。また光学素子は、鏡面的に赤色光を反射する円偏光二色性を示し、その反射光は波長580〜695nmの左円偏光であった。なお当該光学素子の透過特性を図4に示した。
【0040】
実施例3
実施例1及び実施例2に準じて得た共重合体を0.47/0.53(実施例1/実施例2)の比率で混合し、それを用いて実施例1に準じ光学素子を得た。この混合系の液晶ポリマーからなる光学素子は、鏡面的に緑色光を反射する円偏光二色性を示し、その反射光は波長480〜585nmの左円偏光であった。なお当該光学素子の透過特性を図5に示した。
【0041】
実施例4
Figure 0003875616
【0042】
化学式(a2)のモノマー16.5重量部(40ミリモル)、前記の化学式(a3)のモノマー17.1重量部(40ミリモル)、及び(b4)のモノマー9.18重量部(20ミリモル)の割合で用いたほかは実施例1に準じて重量平均分子量11500の共重合体を得た。この共重合体は、ガラス転移温度が105℃で、等方相転移温度が238℃であり、その間の温度でコレステリック構造を示すものであった。
【0043】
一方、前記の共重合体を用いて実施例1に準じ150℃、15分間の配向処理条件で厚さ3μmの液晶ポリマー固化層を形成して光学素子を得た。この光学素子は、鏡面的に赤黄色光を反射する円偏光二色性を示し、その反射光は波長565〜675nmの右円偏光であった。なお、当該光学素子の透過特性を図6に示した。
【0044】
実施例5
下記の化学式(a4)のモノマー36.3重量部(85ミリモル)、及び(b5)のモノマー9.09重量部(15ミリモル)の割合で用いたほかは実施例1に準じて重量平均分子量21000の共重合体を得た。この共重合体は、ガラス転移温度が95℃で、等方相転移温度が215℃であり、その間の温度でコレステリック構造を示すものであった。
【0045】
Figure 0003875616
【0046】
一方、前記の共重合体を用いて実施例1に準じ厚さ5μmの液晶ポリマー固化層を形成して光学素子を得た。この光学素子は、鏡面的に赤色光を反射する円偏光二色性を示し、その反射光は波長590〜695nmの右円偏光であった。なお、当該光学素子の透過特性を図7に示した。
【0047】
実施例6
実施例1,2,3に準じて得た光学素子をアクリル系粘着層を介し積層して、波長410〜690nmの範囲で円偏光二色性を示す光学素子を得た。この光学素子の透過特性を図8に示した。
【0048】
前記の光学素子に、ポリカーボネートからなる2枚の延伸フィルムの積層体からなる1/4波長板をアクリル系粘着層を介し積層し、それに自然光を入射させたところ、NBS方式に基づく色変化△abは3で、非常に小さいものであった。また、この1/4波長板付設の光学素子を80℃、1000時間の加熱試験、又は60℃、90%RH、1000時間の湿熱試験に供したところ、いずれの試験においても光学特性や外観など変化が殆ど認められず、耐久性に優れるものであった。
【0049】
実施例7
Figure 0003875616
【0050】
上記化学式(a2)で表わしたモノマー31.8重量部(77ミリモル)と前記の化学式(b6)で表わしたモノマー10.2重量部(23ミリモル)をテトラヒドロフラン415mlに加熱溶解させたほかは実施例1に準じて、重量平均分子量7300、ガラス転移温度85℃、等方相転移温度215℃で、その間の温度でコレステリック構造を示す共重合体を得、それを用いて実施例1に準じ、150℃で5分間加熱配向処理する方式で、鏡面的に青色光を反射する円偏光二色性を示し、反射光の波長が410〜485nmの左円偏光である光学素子を得た。その光学素子の透過特性を図9に示した。
【0051】
実施例8
化学式(a2)のモノマー35.5重量部(86ミリモル)、化学式(b6)のモノマー6.20重量部(14ミリモル)の割合で用いたほかは実施例7に準じて重量平均分子量7100の共重合体を得、光学素子を得た。この共重合体は、ガラス転移温度が89℃で、等方相転移温度が230℃であり、その間の温度でコレステリック構造を示すものであった。また光学素子は、鏡面的に赤色光を反射する円偏光二色性を示し、その反射光は波長580〜695nmの左円偏光であった。その光学素子の透過特性を図10に示した。
【0052】
実施例9
実施例7及び実施例8に準じて得た共重合体を0.47/0.53(実施例7/実施例8)の比率で混合し、それを用いて実施例7に準じ光学素子を得た。この混合系の液晶ポリマーからなる光学素子は、鏡面的に緑色光を反射する円偏光二色性を示し、その反射光は波長480〜585nmの左円偏光であった。その光学素子の透過特性を図11に示した。
【0053】
実施例10
実施例7,8,9に準じて得た光学素子をアクリル系粘着層を介し積層して、波長410〜690nmの範囲で円偏光二色性を示す光学素子を得た。この光学素子の透過特性を図12に示した。
【0054】
前記の光学素子に、ポリカーボネートからなる2枚の延伸フィルムの積層体からなる1/4波長板をアクリル系粘着層を介し積層し、それに自然光を入射させたところ、NBS方式に基づく色変化△abは3で、非常に小さいものであった。また、この1/4波長板付設の光学素子を80℃、1000時間の加熱試験、又は60℃、90%RH、1000時間の湿熱試験に供したところ、いずれの試験においても光学特性や外観など変化が殆ど認められず、耐久性に優れるものであった。
【0055】
比較例
下記の化学式(C)のモノマー39.0重量部(80ミリモル)、及び(D)のモノマー9.14重量部(20ミリモル)の割合で用いたほかは実施例1に準じて重量平均分子量18000の共重合体を得た。この共重合体は、ガラス転移温度が71℃で、等方相転移温度が205℃であり、その間の温度でコレステリック構造を示すものであった。
Figure 0003875616
【0056】
一方、前記の共重合体を用いて実施例1に準じ液晶ポリマー固化層の形成を試みたが、均一配向物を得ることができず、厚さ3μmの液晶ポリマー層も鏡面的な反射は示さず、拡散反射を示して円偏光二色性は不充分なものであった。この光学素子の透過特性を図13に示した。なお当該拡散反射は、均一なグランジャン配向が形成されていないためであると考えられる。
【図面の簡単な説明】
【図1】一般式(b)のモノマー単位の含有率と円偏光二色性を示す中心波長との関係を示したグラフ
【図2】他の、一般式(b)のモノマー単位の含有率と円偏光二色性を示す中心波長との関係を示したグラフ
【図3】透過特性を示したグラフ
【図4】他の透過特性を示したグラフ
【図5】さらに他の透過特性を示したグラフ
【図6】さらに他の透過特性を示したグラフ
【図7】さらに他の透過特性を示したグラフ
【図8】さらに他の透過特性を示したグラフ
【図9】さらに他の透過特性を示したグラフ
【図10】さらに他の透過特性を示したグラフ
【図11】さらに他の透過特性を示したグラフ
【図12】さらに他の透過特性を示したグラフ
【図13】さらに他の透過特性を示したグラフ[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a liquid crystal polymer suitable for forming a circular dichroic optical element.
[0002]
[Background]
Conventionally, there has been known a circular dichroic optical element in which a liquid cholesteric liquid crystal composed of a low molecular weight substance is sealed in an aligned state between substrates such as glass. This is a liquid crystal molecule in which the spiral axis of the liquid crystal molecules is aligned in the Grandjean direction perpendicular to the optical element, and light in a certain wavelength range is selected from natural light incident parallel to the spiral axis (incident angle of 0 degrees). Reflects as right (or left) circularly polarized light and transmits the rest as left (or right) circularly polarized light. The wavelength λ of the reflected light is determined by the formula: λ = n · p (where n is the average refractive index of the liquid crystal and p is the helical pitch of the cholesteric phase), and the left and right of the reflected circularly polarized light are the cholesteric phase It is determined by the spiral state and coincides with the spiral turning direction.
[0003]
The circular dichroic optical element described above may be able to use reflected light separated from transmitted light, and causes absorption loss by adsorbing a dichroic dye or the like to a stretched film such as polyvinyl alcohol. Expected to be an alternative to polarizing plates.
[0004]
However, since the conventional circular dichroic optical element needs to be used in combination with the substrate for sandwiching the liquid cholesteric liquid crystal as described above, it becomes thick and heavy, and the liquid crystal display device is light and thin. There was a problem that obstructed. There is also a problem that the orientation state of the cholesteric liquid crystal, for example, the pitch easily changes with temperature.
[0005]
On the other hand, although a cholesteric liquid crystal polymer is also known (Japanese Patent Laid-Open No. 55-21479, US Pat. No. 5,332,522), a solidified product such as a film having a good orientation state such as a low molecular weight substance is obtained. It takes a long time such as several hours for the alignment treatment, or the glass transition temperature is low and the durability is insufficient and the practicality is poor. It was difficult to obtain a circular dichroic optical element made of
[0006]
[Technical Problem of the Invention]
The present invention is excellent in film formability and can form a Grandjan orientation in a good monodomain state, and can achieve the orientation treatment in a short time such as several minutes, and can be stably fixed in a glass state, and can be durable. A liquid crystal capable of forming a circular dichroic optical element with excellent storage stability, easily controlling the helical pitch of the cholesteric phase, and forming a solidified product that is thin, light, and whose orientation state such as pitch is difficult to change at practical temperatures. An object is to obtain a polymer.
[0007]
[Means for solving problems]
The present invention provides a liquid crystal polymer comprising as a component a monomer unit represented by the following general formula (a) and a copolymer containing the monomer unit represented by the general formula (b). is there.
General formula (a):
Figure 0003875616
(However, R 1 is hydrogen or a methyl group, m is an integer of 1 to 6, X 1 is a CO 2 group or an OCO group, p and q are 1 or 2, and p + q = 3 is satisfied.)
General formula (b):
Figure 0003875616
(Wherein, R 2 is hydrogen or a methyl group, n represents an integer of 1 to 6, X 2 is CO 2 group or OCO group, X 3 is -CO-R 3 or -R 4, the R 3 is
Figure 0003875616
R 4 is
Figure 0003875616
And R 5 is: )
Figure 0003875616
[0008]
【The invention's effect】
Using the above-mentioned liquid crystal polymer, it is possible to easily form a good monodomain Grandian alignment film with good film formability, and the alignment treatment can be achieved in a short time such as several minutes, and is stably fixed in the glass state. The helical pitch of the cholesteric phase can be easily controlled, and a solidified product exhibiting circular dichroism in the visible light region can be easily formed, and the thin and light product of the solidified product is durable and storage stable. It is possible to efficiently form a circular dichroic optical element in which the alignment state such as pitch is hardly changed at a practical temperature.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
The liquid crystal polymer of the present invention comprises a copolymer containing a monomer unit represented by the following general formula (a) and a monomer unit represented by the general formula (b).
[0010]
General formula (a):
Figure 0003875616
(However, R 1 is hydrogen or a methyl group, m is an integer of 1 to 6, X 1 is a CO 2 group or an OCO group, p and q are 1 or 2, and p + q = 3 is satisfied.)
[0011]
General formula (b):
Figure 0003875616
(Wherein, R 2 is hydrogen or a methyl group, n represents an integer of 1 to 6, X 2 is CO 2 group or OCO group, X 3 is -CO-R 3 or -R 4, the R 3 is
Figure 0003875616
R 4 is
Figure 0003875616
And R 5 is: )
Figure 0003875616
[0012]
The acrylic monomer capable of forming the monomer unit represented by the general formula (a) or the general formula (b) can be synthesized by an appropriate method. Incidentally, a synthesis example of an acrylic monomer represented by the formula (a1) is shown below.
[0013]
Figure 0003875616
[0014]
That is, in the above, first, ethylene chlorohydrin and 4-hydroxybenzoic acid are heated to reflux in an alkaline aqueous solution using potassium iodide as a catalyst to obtain a hydroxycarboxylic acid, and then dehydrated with acrylic acid or methacrylic acid. (Meth) acrylate, and the (meth) acrylate is esterified with 4-cyano-4′-hydroxybiphenyl in the presence of DCC (dicyclohexylcarbodiimide) and DMAP (dimethylaminopyridine). ) Can be obtained.
[0015]
Moreover, the synthesis example of the acryl-type monomer represented by Formula (b1) was shown below.
Figure 0003875616
[0016]
In the above, first, hydroxyalkyl halide and 4-hydroxybenzoic acid are heated and refluxed in an alkaline aqueous solution using potassium iodide as a catalyst to obtain hydroxycarboxylic acid, and then dehydrated with acrylic acid or methacrylic acid. The target product (b1) can be obtained by esterifying (meth) acrylate with phenol having an R 3 group-containing CO group at the 4-position in the presence of DCC and DMAP.
[0017]
For example, the phenol having an R 3 group-containing CO group at the 4-position is prepared by reacting methyl chloroformate and 4-hydroxybenzoic acid in an aqueous alkaline solution to form a carboxylic acid, which is then converted to acid chloride with oxalyl chloride. And then reacting with HR 3 in pyridine / tetrahydrofuran to introduce the R 3 group, which is then treated with aqueous ammonia to remove the protecting group.
Figure 0003875616
[0018]
In the synthesis of the above formula (b1), the following compound added in the final step
Figure 0003875616
Can be replaced with the following to obtain an acrylic monomer represented by the formula (b2).
Figure 0003875616
[0019]
That is, after dehydration reaction of hydroxycarboxylic acid with (meth) acrylic acid to give (meth) acrylate, the (meth) acrylate is esterified with phenol having an asymmetric carbon group at the 4-position in the presence of DCC and DMAP. By doing so, the target product (b2) can be obtained.
[0020]
A phenol having an asymmetric carbon group at the 4-position can be obtained, for example, by azeotropic dehydration of 4-hydroxybenzaldehyde and (S)-(−)-1-phenylethylamine in toluene as described below.
Figure 0003875616
[0021]
Accordingly, other acrylic monomers that can form the monomer units represented by the general formula (a) and the general formula (b) can also be synthesized according to the above using appropriate raw materials having a target introduction group.
[0022]
The liquid crystal polymer that can be used for forming the optical element includes one or more of the monomer units represented by the general formula (a) and one or more of the monomer units represented by the general formula (b). Are copolymerized. The copolymerization ratio is such that when the content of the monomer unit represented by the general formula (b) is excessive, the liquid crystallinity is poor, and when the content is too small, the cholesteric liquid crystallinity is poor, whereby the monomer unit 60 represented by the general formula (a) is obtained. The monomer unit represented by -95 wt% and the general formula (b) is preferably 40-5 wt%.
[0023]
If the molecular weight of the copolymer is too small, the film-forming property will be poor, and if it is too large, the orientation as a liquid crystal and monodomain formation will be poor, and it will be difficult to form a uniform alignment state. 100000 to 100,000, especially 25,000 to 50,000 are preferable.
[0024]
The copolymer can be prepared in accordance with a usual acrylic monomer polymerization method such as a radical polymerization method, a cationic polymerization method, or an anionic polymerization method. When applying the radical polymerization method, various polymerization initiators can be used. In particular, the decomposition temperature of azobisisobutyronitrile, benzoyl peroxide, etc. is not high and it is decomposed at an intermediate temperature that is not low. Those are preferably used.
[0025]
In the copolymer, the pitch of the cholesteric liquid crystal changes based on the content of the monomer unit represented by the general formula (b). FIG. 1 and FIG. 2 exemplify the relationship between the content rate and the center wavelength indicating circular dichroism. The graph in FIG. 1 is obtained by using (a2) and (b3) represented by the chemical formulas in Examples below as monomer components of the copolymer, and (a2) and (b6) in the case of FIG. Since the wavelength showing the circular dichroism is determined by the pitch, the wavelength showing the circular dichroism can be adjusted by controlling the content of the monomer unit represented by the general formula (b). Therefore, an optical element exhibiting circular dichroism with respect to light in the visible light range can be easily obtained as in the examples described later.
[0026]
The copolymer can be used for forming an optical element by mixing one or more of them. The wavelength region exhibiting circular dichroism can also be adjusted by mixing two or more copolymers having different wavelength regions exhibiting circular dichroism. In the present invention, the liquid crystal polymer has a glass transition temperature of 80 ° C. or higher in view of durability of the obtained optical element, stability of temperature and the like in practical use of orientation characteristics such as pitch, or no change. Can be preferably used to form an optical element.
[0027]
In the present invention, a homopolymer based on the general formula consisting of one or more of the monomer units represented by the general formula (a) or the general formula (b) is represented by the general formula (a) system. It can also be used for the formation of an optical element as a liquid crystal polymer of a mixed system of the above polymer and a polymer of the general formula (b). The mixing ratio, molecular weight, and the like can be based on the above-described copolymer.
[0028]
Formation of an optical element exhibiting circular dichroism can be performed by a method according to a conventional alignment treatment. As an example, an alignment film made of polyimide, polyvinyl alcohol, or the like is formed on a substrate, and it is rubbed with a rayon cloth. Examples of the method include heating to a temperature lower than the transition temperature, cooling to a temperature lower than the glass transition temperature in a state where the liquid crystal polymer molecules are aligned in the Grandjean state, and forming a solidified layer in which the alignment is fixed.
[0029]
As the substrate, for example, triacetylcellulose, polyvinyl alcohol, polyimide, polyarylate, polyester, polycarbonate, polysulfone, polyethersulfone, a film made of a plastic such as an epoxy resin, or an appropriate one such as a glass plate can be used. . The solidified layer of the liquid crystal polymer formed on the substrate can be used as it is for an optical element as an integral part of the substrate, or can be used as an optical element made of a film or the like by peeling off from the substrate.
[0030]
The liquid crystal polymer may be developed by a heat melting method or a solution using a solvent. As the solvent, for example, an appropriate solvent such as methylene chloride, cyclohexanone, trichloroethylene, tetrachloroethane, N-methylpyrrolidone, tetrahydrofuran or the like can be used. The development can be performed with an appropriate coating machine such as a bar coater, a spinner, or a roll coater.
[0031]
If the thickness of the solidified layer of the liquid crystal polymer to be formed is too thin, it will be difficult to exhibit circular dichroism, and if it is too thick, it will be inferior in uniform alignment and will not exhibit circular dichroism, or it may take a long time for the alignment treatment. In view of the necessity, 0.5 to 20 μm, especially 1 to 10 μm is preferable. In forming the optical element, various additives including polymers other than the copolymer, stabilizers, inorganics such as plasticizers, organics, and metals can be blended as necessary.
[0032]
In a single-layer liquid crystal polymer solidified layer, there is usually a limit in the wavelength region exhibiting circular dichroism. The limit is usually wide, covering a wavelength range of about 100 nm, but when obtaining an optical element applied to a liquid crystal display device or the like, it is desired to exhibit circular dichroism over the entire visible light range.
[0033]
In the above case, the wavelength region exhibiting circular dichroism can be expanded by laminating a solidified layer of a liquid crystal polymer exhibiting circular dichroism with respect to light of different wavelengths. Such layering is advantageous not only in expanding the wavelength range but also in dealing with the wavelength shift of obliquely incident light. In the lamination, two or more layers can be laminated in combinations with different center wavelengths of the reflected circularly polarized light. When laminating, it is preferable to reduce the surface reflection loss at each interface using an adhesive or the like.
[0034]
By the way, the liquid crystal polymer solidified layer having a central wavelength of reflected circularly polarized light of 300 to 900 nm is used in a combination that reflects circularly polarized light in the same direction, and the central wavelength of selective reflection is different. By laminating 2 to 6 types, an optical element exhibiting circular dichroism in a wide wavelength region can be formed. Note that the combination of those that reflect circularly polarized light in the same direction is that the phase state of circularly polarized light reflected by each layer is aligned to prevent different polarization states in each wavelength region, and reflected through a reflective layer, etc. The purpose is to improve the efficiency when circularly polarized light is reused.
[0035]
The optical element separates incident light into left and right circularly polarized light based on its circular dichroism and supplies it as transmitted light and reflected light, providing a wide viewing angle and small change in optical characteristics with respect to changes in viewing angle. Thus, the present invention can be preferably applied to various devices such as a direct-view type liquid crystal display device that can be directly observed from an oblique direction. In particular, it is possible to improve the light utilization efficiency by reusing the reflected circularly polarized light through the reflective layer, etc., and it is preferable to use it as a backlight system in a liquid crystal display device and the like because it is easy to increase the area. sell.
[0036]
【Example】
Example 1
Figure 0003875616
[0037]
33.9 parts by weight (82 mmol) of the monomer represented by the chemical formula (a2) and 9.16 parts by weight (18 mmol) of the monomer represented by the chemical formula (b3) were dissolved by heating in 430 ml of tetrahydrofuran, and the temperature was increased to 55 to 60 ° C. The reactor was stabilized and the inside of the reactor was replaced with nitrogen gas. In the absence of oxygen, 5 ml of a tetrahydrofuran solution in which 0.5 part by weight of azobisisobutyronitrile was dissolved was added dropwise and polymerized for 6 hours. By gradually pouring the mixture into 3000 ml of ether with stirring, a white polymer precipitate was obtained, which was centrifuged and dried, and further purified by reprecipitation twice to obtain a copolymer having a weight average molecular weight of 7000. This copolymer had a glass transition temperature of 88 ° C. and an isotropic phase transition temperature of 225 ° C., and exhibited a cholesteric structure at temperatures in between.
[0038]
A polyvinyl alcohol layer having a thickness of about 0.1 μm is provided on a triacetyl cellulose film having a thickness of 50 μm, which is rubbed with a rayon cloth, and a 10 wt% methylene chloride solution of the copolymer is applied to the bar coater on the treated surface. After coating and drying, the film was heated at 140 ° C. for 15 minutes and allowed to cool at room temperature to fix the alignment of the liquid crystal polymer in the glass state. The liquid crystal polymer has a thickness of 2 μm, and the film-like optical element formed integrally with the triacetyl cellulose film exhibits circular dichroism that reflects blue light in a specular manner, and the reflected light has a wavelength of 410 Left circularly polarized light of ˜485 nm. The transmission characteristics of the optical element are shown in FIG.
[0039]
Example 2
Except for using 36.3 parts by weight (88 mmol) of the monomer of the chemical formula (a2) and 6.11 parts by weight (12 mmol) of the monomer of the chemical formula (b3), a common copolymer having a weight average molecular weight of 7500 was used. A polymer was obtained to obtain an optical element. This copolymer had a glass transition temperature of 92 ° C. and an isotropic phase transition temperature of 240 ° C., and exhibited a cholesteric structure at temperatures in between. The optical element exhibited circular dichroism that specularly reflects red light, and the reflected light was left circularly polarized light having a wavelength of 580 to 695 nm. The transmission characteristics of the optical element are shown in FIG.
[0040]
Example 3
The copolymer obtained according to Example 1 and Example 2 was mixed at a ratio of 0.47 / 0.53 (Example 1 / Example 2), and an optical element was prepared according to Example 1 using this. Obtained. The optical element made of this mixed liquid crystal polymer exhibited circular dichroism that specularly reflects green light, and the reflected light was left circularly polarized light having a wavelength of 480 to 585 nm. The transmission characteristics of the optical element are shown in FIG.
[0041]
Example 4
Figure 0003875616
[0042]
16.5 parts by weight (40 mmol) of monomer of formula (a2), 17.1 parts by weight (40 mmol) of monomer of formula (a3) and 9.18 parts by weight (20 mmol) of monomer of (b4) A copolymer having a weight average molecular weight of 11,500 was obtained in the same manner as in Example 1 except that it was used in a proportion. This copolymer had a glass transition temperature of 105 ° C. and an isotropic phase transition temperature of 238 ° C., and exhibited a cholesteric structure at temperatures in between.
[0043]
On the other hand, a liquid crystal polymer solidified layer having a thickness of 3 μm was formed under the alignment treatment conditions at 150 ° C. for 15 minutes using the copolymer according to Example 1 to obtain an optical element. This optical element exhibited circular dichroism that specularly reflects red-yellow light, and the reflected light was right circularly polarized light having a wavelength of 565 to 675 nm. The transmission characteristics of the optical element are shown in FIG.
[0044]
Example 5
The weight average molecular weight of 21000 was the same as in Example 1 except that 36.3 parts by weight (85 mmol) of the monomer of the following chemical formula (a4) and 9.09 parts by weight (15 mmol) of the monomer of (b5) were used. The copolymer of was obtained. This copolymer had a glass transition temperature of 95 ° C. and an isotropic phase transition temperature of 215 ° C., and exhibited a cholesteric structure at temperatures in between.
[0045]
Figure 0003875616
[0046]
On the other hand, a liquid crystal polymer solidified layer having a thickness of 5 μm was formed according to Example 1 using the above copolymer to obtain an optical element. This optical element exhibited circular dichroism that specularly reflects red light, and the reflected light was right circularly polarized light having a wavelength of 590 to 695 nm. The transmission characteristics of the optical element are shown in FIG.
[0047]
Example 6
Optical elements obtained according to Examples 1, 2, and 3 were laminated via an acrylic adhesive layer to obtain an optical element exhibiting circular dichroism in the wavelength range of 410 to 690 nm. The transmission characteristics of this optical element are shown in FIG.
[0048]
A quarter-wave plate made of a laminate of two stretched films made of polycarbonate was laminated on the optical element via an acrylic adhesive layer, and natural light was incident on it, resulting in a color change Δab based on the NBS method. Was 3, which was very small. Moreover, when this optical element with a quarter wavelength plate was subjected to a heating test at 80 ° C. for 1000 hours, or a wet heat test at 60 ° C., 90% RH, 1000 hours, the optical characteristics, appearance, etc. Almost no change was observed, and the durability was excellent.
[0049]
Example 7
Figure 0003875616
[0050]
Except that 31.8 parts by weight (77 mmol) of the monomer represented by the above chemical formula (a2) and 10.2 parts by weight (23 mmol) of the monomer represented by the above chemical formula (b6) were heated and dissolved in 415 ml of tetrahydrofuran. According to 1, a copolymer having a weight average molecular weight of 7300, a glass transition temperature of 85 ° C. and an isotropic phase transition temperature of 215 ° C. and a temperature between them is obtained. An optical element having left circularly polarized light having a circular dichroism that reflects blue light in a specular manner and having a reflected light wavelength of 410 to 485 nm was obtained by heating and aligning at 5 ° C. for 5 minutes. The transmission characteristics of the optical element are shown in FIG.
[0051]
Example 8
A weight average molecular weight of 7100 was obtained in the same manner as in Example 7 except that the monomer was used in the ratio of 35.5 parts by weight (86 mmol) of the monomer of the chemical formula (a2) and 6.20 parts by weight (14 mmol) of the monomer of the chemical formula (b6). A polymer was obtained to obtain an optical element. This copolymer had a glass transition temperature of 89 ° C. and an isotropic phase transition temperature of 230 ° C., and exhibited a cholesteric structure at temperatures in between. The optical element exhibited circular dichroism that specularly reflects red light, and the reflected light was left circularly polarized light having a wavelength of 580 to 695 nm. The transmission characteristics of the optical element are shown in FIG.
[0052]
Example 9
The copolymer obtained in accordance with Example 7 and Example 8 was mixed at a ratio of 0.47 / 0.53 (Example 7 / Example 8), and an optical element was prepared in accordance with Example 7 using this. Obtained. The optical element made of this mixed liquid crystal polymer exhibited circular dichroism that specularly reflects green light, and the reflected light was left circularly polarized light having a wavelength of 480 to 585 nm. The transmission characteristics of the optical element are shown in FIG.
[0053]
Example 10
The optical elements obtained according to Examples 7, 8, and 9 were laminated via an acrylic adhesive layer to obtain an optical element exhibiting circular dichroism in the wavelength range of 410 to 690 nm. The transmission characteristics of this optical element are shown in FIG.
[0054]
When a quarter-wave plate made of a laminate of two stretched films made of polycarbonate was laminated on the optical element via an acrylic adhesive layer, and natural light was incident on it, the color change Δab based on the NBS method Was 3, which was very small. Moreover, when this optical element with a quarter wavelength plate was subjected to a heating test at 80 ° C. for 1000 hours, or a wet heat test at 60 ° C., 90% RH, 1000 hours, the optical characteristics, appearance, etc. Almost no change was observed, and the durability was excellent.
[0055]
Comparative Example A weight average according to Example 1 except that 39.0 parts by weight (80 mmol) of the monomer of the following chemical formula (C) and 9.14 parts by weight (20 mmol) of the monomer of (D) were used. A copolymer having a molecular weight of 18,000 was obtained. This copolymer had a glass transition temperature of 71 ° C. and an isotropic phase transition temperature of 205 ° C., and exhibited a cholesteric structure at temperatures in between.
Figure 0003875616
[0056]
On the other hand, formation of a liquid crystal polymer solidified layer was attempted using the copolymer according to Example 1, but a uniform alignment product could not be obtained, and the liquid crystal polymer layer having a thickness of 3 μm also showed specular reflection. However, the circular dichroism was insufficient due to diffuse reflection. The transmission characteristics of this optical element are shown in FIG. The diffuse reflection is considered to be due to the fact that a uniform Grandjean orientation is not formed.
[Brief description of the drawings]
FIG. 1 is a graph showing the relationship between the content of monomer units of general formula (b) and the central wavelength indicating circular dichroism. FIG. 2 is the content of other monomer units of general formula (b). Graph showing the relationship between the center wavelength indicating circular dichroism and circular dichroism [FIG. 3] Graph showing transmission characteristics [FIG. 4] Graph showing other transmission characteristics [FIG. 5] Still showing other transmission characteristics Fig. 6 is a graph showing further transmission characteristics. Fig. 7 is a graph showing further transmission characteristics. Fig. 8 is a graph showing further transmission characteristics. Fig. 9 is another transmission characteristic. FIG. 10 is a graph showing other transmission characteristics. FIG. 11 is a graph showing other transmission characteristics. FIG. 12 is a graph showing other transmission characteristics. FIG. Graph showing transmission characteristics

Claims (4)

下記の一般式(a)で表わされるモノマー単位と、一般式(b)で表わされるモノマー単位を含有する共重合体を成分とすることを特徴とする液晶ポリマー。
一般式(a):
Figure 0003875616
(ただし、Rは水素又はメチル基、mは1〜6の整数、XはCO基又はOCO基であり、p及びqは1又は2で、かつp+q=3を満足する。)
一般式(b):
Figure 0003875616
(ただし、Rは水素又はメチル基、nは1〜6の整数、XはCO基又はOCO基、Xは−CO−R又は−Rであり、そのR
Figure 0003875616

Figure 0003875616
であり、Rは下記のものである。)
Figure 0003875616
A liquid crystal polymer comprising, as components, a monomer unit represented by the following general formula (a) and a copolymer containing the monomer unit represented by the general formula (b).
General formula (a):
Figure 0003875616
(However, R 1 is hydrogen or a methyl group, m is an integer of 1 to 6, X 1 is a CO 2 group or an OCO group, p and q are 1 or 2, and p + q = 3 is satisfied.)
General formula (b):
Figure 0003875616
(Wherein, R 2 is hydrogen or a methyl group, n represents an integer of 1 to 6, X 2 is CO 2 group or OCO group, X 3 is -CO-R 3 or -R 4, the R 3 is
Figure 0003875616
R 4 is
Figure 0003875616
And R 5 is: )
Figure 0003875616
請求項1において、一般式(a)で表わされるモノマー単位60〜95重量%と、一般式(b)で表わされるモノマー単位40〜5重量%からなる共重合体を成分とする液晶ポリマー。2. The liquid crystal polymer according to claim 1, comprising as a component a copolymer composed of 60 to 95 wt% of the monomer unit represented by the general formula (a) and 40 to 5 wt% of the monomer unit represented by the general formula (b). 請求項1又は2において、80℃以上のガラス転移温度を有し、かつそのガラス転移温度以上の所定温度範囲でグランジャン配向のコレステリック液晶相を呈する液晶ポリマー。3. The liquid crystal polymer according to claim 1, wherein the liquid crystal polymer has a glass transition temperature of 80 ° C. or higher and exhibits a Grande-aligned cholesteric liquid crystal phase in a predetermined temperature range equal to or higher than the glass transition temperature. 請求項1〜3の一において、可視光域の光に対して円偏光二色性を示す固化層を形成する液晶ポリマー。4. The liquid crystal polymer according to claim 1 , wherein the liquid crystal polymer forms a solidified layer exhibiting circular dichroism with respect to light in a visible light region.
JP2002296964A 1995-09-05 2002-10-10 Liquid crystal polymer Expired - Fee Related JP3875616B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002296964A JP3875616B2 (en) 1995-09-05 2002-10-10 Liquid crystal polymer

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP25181895 1995-09-05
JP7-251818 1995-09-05
JP2002296964A JP3875616B2 (en) 1995-09-05 2002-10-10 Liquid crystal polymer

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP12643296A Division JP3372167B2 (en) 1995-09-05 1996-04-22 Circular dichroic optical element and device therefor

Publications (2)

Publication Number Publication Date
JP2003201320A JP2003201320A (en) 2003-07-18
JP3875616B2 true JP3875616B2 (en) 2007-01-31

Family

ID=27666086

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002296964A Expired - Fee Related JP3875616B2 (en) 1995-09-05 2002-10-10 Liquid crystal polymer

Country Status (1)

Country Link
JP (1) JP3875616B2 (en)

Also Published As

Publication number Publication date
JP2003201320A (en) 2003-07-18

Similar Documents

Publication Publication Date Title
JP3372167B2 (en) Circular dichroic optical element and device therefor
US6016177A (en) Multi-layer circularly polarized light separation plate containing cholesteric liquid crystal polymer layers
US6103323A (en) Circular dichroism optical element, apparatus thereof, and liquid crystal polymer
JP5924877B2 (en) Optical film laminate
JP5075483B2 (en) Polymer film, method for producing molecular alignment element, and liquid crystal alignment film
KR101468246B1 (en) Liquid crystal display with improved wavelength dispersion characteristics
JP4801056B2 (en) Method for producing multilayer cholesteric liquid crystal optical body
JP3416302B2 (en) Backlight device for liquid crystal display and liquid crystal display device using the same
JPWO2016136231A1 (en) Laminate and optical film
WO2008060109A1 (en) Composition for alignment film having excellent adhesiveness
KR100517006B1 (en) Side chain liquid crystalline polymer including optically active monomer, and optical element comprising the same
JP3934692B2 (en) Retardation film, manufacturing method thereof, and liquid crystal display device
JP3996235B2 (en) Optically active monomer, liquid crystal polymer and optical element
JPH1054905A (en) Multicolor reflector
JP3875616B2 (en) Liquid crystal polymer
JP2001316668A (en) Choresteric liquid crystal polymer composition
JP4681334B2 (en) Laminated retardation film
JP2001318225A (en) Method for controlling selective reflection wavelength band region of cholesteric liquid crystal aligned matter
JP3710554B2 (en) Optical film, method for producing the same, and optical element
JPH10339812A (en) Circularly polarized light separation layer, optical element, polarized light source device, and liquid crystal device
JP2006072273A (en) Optical rotatory film and method for producing the same
JP4636599B2 (en) Laminated retardation plate, optical film, and image display device
JP2000154168A (en) Acrylic chiral compound, crosslinked liquid crystal composition, optical element and its production, and optical member material
JP3720923B2 (en) Optical film manufacturing method and optical element
JP2001316428A (en) Branched cholesteric liquid crystal polymer

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050719

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060418

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060612

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061024

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061026

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121102

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121102

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151102

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees