[go: up one dir, main page]

JP3874513B2 - Antireflection film and optical material - Google Patents

Antireflection film and optical material Download PDF

Info

Publication number
JP3874513B2
JP3874513B2 JP33815697A JP33815697A JP3874513B2 JP 3874513 B2 JP3874513 B2 JP 3874513B2 JP 33815697 A JP33815697 A JP 33815697A JP 33815697 A JP33815697 A JP 33815697A JP 3874513 B2 JP3874513 B2 JP 3874513B2
Authority
JP
Japan
Prior art keywords
layer
antireflection film
optical material
antireflection
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP33815697A
Other languages
Japanese (ja)
Other versions
JPH10232301A (en
Inventor
尚志 山岡
保夫 藤村
雅義 河辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Denko Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Denko Corp filed Critical Nitto Denko Corp
Priority to JP33815697A priority Critical patent/JP3874513B2/en
Publication of JPH10232301A publication Critical patent/JPH10232301A/en
Application granted granted Critical
Publication of JP3874513B2 publication Critical patent/JP3874513B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Surface Treatment Of Optical Elements (AREA)
  • Laminated Bodies (AREA)

Description

【0001】
【発明の技術分野】
本発明は、LCDやCRTやプラズマ表示装置等の種々の視認装置、眼鏡用やカメラ用等の各種レンズ、あるいは鏡などに好適な、指紋等の汚染の除去性に優れる反射防止膜及びそれを付設した光学素材に関する。
【0002】
【発明の背景】
視認装置等の表面に設けられることが一般的な反射防止膜にあっては、手垢や指紋、汗や唾液や整髪料等の汚染が付着しやすく、その付着で表面反射率が変化したり、付着物が白く浮きでて見えて表示内容が不鮮明になるなど、単なる透明板等の場合に比べて汚染が目立ちやすい難点があるため、かかる汚染物の付着防止性や付着汚染の除去性に優れる反射防止膜の提供が久しい課題となっている。
【0003】
従来、汚染防止性の向上等を目的とした反射防止膜としては、PVD法により形成した二酸化ケイ素を主成分とする表面層を有する単層又は多層の無機物層からなる反射防止層の表面に、有機ポリシロキサン系重合物又はパーフルオロアルキル基含有重合物からなる硬化層を有するものが知られていた(特公平6−5324号公報)。
【0004】
しかしながら、手垢や指紋等の人体的ないし油系汚染が付着した場合に、通例のティッシュペーパなどで拭取ることが困難で汚染が薄膜に押し拡げられ、強く擦ると反射防止膜が傷つくため満足できる除去を達成できない問題点があった。
【0005】
【発明の技術的課題】
本発明は、汚染が付着しにくく、かつ汚染が付着した場合にもその汚染が目立ちにくいと共に、手垢や指紋等の人体的汚染も含めて付着した汚染をティッシュペーパ等で容易に拭取り除去でき、その拭取り操作で傷付きにくくて、水滴等の付着は容易に振り落すことができ、しかもかかる汚染防止性や易拭取り除去性、耐擦傷性や撥水性等の性能を長期に持続する反射防止膜及び光学素材の開発を課題とする。
【0006】
【課題の解決手段】
本発明は、表面層として二酸化ケイ素系無機層を有する単層構造又は複層構造の無機系反射防止層の表面に、粘着テープの接着力が1.0N/20mm以下であるフッ素含有のシラン系硬化層からなる汚染防止層を有し、前記汚染防止層が下記一般式(3)で表されるフルオロアミノシラン化合物およびその部分加水分解縮合物の少なくとも一方よりなる硬化層からなることを特徴とする反射防止膜、及びその反射防止膜を支持基材上に有することを特徴とする光学素材を提供するものである。
【化2】

Figure 0003874513
前記一般式(3)において、R は水素原子又は低級アルキル基若しくはアリール基、R は低級アルキル基又はアリール基、R は炭素数1〜4の有機基、QはCH CH CH 又はCH CH NHCH CH CH 、mは15〜35の整数、nは2又は3である。
【0007】
【発明の効果】
本発明によれば、汚染防止性や付着汚染の易拭取り除去性、耐擦傷性や撥水性等の性能に優れる、特に一般式(3)によるフルオロアミノシラン化合物等を用いるため、フッ素変性基が表面に効率よく配向して優れた撥水撥油性や汚染防止性、耐薬品性や潤滑性、離型性や耐擦傷性等の性能を示すと共に、二酸化ケイ素系無機層と強固に密着した汚染防止層を形成でき、手垢や指紋等の油系や水系等の汚染が付着しにくい上に、仮に汚染が付着しても目立ちにくくてティッシュペーパ等で容易に拭取り除去でき、その拭取り操作で傷付きにくくて、水滴等の付着は容易に振り落すことができ、しかもかかる性能を長期に持続する反射防止膜ないしその光学素材を得ることができる。
【0008】
【発明の実施形態】
本発明の反射防止膜は、表面層として二酸化ケイ素系無機層を有する単層構造又は複層構造の無機系反射防止層の表面に、粘着テープの接着力が1.0N/20mm以下であるフッ素含有のシラン系硬化層からなる汚染防止層を有してなる。また本発明の光学素材は、前記反射防止膜を支持基材上に有してなる。
【0009】
図1、図2に本発明による反射防止膜を例示した。また図3、図4に本発明による光学素材を例示した。3が無機系反射防止層1と汚染防止層2からなる反射防止膜、4が支持基材であり、11,12,13は、無機系反射防止層1を形成する無機層である。なお5は、必要に応じて設けられるハードコート層である。
【0010】
反射防止膜における無機系反射防止層は、実質的な反射防止機能を担う部分であり、本発明においては二酸化ケイ素系無機層を表面に有するものとする点を除いて、すなわち単層構造の場合には、図1に例示の如く二酸化ケイ素系無機層13からなる無機系反射防止層1とする点を除いて、単層構造又は複層構造の適宜な構造とすることができる。
【0011】
従って、例えばA.VASICEK著、「OPUTICS OF THIN FILMS」P159〜283[北オランダパブリッシングカンパニ、アムステルダム(1960):NORTH-HOLLAND PUBLISHING COMPANY, AMSTERDAM(1960)]や特開昭58−46301号公報、特開昭59−49501号公報や特開昭59−50401号公報、特開平1−294709号公報や特公平6−5324号公報などに基づく従来技術の如く、従来に準じた構造の反射防止層として形成することもできる。
【0012】
無機系反射防止層の形成には、無機酸化物や無機ハロゲン化物やそれらの複合物等よりなる無機物を用いうる。その無機物の具体例としては、SiO2やZrO2、Al23やY23、TiO2の如き無機酸化物、MgF2やBaF2、CaF2やLaF2、LiFやNaF、SrF2の如き無機ハロゲン化物などを代表例としてあげられる。
【0013】
反射防止層を形成する無機物は、下記の形成方法などに応じてその1種又は2種以上が固体物、あるいはバインダ用ポリマー等と混合した分散液などの適宜な状態で用いられるが、その場合、無機物を30重量%以上含有する組成で用いることが硬度や汚染防止性などの点より好ましい。なお前記のバインダ用ポリマーとしては、適宜なポリマーを用いることがでて特に限定はないが、硬度等の点よりはポリオルガノシロキサンを形成しうる各種の有機ケイ素化合物やその加水分解物などが好ましく用いうる。
【0014】
無機系反射防止層の形成は、例えば真空蒸着法やスパッタリング法やイオンプレーティング法等で代表される各種のPVD(Phisical Vapor Deposition)法、あるいはスピンコート法や浸漬コート法、カーテンフローコート法やロールコート法、スプレーコート法や流し塗り法等で代表される流体塗布法などの適宜な薄膜形成法にて行うことができる。
【0015】
前記したPVD法には、上記に例示したSiO2等の無機酸化物やMgF2等の無機ハロゲン化物などが好ましく用いられ、特に表面層となる二酸化ケイ素系無機層は、表面硬度の高さや汚染防止層の密着性などの点より、PVD法により二酸化ケイ素を主成分として含有する層に形成したものが好ましい。
【0016】
反射防止層は、反射防止効果等の点より複層構造とすることが好ましく、就中、表面層の二酸化ケイ素系無機層よりも高い屈折率の層を1層又は2層以上内在させた複層構造とすることが好ましい。その場合、各層の厚さや屈折率の設定等については、上記したA.VASICEK著、「OPUTICS OF THIN FILMS」などの公知技術の如く、従来に準じることができる。
【0017】
また反射防止層には、帯電によるゴミ等の付着を防止するために静電気の除去効果や電磁波のシールド効果も発揮する導電層を含ませてもよい。かかる導電層は、例えば金や銀やアルミニウム等の金属薄膜、酸化スズや酸化インジウムやそれらの混合物(ITO)等の無機酸化物薄膜などからなる透明導電膜として形成される。可視領域では、光の吸収が極めて少ない無機酸化物系の透明導電膜が特に好ましい。
【0018】
無機系反射防止層表面の二酸化ケイ素系無機層に付設される汚染防止層は、粘着テープの接着力が1.0N/20mm以下であるフッ素含有のシラン系硬化層にて形成される。粘着テープの接着力が1.0N/20mmを超えるシラン系硬化層では、汚染防止性に乏しくて、特に手垢や指紋等の人体的汚染が付着しやすく、また汚染の拭取り除去性に乏しくなる。
【0019】
なお前記の接着力は、JIS
C 2338(電気絶縁用ポリエステル粘着テープ)又はCES
M 5023−6(ポリエステルフィルム粘着テープ)で品質が規定された、ポリエステルフィルムにアクリル系粘着層を設けた粘着力2.0N/10mm以上の粘着テープを、常温で汚染防止層(シラン系硬化層)に圧着し、それを剥離速度300mm/分の条件で180度ピールした場合の値に基づく。
【0020】
フッ素変性基が表面に効率よく配向し、優れた撥水撥油性や汚染防止性、耐薬品性や潤滑性、離型性や耐擦傷性等を発揮して二酸化ケイ素系無機層と強固に密着した汚染防止層の安定した形成性などの点より好ましく用いうるシラン系化合物としては、前記の一般式(3)で表されるフルオロアミノシラン化合物又は/及びその部分加水分解縮合物があげられる。
【0021】
前記したフルオロアミノシラン化合物又は/及びその部分加水分解縮合物によれば、水分の存在下に加水分解して硬化し、従って上記した適切な水分の存在下に放置又は加熱することにより硬化層を形成することができる。
【0022】
なお一般式(3)中の低級アルキル基又はアリール基R4,R5は、例えばメチル基やエチル基、プロピル基やフェニル基などの適宜なものであってよいが、前記性能等の点よりR4は水素原子又はメチル基であることが、R5はメチル基であることが好ましい。
【0023】
また炭素数1〜4の有機基R6は、例えばメチル基やエチル基、プロピル基やブチル基の如きアルキル基、メトキシメチル基やメトキシエチル基の如きオキシアルキル基、アセチル基の如きアシル基、イソプロペニル基の如きアルケニル基などの適宜なものであっていてよい。前記性能等の点よりはメチル基やエチル基やイソプロペニル基などであることが好ましい。
【0024】
さらにQは、CH2CH2CH2又はCH2CH2NHCH2CH2CH2であるが、汚染防止層の形成に際しては、それらのCH2CH2CH2とCH2CH2NHCH2CH2CH2が混在したものとして用いることもできる。従って汚染防止層の形成には、2種以上のフルオロアミノシラン化合物又は/及びその部分加水分解縮合物を適宜な組合せで併用してもよい。
【0025】
またさらにmは、15〜35の整数であるが、15以下では上記したパーフルオロポリエーテル基としての特長が充分に発揮されにくく、35以上では分子中のアルコキシシリル基の含有割合が相対的に小さくなり縮合反応の進行が遅延して硬化皮膜の形成速度に乏しくなる。なおnは、2又は3であるが、nが2のものと3のものとの併用は許容される。
【0026】
前記したフルオロアミノシラン化合物の調製は、例えば相当するヘキサフルオロプロピレンオキシド(HFPO)オリゴマー又はそのエステル誘導体とアミノアルキルアルコキシシランを縮合反応させる方式などにより行うことができる。
【0027】
汚染防止層の形成は、上記した反射防止層の場合に準じて適宜な方法を採りうるが、反射防止効果の均一性や反射干渉色の制御などの点より、スピンコート法、浸漬コート法、カーテンフローコート法などの適宜な薄膜塗布方法や真空蒸着法等の1種又は2種以上を適用した形成方法が好ましい。また作業性等の点よりは、塗布液を紙や布等に含浸させて塗布流延する形成方法が好ましい。
【0028】
なお塗布液は、例えば1種又は2種以上のシラン系化合物を揮発性溶媒に溶解又は分散させる方法などの適宜な方法で調製することができる。その場合、揮発性溶媒についは、組成物の安定性や溶解性、無機系反射防止層表面の二酸化ケイ素系無機層に対する濡れ性や揮発速度などを考慮して適宜に決定してよく、2種以上の混溶媒とすることもできる。
【0029】
ちなみに前記の揮発性溶媒としては、例えばパーフルオロヘプタンやパーフルオロオクタンの如きフッ素変性脂肪族炭化水素類、m−キシレンヘキサフロライドやベンゾトリフロライドの如きフッ素変性芳香族炭化水素類、メチルパーフルオロブチルエーテルやパーフルオロ(2−ブチルテトラヒドロフラン)の如きフッ素変性エーテル類、石油ベンジンやミネラルスピリッツ、トルエンやキシレンの如き炭化水素類、アセトンやメチルエチルケトン、メチルイソブチルケトンの如きケトン類などがあげられる。就中、溶解性などの点よりm−キシレンヘキサフロライドやパーフルオロ(2−ブチルテトラヒドロフラン)の如きフッ素変性物が好ましく用いうる。
【0030】
なお塗布液の調製に際しては、シラン系化合物、就中フルオロアミノシラン化合物やその部分加水分解縮合物の加水分解縮合反応の促進を目的に必要に応じて、例えばジブチル錫ジメトキシドやジラウリル酸ジブチル錫の如き有機錫化合物、テトラn−ブチルチタネートの如き有機チタン化合物、酢酸やメタンスルホン酸の如き有機酸、塩酸や硫酸の如き無機酸などのアルコキシシラン加水分解縮合触媒を添加することもできる。かかる触媒としては、酢酸やテトラn−ブチルチタネートやジラウリル酸ジブチル錫などが特に好ましく用いうる。
【0031】
形成する汚染防止層の厚さは、適宜に決定しうるが、一般には反射防止性や汚染防止性、水に対する静止接触角や粘着テープの接着力、表面硬度との調和性などの点より、0.001〜0.5μm、就中0.01〜0.1μmとされる。なお汚染防止層の形成に際しては、反射防止層の表面を清浄に処理しておくことが好ましい。その処理は、例えば界面活性剤による汚れ除去、有機溶剤による脱脂、フッ素系溶剤による蒸気洗浄などの適宜な方式で行うことができる。また密着性や耐久性の向上などを目的とした適宜な前処理を施すこともでき、特に活性化ガスによる処理や酸、アルカリ等による薬品処理などが好ましい。
【0032】
本発明による反射防止膜は、反射防止効果等の点より最外面の汚染防止層表面における全光線の反射率に基づいて、その表面反射率が3%以下であることが好ましい。従って、後述の光学素材として支持基材の表裏に反射防止膜を設けた場合には、その表裏における合計の表面反射率が6%以下であることが好ましい。なお表裏に反射防止膜を設けた無色透明の光学素材においては、100%から光学素材の全光線透過率を引いて、得られた値の半分を片面における表面反射率と定義することもできる。
【0033】
前記において、汚染防止層表面での表面反射率が高いと、反射防止効果に乏しくて眼鏡レンズ等ではゴーストやフレアなどの反射像を生じ、不快感発生の原因となりやすい。またルッキンググラスやCRT用フィルタなどでは、面状の反射光で内容物や表示内容が判然としない状態となりやすい。
【0034】
なお汚染防止層については、TOF−SIMS(飛行時間型二次イオン質量スペクトル法)にて表面分析を行うことができる。この方法は、高真空中においた試料表面に弱いエネルギをもつイオンを照射し、表面からでた分子フラグメントを時間分解によりその質量数を検出することにより行うものである。
【0035】
なお前記の代表的な測定条件を下記する。
測定装置;米国 Phisical Electronics(PHI EVANS)社 TFS−2000
測定条件;一次イオン種 :Ga(+)イオン
一次イオンエネルギ :25kV
一次イオン電流(DC) :〜150pA
試料電位 :+3.2kV
パルス周波数 :7.2kHz
パルス幅 :〜10ns
バンチング :無し
帯電中和 :有り
時間分解能 :1.1ns/ch
二次イオン極性 :正、負
質量範囲(M/z) :0〜10000
ラスターサイズ :120μm□
測定時間 :20分
エネルギーフィルタ :無し
コントラストダイアフラム :#0
位置検出器, :Raster
後段加速 :5kV
測定真空度 :〜4×1/10 8 Torr
【0036】
本発明による反射防止膜は、例えばLCDやCRTやプラズマディスプレイの如き表示装置ないし視認装置等の内部や前面板、偏光板等の光学素子、眼鏡用やカメラ用や双眼鏡用等のレンズ、防眩ミラー等の鏡、重量計等の計器類などの、従来に準じた適宜な物品に適用することができる。その場合、反射防止膜は、前記物品等からなる被処理体に直接付設することもできるし、ガラス板やプラスチック板、あるいは偏光板や拡散板等の光学素子などからなる適宜な支持基材に付設した光学素材として適用することもできる。
【0037】
上記のように図3、図4に本発明による、支持基材4の片面又は両面に反射防止膜3を設けてなる光学素材を例示したが、その支持基材としては適宜なものを用いてよく、特に限定はない。液状コーティング法等で反射防止膜を形成する場合などには、ガラスやプラスチックからなる支持基材が好ましく用いうる。
【0038】
また前記においてガラス基材の場合には、反射防止層にMgF2やCaF2の如き低屈折率を示すものを含ませることが、高い反射効果を得る点などより好ましい。またプラスチック基材の場合には、反射防止層にSiO2の如き屈折率が比較的低くて硬度の高いものを含ませることが耐久性などの点より好ましい。
【0039】
なお前記の支持基材を形成するプラスチックは、適宜なものであってよい。ちなみにそのプラスチックの例としては、ポリメチルメタクリレートやメチルメタクリレート共重合体の如きアクリル系樹脂、ポリカーボネートやジエチレングリコールビスアリルカーボネート(CR−39)の如きポリカーボネート系樹脂、ポリエチレンテレフタレートや不飽和ポリエスチルの如きポリエステル系樹脂、トリアセチルセルロースの如きアセテート系樹脂、その他、アクリロニトリル−スチレン共重合体、スチレン系樹脂、ポリ塩化ビニル系樹脂、ポリウレタン系樹脂、エポキシ系樹脂、ポリエーテルサルホン系樹脂、ポリアミド系樹脂、ポリイミド系樹脂、ポリオレフィン系樹脂などがあげられる。
【0040】
支持基材は、フィルムやシートや板等の適宜な形態を有するものであってよく、その厚さは任意である。また支持基材は、ハードーコート層を有するものであってもよい。この場合には、図4に例示の如く、反射防止膜3と支持基材4の間にハードコート層5を有する形態の光学素材となる。さらに支持基材は、ハードーコート層に代えて、あるいはハードーコート層と共に、例えば反射防止膜の密着性、硬度や耐薬品性、耐久性や染色性等の向上などを目的に、適宜なコート層を有したり、表面処理されたものなどであってもよい。
【0041】
ちなみに硬度の向上には、特公昭50−28092号公報や特公昭50−28446号公報、特公昭50−39449号公報や特公昭51−24368号公報、特公昭57−2735号公報や特開昭52−112698号公報などに記載された高硬度化用の適宜な材料を用いうる。またチタンやアルミニウムやスズ等の金属又はケイ素からなる酸化物をコーティングする方式や、(メタ)アクリル酸のペンタエリスリトール等による架橋体などからなるアクリル系架橋体の付設なども硬度の向上に有効である。
【0042】
ハードーコート層も従来に準じて形成することができる。就中、有機ケイ素化合物、特に一般式:R4 c5 dSi(OR64-c-dで表される有機ケイ素化合物やその加水分解物などの硬化物からなるハードーコート層が好ましい。なお式中のR4、R5はアルキル基、アルケニル基、アリール基、又はハロゲン基やエポキシ基、グリシドキシ基やアミノ基、メルカプト基やメタクリルオキシ基、シアノ基等を有する炭化水素基などであり、R6は炭素数が1〜8のアルキル基、アルコキシアルキル基、アシル基、又はアリール基などである。またc,dは0又は1であり、従ってc+dは、0,1又は2である。
【0043】
ハードーコート層は、例えばゾル−ゲル法などにより平均粒径が0.5〜5μmのシリカや金属酸化物などからなる微粒子を含有させる方式、あるいはバフやコロナ放電やイオンエッチングの如き適宜な方法で中心線平均粗さが0.01〜0.5μmのエッチング表面とする方式などにより、きらめき防止機能を有するものとして付設することもできる。
【0044】
本発明による反射防止膜及び光学素材は、汚れにくく、汚れが目立ちにくくてその汚れをとりやすく、表面の滑り性が良好で傷付きにくく、それらの性能を長期に持続するなどの特長を有して、例えばLCD等の各種の視認装置類や偏光板等の各種の光学素子類、眼鏡用等の各種のレンズ類や防眩ミラー等の各種の鏡類、重量計等の各種の計器類などの種々の物品における表面や内部などに配置する反射防止フィルタなどとして好ましく用いることができる。
【0045】
【実施例】
実施例1
粘着偏光フィルタ(日東電工社製、EG1425DUAG30)に付設したきらめき防止機能付のハードコート層の上にスパッタリング方式で、SiO2層、TiO2層、SiO2層、TiO2層、SiO2層の5層をそれぞれλ/4光学膜厚で順次積層して反射防止層を付設した。
【0046】
次に、下記式で表されるフルオロアミノシラン化合物3重量部を、ヘキサフルオロメタキシレンとパーフルオロヘプタンの混合溶媒100部に溶解させたコーティング溶液に前記の反射防止層を浸漬し、20cm/分の速度で引き上げてコーティング処理し、室温下に一昼夜(24時間)放置してコーティング層を硬化させて汚染防止層を形成し、反射防止膜を有する光学素材を得た。
【化3】
Figure 0003874513
【0047】
実施例2
シラン系化合物として、下記式で表されるフルオロアミノシラン化合物を用いたほかは実施例1に準じて光学素材を得た。
【化4】
Figure 0003874513
【0048】
実施例3
シラン系化合物として、下記式で表されるフルオロアミノシラン化合物を用いたほかは実施例1に準じて光学素材を得た。
【化5】
Figure 0003874513
【0049】
実施例4
コーティング層の硬化処理を、60℃、95%RHの湿熱条件下に10分間放置する方式で行った他は、実施例1に準じて光学素材を得た。
【0050】
実施例5
コーティング溶液を蒸着源として、汚染防止層を真空蒸着方式で形成したほかは、実施例1に準じて光学素材を得た。
【0051】
比較例1
汚染防止層を付設しないほかは実施例1に準じて光学素材を得た。
【0052】
比較例2
数平均分子量100のパーフルオロポリエーテル基を有するポリエーテル鎖の末端にトリメトキシシリル基を結合したシラン系化合物を用いて汚染防止層を形成したほかは実施例4に準じて光学素材を得た。
【0053】
比較例3
パーフロオロポリエーテル基に代えて、数平均分子量が1000以上のパーフルオロアルキル基を有するポリシロキサン系化合物を用いて汚染防止層を形成したほかは比較例2に準じて光学素材を得た。
【0054】
比較例4
シラン系化合物として、下記式で表されるフルオロアミノシラン化合物を用いたほかは実施例1に準じて光学素材を得た。
【化6】
Figure 0003874513
【0055】
比較例5
シラン系化合物として、C81724Si(OCH33からなるパーフルオロアルキルシランを用いたほかは実施例1に準じて光学素材を得た。
【0056】
評価方法
実施例、比較例で得た光学素材について、下記の特性を調べた。
静止接触角
直径1.5mmの水滴を針先に形成し、それを汚染防止層の表面に接触させて汚染防止層上に水滴を移し、水滴と面の静止接触角を接触角計(協和界面化学社製、CA−D型)にて測定した。
【0057】
外観
目視にて、反射干渉色及びその均一性、濁りなどを調べた。
【0058】
反射防止性
波長550nmの光を15度の入射角で入射させ、分光光度計(島津製作所製、MPS−2000)にて絶対鏡面反射率を測定した。
【0059】
接着力
ポリエステル粘着テープ(日東電工社製、No.31B)を常温で、2kgのローラを一往復させる方式で汚染防止層に圧着し、20分間放置後、180度ピール値(剥離速度300mm/分)を測定した。
【0060】
汚染防止性
額に指を2秒間押し当てて、その指を汚染防止層の表面に5秒間押し当てることにより指紋を付着させ、目視にて指紋の付き具合を評価し、かつ付着した指紋をティッシュペーパにて拭取り、その除去性を評価した。その評価基準は下記による。なお実施例4〜8、比較例4,5については、5人のテスターがそれぞれ試験を行って、その評価結果を平均した。
良好:指紋が目立たず、かつ容易に拭取れた場合
不良:指紋が目立ち、かつ拭取りにくい場合
不可:指紋が著しく目立ち、かつ拭取れない場合
【0061】
耐久性
イソプロピルアルコールを含浸させたペーパで汚染防止層の表面を20回擦った後(比較例1〜3)、又はイソプロピルアルコールを含浸させたセルロース製不織布で汚染防止層の表面を30回擦った後(実施例1〜4、比較例4,5)、前記汚染防止性試験と同様に指紋を付着させ、それをティッシュペーパにて拭取り、その除去性を評価した。なお評価基準は下記による。
良好:拭取れた場合
不良:拭取れない場合
【0062】
前記の結果を表1に示した。
【表1】
Figure 0003874513
【0064】
表1より、実施例では、指紋等の汚れが付着しにくく、付着した汚染が目立ちにくくて、その汚染をティッシュペーパ等で容易に拭取ることができ、その効果を長期に持続して、撥水性にも優れていることがわかる。なお実施例では、耐久性試験の場合にも汚染防止性に準じた評価で、指紋が目立たずかつ容易に拭取れる良好の評価であったが、比較例4,5では指紋が著しく目立ち、かつ拭取れない不可の評価であった。
【図面の簡単な説明】
【図1】反射防止膜例の断面図
【図2】他の反射防止膜例の断面図
【図3】光学素材例の断面図
【図4】他の光学素材例の断面図
【符号の説明】
3:反射防止膜
1:反射防止層
2:汚染防止層
4:支持基材
5:ハードコート層[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention provides an antireflection film excellent in removability of fingerprints and the like suitable for various visual devices such as LCDs, CRTs and plasma display devices, various lenses for glasses and cameras, mirrors, and the like. It relates to the attached optical material.
[0002]
BACKGROUND OF THE INVENTION
In general anti-reflective coatings that are provided on the surface of visual devices and the like, contamination such as dirt, fingerprints, sweat, saliva, hairdressing, etc. is likely to adhere, and the surface reflectance changes due to such adhesion, There is a problem that contamination is more conspicuous than in the case of simple transparent plates, such as the appearance of the deposit appearing white and the display content being unclear, so it is excellent in preventing the contamination and removing the contamination. Providing an antireflection film has been a long-standing problem.
[0003]
Conventionally, as an antireflection film for the purpose of improving pollution prevention, etc., on the surface of an antireflection layer comprising a single layer or a multilayer inorganic layer having a surface layer mainly composed of silicon dioxide formed by a PVD method, Those having a cured layer made of an organic polysiloxane polymer or a perfluoroalkyl group-containing polymer have been known (Japanese Patent Publication No. 6-5324).
[0004]
However, when human or oily contamination such as dirt or fingerprints adheres, it is difficult to wipe with ordinary tissue paper, and the contamination is spread to the thin film. There was a problem that removal could not be achieved.
[0005]
[Technical Problem of the Invention]
The present invention makes it difficult for contamination to adhere, and even when contamination is attached, the contamination is not conspicuous, and the attached contamination including human contamination such as dirt and fingerprints can be easily wiped off with tissue paper or the like. The wiping operation makes it difficult to get scratched, and water droplets can be easily shaken off, and the performances such as anti-contamination, easy wiping removal, scratch resistance and water repellency are maintained for a long time. Development of anti-reflection film and optical material is an issue.
[0006]
[Means for solving problems]
The present invention relates to a fluorine-containing silane system in which the adhesive force of an adhesive tape is 1.0 N / 20 mm or less on the surface of an inorganic antireflection layer having a single layer structure or a multilayer structure having a silicon dioxide-based inorganic layer as a surface layer. It has a contamination preventing layer comprising a cured layer, and the contamination preventing layer is composed of a cured layer comprising at least one of a fluoroaminosilane compound represented by the following general formula (3) and a partial hydrolysis condensate thereof. The present invention provides an optical material characterized by having an antireflection film and the antireflection film on a supporting substrate.
[Chemical 2]
Figure 0003874513
In the general formula (3), R 4 is a hydrogen atom, a lower alkyl group or an aryl group, R 5 is a lower alkyl group or an aryl group, R 6 is an organic group having 1 to 4 carbon atoms, and Q is CH 2 CH 2 CH 2 or CH 2 CH 2 NHCH 2 CH 2 CH 2 , m is an integer of 15 to 35, and n is 2 or 3.
[0007]
【The invention's effect】
According to the present invention, since the fluoroaminosilane compound or the like according to the general formula (3) is used, it is excellent in performance such as antifouling property, easy wiping removal property of adhesion contamination, scratch resistance and water repellency. Contaminated with a silicon dioxide-based inorganic layer with excellent water and oil repellency, anti-contamination properties, chemical resistance, lubricity, releasability, scratch resistance, etc. A protective layer can be formed, and it is difficult for oil-based and water-based contaminants such as dirt and fingerprints to adhere, and even if contaminants adhere, it is not noticeable and can be easily wiped off with tissue paper etc. Therefore, it is possible to obtain an antireflection film or an optical material thereof which can hardly be damaged and can be easily shaken off, and can maintain such performance for a long time.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
The antireflection film of the present invention is a fluorine whose adhesive tape has an adhesive force of 1.0 N / 20 mm or less on the surface of a single-layer or multi-layer inorganic antireflection layer having a silicon dioxide-based inorganic layer as a surface layer. It has a contamination prevention layer consisting of a contained silane-based cured layer. The optical material of the present invention has the antireflection film on a support substrate.
[0009]
1 and 2 illustrate the antireflection film according to the present invention. Moreover, the optical material by this invention was illustrated in FIG. 3, FIG. Reference numeral 3 denotes an antireflection film composed of the inorganic antireflection layer 1 and the contamination prevention layer 2, 4 denotes a support base material, and 11, 12, and 13 denote inorganic layers that form the inorganic antireflection layer 1. In addition, 5 is a hard-coat layer provided as needed.
[0010]
The inorganic antireflection layer in the antireflection film is a part responsible for a substantial antireflection function. In the present invention, except that it has a silicon dioxide inorganic layer on its surface, that is, in the case of a single layer structure As shown in FIG. 1, an appropriate structure having a single-layer structure or a multi-layer structure can be used except that the inorganic antireflection layer 1 is composed of the silicon dioxide-based inorganic layer 13 as illustrated in FIG.
[0011]
Thus, for example, A. VASICEK, "OPUTICS OF THIN FILMS" P159-283 [North Holland Publishing Company, Amsterdam (1960): NORTH-HOLLAND PUBLISHING COMPANY, AMSTERDAM (1960)], JP 58-46301 A, JP 59-49501 A It can also be formed as an antireflection layer having a structure according to the prior art, as in the prior art based on Japanese Laid-Open Patent Publication No. 59-50401, Japanese Laid-Open Patent Publication No. 1-294709, and Japanese Patent Publication No. 6-5324. .
[0012]
For the formation of the inorganic antireflection layer, an inorganic material such as an inorganic oxide, an inorganic halide, or a composite thereof can be used. Specific examples of the inorganic substance include inorganic oxides such as SiO 2 , ZrO 2 , Al 2 O 3 , Y 2 O 3 , and TiO 2 , MgF 2 , BaF 2 , CaF 2 , LaF 2 , LiF, NaF, SrF 2. Inorganic halides such as
[0013]
The inorganic material forming the antireflection layer is used in an appropriate state such as a dispersion in which one or more of the inorganic materials are mixed with a solid material or a binder polymer according to the following forming method. In addition, it is preferable to use a composition containing 30% by weight or more of an inorganic substance from the viewpoints of hardness and anti-staining properties. The binder polymer may be any suitable polymer and is not particularly limited. However, various organosilicon compounds capable of forming polyorganosiloxane and hydrolysates thereof are preferable from the viewpoint of hardness. Can be used.
[0014]
The inorganic antireflection layer is formed by, for example, various PVD (Phisical Vapor Deposition) methods represented by a vacuum deposition method, a sputtering method, an ion plating method, etc., a spin coating method, a dip coating method, a curtain flow coating method, It can be performed by an appropriate thin film forming method such as a fluid coating method typified by a roll coating method, a spray coating method, a flow coating method or the like.
[0015]
Wherein the the PVD method, such as inorganic halides such as inorganic oxides and MgF 2 of SiO 2 or the like exemplified above are preferably used, particularly the surface layer to become silicon dioxide-based inorganic layer, the surface hardness height and pollution From the viewpoint of adhesion of the prevention layer, a layer containing silicon dioxide as a main component by the PVD method is preferable.
[0016]
The antireflection layer preferably has a multilayer structure in view of the antireflection effect and the like. In particular, one or two or more layers having a higher refractive index than the silicon dioxide-based inorganic layer of the surface layer are included. A layer structure is preferable. In that case, for the setting of the thickness and refractive index of each layer, the above-described A. It can be applied in accordance with conventional techniques such as VASICEK's “OPUTICS OF THIN FILMS”.
[0017]
In addition, the antireflection layer may include a conductive layer that exhibits a static electricity removing effect and an electromagnetic wave shielding effect in order to prevent adhesion of dust and the like due to charging. Such a conductive layer is formed as a transparent conductive film made of, for example, a metal thin film such as gold, silver, or aluminum, or an inorganic oxide thin film such as tin oxide, indium oxide, or a mixture thereof (ITO). In the visible region, an inorganic oxide transparent conductive film that absorbs very little light is particularly preferable.
[0018]
The anti-contamination layer attached to the silicon dioxide-based inorganic layer on the surface of the inorganic anti-reflection layer is formed of a fluorine-containing silane-based cured layer having an adhesive strength of 1.0 N / 20 mm or less. Silane-based cured layers with adhesive tape adhesive strength exceeding 1.0N / 20mm have poor anti-contamination properties, especially human contamination such as dirt and fingerprints, and poor wiping and removal of contamination. .
[0019]
The adhesive strength is JIS
C 2338 (polyester adhesive tape for electrical insulation) or CES
Adhesive tape with an adhesive strength of 2.0 N / 10 mm or more, which is provided with an acrylic adhesive layer on a polyester film, the quality of which is specified by M 5023-6 (polyester film adhesive tape), and a contamination-preventing layer (silane-based cured layer) at room temperature ) And is peeled 180 degrees at a peeling speed of 300 mm / min.
[0020]
Fluorine-modified groups are efficiently oriented on the surface, and exhibit excellent water and oil repellency, antifouling properties, chemical resistance, lubricity, release properties, scratch resistance, etc., and firmly adhere to the silicon dioxide inorganic layer Examples of the silane compound that can be preferably used from the viewpoint of the stable formation of the contamination prevention layer include the fluoroaminosilane compound represented by the general formula (3) and / or a partial hydrolysis condensate thereof.
[0021]
According to the above-mentioned fluoroaminosilane compound and / or its partial hydrolysis-condensation product, it hardens by hydrolysis in the presence of moisture, and thus forms a cured layer by leaving or heating in the presence of the appropriate moisture described above. can do.
[0022]
The lower alkyl group or aryl group R 4 or R 5 in the general formula (3) may be an appropriate group such as a methyl group, an ethyl group, a propyl group, or a phenyl group. R 4 is preferably a hydrogen atom or a methyl group, and R 5 is preferably a methyl group.
[0023]
The organic group R 6 having 1 to 4 carbon atoms is, for example, an alkyl group such as a methyl group, an ethyl group, a propyl group or a butyl group, an oxyalkyl group such as a methoxymethyl group or a methoxyethyl group, an acyl group such as an acetyl group, It may be an appropriate one such as an alkenyl group such as an isopropenyl group. A methyl group, an ethyl group, an isopropenyl group, or the like is preferable from the viewpoint of performance.
[0024]
Furthermore, Q is CH 2 CH 2 CH 2 or CH 2 CH 2 NHCH 2 CH 2 CH 2 , and when forming the contamination prevention layer, these CH 2 CH 2 CH 2 and CH 2 CH 2 NHCH 2 CH 2 It can also be used as a mixture of CH 2 . Therefore, two or more kinds of fluoroaminosilane compounds or / and partial hydrolysis condensates thereof may be used in combination in an appropriate combination for the formation of the contamination prevention layer.
[0025]
Further, m is an integer of 15 to 35, but if it is 15 or less, the above-mentioned characteristics as a perfluoropolyether group are not sufficiently exhibited, and if it is 35 or more, the content of alkoxysilyl groups in the molecule is relatively high. It becomes small and the progress of the condensation reaction is delayed and the formation rate of the cured film becomes poor. In addition, although n is 2 or 3, combined use with the thing of n and 2 and 3 is accept | permitted.
[0026]
The above-mentioned fluoroaminosilane compound can be prepared, for example, by a method in which a corresponding hexafluoropropylene oxide (HFPO) oligomer or an ester derivative thereof is condensed with an aminoalkylalkoxysilane.
[0027]
The formation of the anti-staining layer can take an appropriate method according to the case of the anti-reflection layer described above, but in terms of uniformity of the anti-reflection effect and control of the reflection interference color, the spin coating method, the dip coating method, A suitable thin film coating method such as a curtain flow coating method, or a forming method applying one or more types such as a vacuum vapor deposition method is preferable. From the viewpoint of workability and the like, a forming method in which paper or cloth is impregnated with a coating solution and cast is preferred.
[0028]
The coating solution can be prepared by an appropriate method such as a method of dissolving or dispersing one or two or more silane compounds in a volatile solvent. In that case, the volatile solvent may be appropriately determined in consideration of the stability and solubility of the composition, the wettability of the inorganic antireflection layer surface to the silicon dioxide inorganic layer, the volatilization rate, and the like. The above mixed solvent can also be used.
[0029]
Incidentally, examples of the volatile solvent include fluorine-modified aliphatic hydrocarbons such as perfluoroheptane and perfluorooctane, fluorine-modified aromatic hydrocarbons such as m-xylene hexafluoride and benzotrifluoride, and methyl perfluoromethane. Fluorine-modified ethers such as fluorobutyl ether and perfluoro (2-butyltetrahydrofuran), petroleum benzine and mineral spirits, hydrocarbons such as toluene and xylene, ketones such as acetone, methyl ethyl ketone, and methyl isobutyl ketone. Among them, fluorine-modified products such as m-xylene hexafluoride and perfluoro (2-butyltetrahydrofuran) can be preferably used from the viewpoint of solubility.
[0030]
In preparing the coating solution, for example, dibutyltin dimethoxide or dibutyltin dilaurate may be used for the purpose of accelerating the hydrolysis condensation reaction of silane compounds, especially fluoroaminosilane compounds and partial hydrolysis condensates thereof. An alkoxysilane hydrolysis condensation catalyst such as an organic tin compound, an organic titanium compound such as tetra-n-butyl titanate, an organic acid such as acetic acid or methanesulfonic acid, or an inorganic acid such as hydrochloric acid or sulfuric acid may be added. As such a catalyst, acetic acid, tetra-n-butyl titanate, dibutyltin dilaurate or the like can be used particularly preferably.
[0031]
The thickness of the antifouling layer to be formed can be determined as appropriate, but in general, in terms of antireflection and antifouling properties, static contact angle with water, adhesive strength of adhesive tape, and consistency with surface hardness, 0.001 to 0.5 μm, especially 0.01 to 0.1 μm. In forming the anti-contamination layer, it is preferable to clean the surface of the anti-reflection layer. The treatment can be performed by an appropriate method such as removal of dirt with a surfactant, degreasing with an organic solvent, or steam cleaning with a fluorinated solvent. In addition, an appropriate pretreatment for the purpose of improving adhesion and durability can be performed, and treatment with an activated gas, chemical treatment with acid, alkali, or the like is particularly preferable.
[0032]
The antireflection film according to the present invention preferably has a surface reflectance of 3% or less based on the reflectance of all rays on the outermost antifouling layer surface from the viewpoint of antireflection effect and the like. Therefore, when an antireflection film is provided on the front and back of the supporting substrate as an optical material described later, the total surface reflectance on the front and back is preferably 6% or less. In a colorless and transparent optical material provided with antireflection films on the front and back surfaces, the total light transmittance of the optical material is subtracted from 100%, and half of the obtained value can be defined as the surface reflectance on one side.
[0033]
In the above, when the surface reflectance on the surface of the contamination prevention layer is high, the antireflection effect is poor, and a spectacle lens or the like produces a reflection image such as ghost or flare, which is likely to cause discomfort. In addition, with a looking glass, a CRT filter, etc., the contents and display contents tend to be unclear due to planar reflected light.
[0034]
In addition, about a pollution prevention layer, surface analysis can be performed by TOF-SIMS (time-of-flight type secondary ion mass spectrometry). This method is performed by irradiating ions with weak energy onto a sample surface placed in a high vacuum and detecting the molecular number of molecular fragments emitted from the surface by time resolution.
[0035]
The typical measurement conditions are as follows.
Measuring device: USA Phisical Electronics (PHI EVANS) TFS-2000
Measurement conditions; primary ion species: Ga (+) ion primary ion energy: 25 kV
Primary ion current (DC): ~ 150 pA
Sample potential: +3.2 kV
Pulse frequency: 7.2 kHz
Pulse width: 10 ns
Bunching: None Charge neutralization: Available Time resolution: 1.1 ns / ch
Secondary ion polarity: positive, negative mass range (M / z): 0-10000
Raster size: 120μm
Measurement time: 20 minutes Energy filter: None Contrast diaphragm: # 0
Position detector,: Raster
Second stage acceleration: 5 kV
Measuring degree of vacuum: ˜4 × 1/10 8 Torr
[0036]
The antireflection film according to the present invention is used for the interior of a display device such as an LCD, a CRT, or a plasma display or a visual display device, an optical element such as a front plate or a polarizing plate, a lens for glasses, a camera, or binoculars, an anti-glare film. The present invention can be applied to appropriate conventional articles such as mirrors such as mirrors and measuring instruments such as weighing scales. In that case, the antireflection film can be directly attached to the object to be processed such as the above-mentioned article or the like, or on an appropriate support substrate made of a glass plate, a plastic plate, or an optical element such as a polarizing plate or a diffusion plate. It can also be applied as an attached optical material.
[0037]
As described above, the optical material in which the antireflection film 3 is provided on one side or both sides of the support base material 4 according to the present invention is illustrated in FIGS. 3 and 4, but an appropriate material is used as the support base material. Well, there is no particular limitation. When an antireflection film is formed by a liquid coating method or the like, a supporting substrate made of glass or plastic can be preferably used.
[0038]
In the case of the glass substrate, it is more preferable that the antireflection layer contains a material having a low refractive index such as MgF 2 or CaF 2 because a high reflection effect is obtained. In the case of a plastic substrate, it is preferable from the viewpoint of durability and the like that the antireflection layer contains a material having a relatively low refractive index such as SiO 2 and high hardness.
[0039]
The plastic forming the support substrate may be any appropriate one. Incidentally, examples of the plastic include acrylic resins such as polymethyl methacrylate and methyl methacrylate copolymer, polycarbonate resins such as polycarbonate and diethylene glycol bisallyl carbonate (CR-39), and polyester resins such as polyethylene terephthalate and unsaturated polyester. Resin, acetate resin such as triacetyl cellulose, acrylonitrile-styrene copolymer, styrene resin, polyvinyl chloride resin, polyurethane resin, epoxy resin, polyethersulfone resin, polyamide resin, polyimide Resin, polyolefin resin and the like.
[0040]
The support base material may have an appropriate form such as a film, a sheet, or a plate, and the thickness thereof is arbitrary. Further, the support substrate may have a hard coat layer. In this case, as illustrated in FIG. 4, the optical material has a hard coat layer 5 between the antireflection film 3 and the support base 4. Further, the supporting substrate has an appropriate coating layer instead of the hard coating layer or together with the hard coating layer, for example, for the purpose of improving the adhesion, hardness, chemical resistance, durability, dyeability, etc. of the antireflection film. Or surface-treated.
[0041]
Incidentally, in order to improve the hardness, Japanese Patent Publication No. 50-28092, Japanese Patent Publication No. 50-28446, Japanese Patent Publication No. 50-39449, Japanese Patent Publication No. 51-24368, Japanese Patent Publication No. 57-2735 and Japanese Patent Publication No. An appropriate material for increasing the hardness described in Japanese Patent No. 52-112698 can be used. In addition, a method of coating an oxide made of silicon or metal such as titanium, aluminum or tin, or an acrylic cross-linked body made of a cross-linked body such as pentaerythritol of (meth) acrylic acid is effective for improving the hardness. is there.
[0042]
The hard coat layer can also be formed according to the conventional method. Among them, a hard coat layer made of a cured product such as an organosilicon compound, particularly an organosilicon compound represented by the general formula: R 4 c R 5 d Si (OR 6 ) 4-cd and a hydrolyzate thereof is preferable. R 4 and R 5 in the formula are alkyl groups, alkenyl groups, aryl groups, or hydrocarbon groups having halogen groups, epoxy groups, glycidoxy groups, amino groups, mercapto groups, methacryloxy groups, cyano groups, and the like. , R 6 is an alkyl group having 1 to 8 carbon atoms, an alkoxyalkyl group, an acyl group, or an aryl group. Also, c and d are 0 or 1, so c + d is 0, 1 or 2.
[0043]
The hard coat layer is centered by a method of containing fine particles made of silica or metal oxide having an average particle diameter of 0.5 to 5 μm by a sol-gel method or the like, or an appropriate method such as buff, corona discharge or ion etching. It can also be provided as having a glitter prevention function, for example, by an etching surface having a line average roughness of 0.01 to 0.5 μm.
[0044]
The antireflective film and optical material according to the present invention have features such as being resistant to dirt, being less noticeable and easy to remove, having good surface slipperiness and scratch resistance, and maintaining their performance for a long period of time. For example, various visual devices such as LCDs, various optical elements such as polarizing plates, various lenses for glasses, various mirrors such as anti-glare mirrors, various instruments such as weighing scales, etc. It can preferably be used as an antireflection filter disposed on the surface or inside of various articles.
[0045]
【Example】
Example 1
The SiO 2 layer, the TiO 2 layer, the SiO 2 layer, the TiO 2 layer, and the SiO 2 layer 5 are formed by sputtering on the hard coat layer with a glitter prevention function attached to the adhesive polarizing filter (manufactured by Nitto Denko Corporation, EG1425DUAG30). Each layer was sequentially laminated with a λ / 4 optical film thickness to provide an antireflection layer.
[0046]
Next, the antireflection layer is immersed in a coating solution in which 3 parts by weight of a fluoroaminosilane compound represented by the following formula is dissolved in 100 parts of a mixed solvent of hexafluorometaxylene and perfluoroheptane, and 20 cm / min. The coating treatment was performed by pulling up at a speed, and the coating layer was cured by allowing it to stand at room temperature all day and night (24 hours) to form a contamination prevention layer, thereby obtaining an optical material having an antireflection film.
[Chemical 3]
Figure 0003874513
[0047]
Example 2
An optical material was obtained according to Example 1 except that a fluoroaminosilane compound represented by the following formula was used as the silane compound.
[Formula 4]
Figure 0003874513
[0048]
Example 3
An optical material was obtained according to Example 1 except that a fluoroaminosilane compound represented by the following formula was used as the silane compound.
[Chemical formula 5]
Figure 0003874513
[0049]
Example 4
An optical material was obtained in the same manner as in Example 1 except that the coating layer was cured by leaving the coating layer under a wet heat condition of 60 ° C. and 95% RH for 10 minutes.
[0050]
Example 5
An optical material was obtained according to Example 1 except that the contamination prevention layer was formed by a vacuum deposition method using the coating solution as a deposition source.
[0051]
Comparative Example 1
An optical material was obtained according to Example 1 except that no contamination prevention layer was provided.
[0052]
Comparative Example 2
An optical material was obtained according to Example 4 except that a contamination-preventing layer was formed using a silane compound in which a trimethoxysilyl group was bonded to the end of a polyether chain having a perfluoropolyether group having a number average molecular weight of 100 . .
[0053]
Comparative Example 3
An optical material was obtained in the same manner as in Comparative Example 2 except that a pollution control layer was formed using a polysiloxane compound having a perfluoroalkyl group having a number average molecular weight of 1000 or more instead of the perfluoropolyether group.
[0054]
Comparative Example 4
An optical material was obtained according to Example 1 except that a fluoroaminosilane compound represented by the following formula was used as the silane compound.
[Chemical 6]
Figure 0003874513
[0055]
Comparative Example 5
An optical material was obtained in the same manner as in Example 1 except that perfluoroalkylsilane composed of C 8 F 17 C 2 H 4 Si (OCH 3 ) 3 was used as the silane compound.
[0056]
Evaluation Methods The following characteristics were examined for optical materials obtained in Examples and Comparative Examples.
A water droplet with a static contact angle diameter of 1.5mm is formed on the tip of the needle, and it is brought into contact with the surface of the pollution control layer to transfer the water drop onto the pollution control layer. The contact angle meter (Kyowa Interface) (Chemical company make, CA-D type).
[0057]
The appearance of the reflection interference color, its uniformity, and turbidity were examined by visual inspection.
[0058]
Light having an antireflection wavelength of 550 nm was incident at an incident angle of 15 degrees, and the absolute specular reflectance was measured with a spectrophotometer (manufactured by Shimadzu Corporation, MPS-2000).
[0059]
Adhesive polyester pressure-sensitive adhesive tape (Nitto Denko, No. 31B) is pressure-bonded to the anti-contamination layer by reciprocating a 2 kg roller at room temperature, left for 20 minutes, and then peeled at 180 degrees (peeling speed 300 mm / min) ) Was measured.
[0060]
A finger is pressed against the antifouling forehead for 2 seconds, the finger is pressed against the surface of the antifouling layer for 5 seconds, the fingerprint is attached, the degree of fingerprint attachment is visually evaluated, and the attached fingerprint is removed from the tissue. The removal property was evaluated by wiping with paper. The evaluation criteria are as follows. In addition, about Examples 4-8 and Comparative Examples 4 and 5, five testers each tested and averaged the evaluation result.
Good: When the fingerprint is not noticeable and easily wiped off. Bad: When the fingerprint is noticeable and difficult to wipe. Not possible: When the fingerprint is noticeable and cannot be wiped off.
After rubbing the surface of the antifouling layer 20 times with paper impregnated with durable isopropyl alcohol (Comparative Examples 1-3), or rubbing the surface of the antifouling layer 30 times with a cellulose nonwoven fabric impregnated with isopropyl alcohol. After (Examples 1 to 4, Comparative Examples 4 and 5), a fingerprint was attached in the same manner as in the anti-staining test, and it was wiped with tissue paper to evaluate its removability. The evaluation criteria are as follows.
Good: When wiped off Defective: When wiped off [0062]
The results are shown in Table 1.
[Table 1]
Figure 0003874513
[0064]
From Table 1, in Examples, dirt such as fingerprints hardly adheres, and the attached contamination is not noticeable. The contamination can be easily wiped off with tissue paper, etc., and the effect is maintained for a long period of time. It turns out that it is excellent also in aqueous property. In the examples, even in the durability test, the evaluation according to the anti-contamination property was a good evaluation that the fingerprints were not noticeable and could be easily wiped off, but in Comparative Examples 4 and 5, the fingerprints were noticeable and The evaluation was impossible.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of an example of an antireflection film. FIG. 2 is a cross-sectional view of another example of an antireflection film. FIG. 3 is a cross-sectional view of an example of an optical material. ]
3: Antireflection film 1: Antireflection layer 2: Antifouling layer 4: Support base material 5: Hard coat layer

Claims (9)

表面層として二酸化ケイ素系無機層を有する単層構造又は複層構造の無機系反射防止層の表面に、粘着テープの接着力が1.0N/20mm以下であるフッ素含有のシラン系硬化層からなる汚染防止層を有し、前記汚染防止層が下記一般式(3)で表されるフルオロアミノシラン化合物およびその部分加水分解縮合物の少なくとも一方よりなる硬化層からなることを特徴とする反射防止膜。
Figure 0003874513
前記一般式(3)において、R は水素原子又は低級アルキル基若しくはアリール基、R は低級アルキル基又はアリール基、R は炭素数1〜4の有機基、QはCH CH CH 又はCH CH NHCH CH CH 、mは15〜35の整数、nは2又は3である。
The surface of the inorganic antireflection layer having a single-layer structure or a multi-layer structure having a silicon dioxide-based inorganic layer as a surface layer is composed of a fluorine-containing silane-based cured layer having an adhesive strength of 1.0 N / 20 mm or less. An antireflection film comprising a contamination prevention layer , wherein the contamination prevention layer comprises a cured layer comprising at least one of a fluoroaminosilane compound represented by the following general formula (3) and a partial hydrolysis-condensation product thereof .
Figure 0003874513
In the general formula (3), R 4 is a hydrogen atom, a lower alkyl group or an aryl group, R 5 is a lower alkyl group or an aryl group, R 6 is an organic group having 1 to 4 carbon atoms, and Q is CH 2 CH 2 CH 2 or CH 2 CH 2 NHCH 2 CH 2 CH 2 , m is an integer of 15 to 35, and n is 2 or 3.
前記汚染防止層が、厚さ0.001〜0.5μm、粘着テープの接着力0.5N/20mm以下、水に対する静止接触角80度以上である請求項1記載の反射防止膜。2. The antireflection film according to claim 1, wherein the antifouling layer has a thickness of 0.001 to 0.5 μm, an adhesive strength of the adhesive tape of 0.5 N / 20 mm or less, and a static contact angle of 80 degrees or more with respect to water. 前記二酸化ケイ素系無機系反射防止層が、導電層を有し、表面反射率が3%以下である請求項1または2に記載の反射防止膜。The antireflection film according to claim 1 or 2, wherein the silicon dioxide-based inorganic antireflection layer has a conductive layer and has a surface reflectance of 3% or less. 前記汚染防止層が、前記シラン化合物の加水分解により硬化した層からなる請求項1から3のいずれか一項に記載の反射防止膜。The antireflection film according to any one of claims 1 to 3, wherein the antifouling layer comprises a layer cured by hydrolysis of the silane compound. 前記二酸化ケイ素系無機層が、PVD法により形成したものであり、前記汚染防止層がスピンコート法、浸漬コート法、カーテンフローコート法および真空蒸着法からなる群から選択される少なくとも一つの方法で形成したものである請求項1から4のいずれか一項に記載の反射防止膜。The silicon dioxide-based inorganic layer is formed by a PVD method, and the contamination prevention layer is at least one method selected from the group consisting of a spin coating method, a dip coating method, a curtain flow coating method, and a vacuum deposition method. The antireflection film according to claim 1, which is formed. 請求項1から5のいずれか一項に記載の反射防止膜を支持基材上に有することを特徴とする光学素材。An optical material comprising the antireflection film according to claim 1 on a supporting substrate. 前記反射防止膜と前記支持基材の間にハードコート層を有する請求項6記載の光学素材。The optical material according to claim 6, further comprising a hard coat layer between the antireflection film and the support substrate. 前記ハードコート層が、平均粒径0.5〜5μmのシリカ粒子の含有、又は中心線平均粗さ0.01〜0.5μmのエッチング表面によりきらめき防止機能を有するものである請求項7記載の光学素材。8. The hard coat layer has a glitter prevention function due to the inclusion of silica particles having an average particle size of 0.5 to 5 [mu] m, or an etching surface having a center line average roughness of 0.01 to 0.5 [mu] m. Optical material. 視認装置用の反射防止フィルタとして用いる請求項6から8のいずれか一項に記載の光学素材。The optical material according to claim 6, wherein the optical material is used as an antireflection filter for a visual recognition device.
JP33815697A 1996-12-19 1997-11-20 Antireflection film and optical material Expired - Lifetime JP3874513B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33815697A JP3874513B2 (en) 1996-12-19 1997-11-20 Antireflection film and optical material

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP35509196 1996-12-19
JP8-355091 1996-12-19
JP33815697A JP3874513B2 (en) 1996-12-19 1997-11-20 Antireflection film and optical material

Publications (2)

Publication Number Publication Date
JPH10232301A JPH10232301A (en) 1998-09-02
JP3874513B2 true JP3874513B2 (en) 2007-01-31

Family

ID=26576020

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33815697A Expired - Lifetime JP3874513B2 (en) 1996-12-19 1997-11-20 Antireflection film and optical material

Country Status (1)

Country Link
JP (1) JP3874513B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW557368B (en) 2001-06-29 2003-10-11 Jsr Corp Anti-reflection film laminated body and method of manufacturing the laminated body
WO2008059844A1 (en) * 2006-11-14 2008-05-22 Nissan Chemical Industries, Ltd. Coating liquid for forming low refractive index film, method for producing the same and antireflection member
KR100940086B1 (en) * 2007-12-13 2010-02-02 한국화학연구원 Perfluorinated Polyether Modified Silane Compound and Antifouling Coating Composition Containing the Same and Membrane Applying the Same
JP2010025066A (en) * 2008-07-23 2010-02-04 Aisan Ind Co Ltd Fuel injection valve and its manufacturing method
JP5556822B2 (en) * 2012-01-13 2014-07-23 信越化学工業株式会社 Fluorooxyalkylene group-containing polymer-modified silane, surface treatment agent containing the silane, and article surface-treated with the surface treatment agent
US11367856B2 (en) * 2017-09-29 2022-06-21 Dai Nippon Printing Co., Ltd. Optical film and image display device
JP7169492B2 (en) * 2020-07-13 2022-11-10 日東電工株式会社 Optical film with antifouling layer

Also Published As

Publication number Publication date
JPH10232301A (en) 1998-09-02

Similar Documents

Publication Publication Date Title
JP3722418B2 (en) Antireflection film and optical member using the same
KR100971841B1 (en) Lens with antifouling layer
JP4412450B2 (en) Anti-reflective filter
US7196212B2 (en) Perfluoropolyether-modified silane, surface treating agent, and antireflection filter
AU736642B2 (en) Antisoiling coatings for antireflective surfaces and methods of preparation
KR100557257B1 (en) Anti-stain coating for anti-reflective surfaces and manufacturing method thereof
US7137701B2 (en) Stain-proofing spectacle lens and manufacturing method thereof
ES2446360T3 (en) Optical product and plastic glasses for glasses
JP6988905B2 (en) Water- and oil-repellent member and method for manufacturing water- and oil-repellent member
JP4197472B2 (en) Lens with antifouling surface layer
JP4672095B2 (en) Method for manufacturing antireflection film
US5972517A (en) Filter for display device
EP1387187A1 (en) Optical Antireflection Element
JP3874513B2 (en) Antireflection film and optical material
JPH04338901A (en) Filter for crt
JPH10120445A (en) Filter for displaying device and displaying device
JP3787988B2 (en) Antireflection filter and character image display device using the antireflection filter
JP4420476B2 (en) Composition for surface modification film, surface modification film, filter for display device, display device and method for producing filter for display device
JP2005199572A (en) Pollution prevention type anti-reflection film and display
EP1351071A2 (en) Optical member with antireflection film and water-repellent layer and production processes
JPH01309003A (en) Antistatic article having water repellency
JP2006175438A (en) Forming method of stain-proofing layer
JP2004126532A (en) Optical member
JPH09111223A (en) Dirt prevention treatment method
JPH10148701A (en) Antireflection filter, its production, and display device using this antireflection filter

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050531

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050722

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20051108

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060104

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060104

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20060118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060417

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060616

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060721

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060912

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061005

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061024

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

EXPY Cancellation because of completion of term