JP3873528B2 - 放射体温計 - Google Patents
放射体温計 Download PDFInfo
- Publication number
- JP3873528B2 JP3873528B2 JP17333699A JP17333699A JP3873528B2 JP 3873528 B2 JP3873528 B2 JP 3873528B2 JP 17333699 A JP17333699 A JP 17333699A JP 17333699 A JP17333699 A JP 17333699A JP 3873528 B2 JP3873528 B2 JP 3873528B2
- Authority
- JP
- Japan
- Prior art keywords
- sensor
- temperature
- measurement target
- output
- infrared
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 230000005855 radiation Effects 0.000 title claims description 59
- 238000005259 measurement Methods 0.000 claims description 161
- 238000004364 calculation method Methods 0.000 claims description 28
- 238000009529 body temperature measurement Methods 0.000 claims description 15
- 230000001419 dependent effect Effects 0.000 claims description 12
- 230000000717 retained effect Effects 0.000 claims description 3
- 230000036760 body temperature Effects 0.000 description 24
- 238000001514 detection method Methods 0.000 description 7
- 239000000523 sample Substances 0.000 description 7
- 210000000613 ear canal Anatomy 0.000 description 6
- 238000010586 diagram Methods 0.000 description 5
- 230000006870 function Effects 0.000 description 5
- 238000012545 processing Methods 0.000 description 4
- 239000004973 liquid crystal related substance Substances 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 238000006073 displacement reaction Methods 0.000 description 2
- 230000035945 sensitivity Effects 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 210000003454 tympanic membrane Anatomy 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J5/00—Radiation pyrometry, e.g. infrared or optical thermometry
- G01J5/02—Constructional details
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J5/00—Radiation pyrometry, e.g. infrared or optical thermometry
- G01J5/02—Constructional details
- G01J5/026—Control of working procedures of a pyrometer, other than calibration; Bandwidth calculation; Gain control
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J5/00—Radiation pyrometry, e.g. infrared or optical thermometry
- G01J5/10—Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors
- G01J5/12—Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors using thermoelectric elements, e.g. thermocouples
- G01J5/14—Electrical features thereof
- G01J5/16—Arrangements with respect to the cold junction; Compensating influence of ambient temperature or other variables
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J5/00—Radiation pyrometry, e.g. infrared or optical thermometry
- G01J5/70—Passive compensation of pyrometer measurements, e.g. using ambient temperature sensing or sensing of temperature within housing
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J5/00—Radiation pyrometry, e.g. infrared or optical thermometry
- G01J5/02—Constructional details
- G01J5/06—Arrangements for eliminating effects of disturbing radiation; Arrangements for compensating changes in sensitivity
- G01J5/064—Ambient temperature sensor; Housing temperature sensor; Constructional details thereof
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Radiation Pyrometers (AREA)
- Measuring And Recording Apparatus For Diagnosis (AREA)
Description
【発明の属する技術分野】
本発明は、測定対象から放射される赤外線により体温を測定する放射体温計に関する。
【0002】
【従来の技術】
この種の放射体温計としては、例えば特開昭61−117422号公報に開示されている方式で測定する検温装置が知られている。この検温装置は赤外線センサと、耳孔からの赤外線を取り込むプローブと、赤外線センサのセンサ温度を所定温度に維持するコントローラとからなり、赤外線センサの出力および所定温度に維持された赤外線センサのセンサ温度から体温を算出している。また、これと類似の他の放射温度計では、赤外線センサのセンサ温度を所定温度に維持する代わりにその温度(センサ温度)を温度センサで測定して、この測定された赤外線センサのセンサ温度と赤外線センサの出力により温度を算出する。
【0003】
このような放射温度計では、一般的にステファン・ボルツマン(Stefan-Boltzmann)の法則として知られる法則(例えば、「赤外線光学―基礎と応用―」赤外線技術研究会編 オーム社 参照)から導出される以下の理論式(式1)に従い、測定対象の温度を求めている。 赤外線センサ出力E = L(Tx4- Ta4) (式1)ここで Tx:測定対象の絶対温度(測定対象温度) Ta:赤外線センサの絶対温度(センサ温度) E:赤外線センサの出力(センサ出力) L:測定システムの感度を示す係数従来、このような放射温度計では、センサ温度を基準となる温度Ta0に保持し、既知の測定対象基準温度T0を有する測定対象を測定し、得られたセンサ出力E0を用いて、(式1)のような理論式にしたがって測定値を調整していた。すなわち、調整時には、放射温度計に内蔵された制御手段が、上記(T0,Ta0,E0)から図8の直線101で示される(式1)に従って最も精度よく測定できる係数Lを決定し、これを制御手段から読み取り可能なメモリに保持しておく。そして、測定時には、放射温度計に内蔵された制御手段が係数Lをメモリから読み出し、赤外線センサのセンサ出力Eとセンサ温度Taから(式1)に従って測定対象の温度を算出していた。
【0004】
【発明が解決しようとする課題】
しかしながら、上記のような従来技術の場合には、測定装置を構成する赤外線センサ等の部品の特性によって必ずしも上記(式1)のような理論的な関係が満たされないという問題が生じている。例えば、上記理論式(式1)の関係は図8の直線101で示されるが、実際の測定では図8の点線100ように直線101とのずれが生じる。
【0005】
従って、理論式(式1)やステファン・ボルツマン(Stefan-Boltzmann)の法則に則って、測定値の絶対精度を向上させようとしても、最終的には測定誤差の発生が回避できず、また、その誤差を抑制するため絶対精度が高いセンサ等の部品を必要とするという問題があった。
【0006】
本発明は上記問題を解決するためになされたもので、その目的とするところは、赤外線を検出する赤外線センサや赤外線センサの温度を測定する温度センサの絶対精度に依存せず、正確な測定が可能な放射体温計を提供することにある。
【0007】
【課題を解決するための手段】
上記目的を達成するために本発明は以下の構成を採用する。すなわち、本発明は、測定対象から放射される赤外線をセンサ出力として検出する赤外線センサと、この赤外線センサ自身の温度をセンサ温度として測定するセンサ温度測定部と、前記センサ出力と前記センサ温度とに基づいて測定対象の温度を測定対象温度として算出する制御手段とを備えた放射温度計において、その温度測定を制御する制御手段が、基準となる測定対象温度としての測定対象基準温度に係る情報と、基準となるセンサ温度としてのセンサ基準温度に係る情報と、前記測定対象基準温度を持つ前記測定対象から放射された赤外線を前記センサ基準温度を持つ赤外線センサで検出した際の基準となるセンサ出力としてのセンサ基準出力に係る情報とを保持し、前記センサ温度測定部によって測定されるセンサ温度と前記センサ基準温度に係る情報から得られるセンサ基準温度との差分としての第1の差分,前記赤外線センサによって検出されるセンサ出力と前記センサ基準出力に係る情報から得られるセンサ基準出力との差分としての第2の差分,及び前記測定対象基準温度に係る情報に基づいて測定対象の測定対象温度を算出するものである。
【0008】
この場合、この制御手段は、予め測定された複数点の測定対象温度,センサ温度,及びセンサ出力の組み合わせによって特定される測定対象温度の変動特性を保持し、前記保持した変動特性、前記第1の差分に依存する測定対象温度の変動量,前記第2の差分に依存する測定対象温度の変動量,および前記測定対象基準温度に係る情報に基づいて前記測定対象温度を算出してもよい。
【0009】
また、前記赤外線センサが特定の測定対象温度を有する測定対象からの赤外線を複数点の異なるセンサ温度にて夫々検出した際の各センサ出力とその時の各センサ温度との関係に基づいて求めたセンサ温度依存量算出情報と、前記赤外線センサが複数点の異なる測定対象温度を有する測定対象からの赤外線を特定のセンサ温度にて夫々検出した際の各センサ出力とその時の各測定対象温度との関係に基づいて求めたセンサ出力依存量算出情報とをさらに保持し、前記第1の差分と前記センサ温度依存量算出情報とに基づいて算出される相対センサ温度依存量,前記第2の差分と前記センサ出力依存量算出情報とに基づいて算出される相対センサ出力依存量,及び前記測定対象基準温度に係る情報に基づいて測定対象の測定対象温度を算出するようにしてもよい。
【0010】
そのため、まず予め、測定対象基準温度を有する基準となる測定対象をセンサ基準温度におかれた赤外線センサで測定した際のセンサ基準出力を求めておく。次に未知の測定対象温度の測定対象を特定のセンサ温度で測定して特定のセンサ出力が得られた場合に、そのセンサ温度およびセンサ出力の前記センサ基準温度およびセンサ基準出力からのそれぞれの差分に基づいてその測定対象の測定対象温度を算出する。
【0011】
この場合、センサ温度に係る変動量、すなわち、相対センサ温度依存量をセンサ基準温度からのセンサ温度の差分に基づいて求め、センサ出力に起因する測定温度は理論式(式1)に従って求めてもよい。
【0012】
また、センサ出力に係る変動量、すなわち、相対センサ出力依存量をセンサ基準出力からのセンサ出力の差分に基づいて求め、センサ温度に起因する測定温度は理論式(式1)に従って求めてもよい。
【0013】
また、前記温度測定手段は、サーミスタを備えていても良く、ダイオードを備えていても良い。また、前記赤外線検出手段は、サーモパイルを備えていても良く、焦電センサを備えていても良い。
【0014】
また、前記変動特性は、センサ温度値とセンサ出力値の一方または両方の4次以下の多項式で構成されていても良く、前記センサ温度依存量算出情報は、センサ温度値の4次以下の多項式を構成する係数で表されていても良く、前記センサ出力依存量算出情報は、センサ出力値の4次以下の多項式を構成する係数で表されていても良い。
【0015】
【発明の実施の形態】
以下、図面を参照して、本発明の好適な実施の形態を説明する。
【0016】
(実施の形態1)
<放射体温計の構成>
図1、図2および図5〜図7を参照して、実施の形態1に係る放射体温計について説明する。図1は本発明の実施の形態1の放射体温計のブロック図であり、図2はその作用を示すフローチャートであり、図5は本発明の測定原理を示すグラフであり、図6は本実施の形態の放射体温計の検出特性とセンサ出力との関係を示すグラフであり、図7はこの放射体温計の検出特性とセンサ温度との関係を示すグラフである。
【0017】
この放射体温計の構成を示すブロック図を図1に示す。この放射体温計は耳孔から放射される赤外線を検出する赤外線センサ1と、この赤外線センサ1自身の温度(センサ温度)を測定する温度センサ2(センサ温度測定部に相当)と、耳孔に挿入されて鼓膜およびその周辺からの赤外線を赤外線センサ1に導く図示しないプローブと、赤外線センサ1の出力(センサ出力)を受けて増幅する増幅器3と、増幅器3により増幅されたセンサ1の出力および温度センサ2の出力をデジタル量に変換するA/Dコンバータ4とを備える。さらにこの放射体温計は測定シーケンスを制御するCPU5を有しており、このCPU5には、上述のA/Dコンバータ4と、電源をオン/オフする電源スイッチ7と、測定開始を指示する測定開始スイッチ8と、メモリ9と、液晶ディスプレイ6とが接続されている。
【0018】
本実施の形態では、赤外線センサ1としてサーモパイルを使用する。赤外線センサ1は温度センサ2とともにプローブの奥に配置されている。赤外線センサ1の出力は増幅器3に入力されて増幅され、A/Dコンバータ4によりデジタル信号に変換され、CPU5に取り込まれる。
【0019】
一方、赤外線センサ1の温度を測定するため、温度センサ2が赤外線センサ1に接触している。この温度センサ2の出力は、そのままA/Dコンバータ4によりデジタル信号に変換され、CPU5に送られる。本実施の形態では、この温度センサ2としてサーミスタを使用する。したがって、本実施の形態では温度センサ2によって測定される赤外線センサ1のセンサ温度はサーミスタの抵抗値Rとして表される。
【0020】
<CPUによる処理>
以下、CPU5による処理を詳細に説明する。
【0021】
CPU5は、メモリ9に格納された制御プログラムの実行により、赤外センサ1の出力Eと、温度センサ2の出力Ta(またはサーミスタの抵抗値R)とから測定対象の体温Txを算出する(制御手段に相当)。この体温が測定対象温度に相当する。
【0022】
その場合温度が既知の基準となる測定対象の温度を予め測定して、CPU5から算出される測定温度を調整する必要がある。今、温度センサ2をセンサ基準温度Ta0(その時の温度センサ2の出力を基準抵抗値R0とする)に保って、既知の基準温度T0(測定対象基準温度)を有する測定対象の温度を測定した際の赤外線センサ1のセンサ基準出力E0を得ているものとする。また、このような(T0,E0,Ta0)を調整点と呼び、測定対象基準温度T0を除いた(E0,Ta0)を基準点と呼ぶことにする。
【0023】
従来は、上述のように、これらの調整点のデータ(T0, E0,Ta0)を用いて(式1)のような理論式にしたがって測定値を調整していた。
【0024】
これに対し本実施の形態では、CPU5はセンサ基準出力E0に対するセンサ出力Eの差分ΔEと、センサ基準温度Ta0(温度センサ2の出力R0)に対するセンサ温度の差分ΔTa(温度センサ2の抵抗値の差分ΔR)を求めて、その差分から相対的に測定対象温度Txを求める。これは図5に示す点線100で示す実測された放射体温計の検出特性のグラフ(以下これを放射体温計の変動特性と呼ぶ。)上で、基準点(E0,Ta0)近傍の上記差分で示される範囲における矢印102で示す変位によって測定対象の測定対象温度Txを求めることに相当する。
【0025】
すなわち、本発明は従来の(式1)に対して、下記(式2)に従って測定対象の体温を測定する放射温度計を提供するものである。
【0026】
体温Tx = T0 + f(ΔTa) + g(ΔE) (式2)
ここでT0:測定対象の測定対象基準温度である。
【0027】
ΔTa:赤外線センサ1のセンサ温度のセンサ基準温度からの差分である。ただし、温度センサ2としてサーミスタのような測温抵抗材料を使用する場合には、センサ温度は一般的にはその抵抗値Rとして、またセンサ温度の差分は抵抗値Rの基準抵抗値R0からの差分ΔRとして与えられる。
【0028】
ΔE:赤外線センサ1のセンサ出力のセンサ基準出力からの差分である。
【0029】
f:センサ温度を変化させたときの測定温度に対する寄与を示す関 数である(センサ温度依存量算出情報に相当)。特定の温度を有する基準となる測定対象からの赤外線を、複数点の異なるセンサ温度において検出した際の前記赤外線センサ1のセンサ出力とその時のセンサ温度との関係に基づいて実験的に求めることができる。
【0030】
f(ΔTa):相対センサ温度依存量である。ただし、温度センサ2としてサーミスタのような測温抵抗材料を使用する場合には、等価的にf(ΔR)で表現できる。
【0031】
g:センサ出力を変化させたときの測定温度に対する寄与である(センサ出力依存量算出情報に相当)。複数点の異なる測定対象温度における基準となる測定対象からの赤外線を、特定のセンサ温度において検出した際の前記赤外線センサ1のセンサ出力とその時の測定対象の測定対象温度との関係に基づいて実験的に求めることができる。
【0032】
g(ΔE):相対センサ出力依存量である。
【0033】
本実施の形態では温度センサ2としてサーミスタを使用するので、その出力は抵抗値として得られる。以下に(式2)をセンサ温度Taから温度センサ2であるサーミスタの出力抵抗Rに書き換えた(式3)を示す。本実施の形態の放射体温計は、この(式3)に従って体温を測定するものである。
【0034】
このため、本実施の形態では、調整対象の放射体温計ごとに、センサ出力Eとセンサ温度Ta(温度センサ2の出力R)とのうちいずれか一方を基準点(E0,Ta0)に固定し、他方を変化させて温度が既知の測定対象の温度を測定して図6、図7に示すような変動特性を求める。
【0035】
まず、基準となる既知の測定対象の温度をT0(測定対象基準温度)とし、これをセンサ基準温度Ta0(温度センサ2の出力は基準抵抗値R0)で測定したときの出力をE0(センサ基準出力)とする。
【0036】
次にセンサ温度をセンサ基準温度Ta0(温度センサ2の出力は基準抵抗値R0)に固定し、測定対象の温度Txを変化させて、そのときのセンサ出力の変化ΔEの変化量を測定してプロットしたものが図6である。このようにして測定された図6のグラフは、横軸である赤外線センサ1の出力Eのセンサ基準出力E0からの差分ΔEが得られたときの測定温度への寄与ΔTx=g(ΔE)を示している。これはセンサ出力依存量に相当する。また、その図6の示すグラフの実験式として得られる関数gは、センサ出力に依存する変動特性であるので、センサ出力依存量算出情報に相当する。
【0037】
一方、測定対象の温度を測定対象基準温度T0に固定し、センサ温度Ta(このとき検出される温度センサ2の出力を抵抗値Rとする)を変化させて、そのときのセンサ出力の変化ΔEの変化量を測定してプロットしたものが図7である。このようにして測定された図7のグラフは、横軸である温度センサ2の出力Rの基準抵抗値R0(センサ基準温度Ta0における温度センサ2の出力)からの差分ΔRが得られたときのセンサ出力への寄与ΔE=f(ΔR)を示している。なお、図7では、縦軸はセンサ出力への寄与ΔEであるので、測定温度への寄与を求める場合には単位を温度に換算する必要がある。この関数fは、センサ温度に依存する変動特性であるので、センサ温度依存量算出情報に相当する。
【0038】
上記のような実験値を収集し、例えば最小2乗法等の方法を用いて図6または図7に示すような実験式を直線または2次式、あるいはさらに高次の多項式等で求めることができる。ただし、計算の複雑さによるCPU5の負荷を考慮すると、4次以下の多項式が好適である。これらの実験式は個々の放射体温計が持つ温度測定の検出特性を示すものであるが、基準点(E0,Ta0)からの相対値として求めているため、「変動特性」と呼ぶものである。
【0039】
放射体温計の調整時には、CPU5はこのようにして得られた変動特性を規定する係数をメモリ9に保持しておく(図6から得られる変動特性の係数がセンサ出力依存量算出情報であり、図7から得られる変動特性の係数を測定温度に単位換算したものがセンサ温度依存量算出情報に相当する)。
【0040】
測定対象の測定対象温度の測定段階では、CPU5はまず、赤外線センサ1のセンサ出力Eおよび温度センサ2の出力Rの基準点(E0,R0)からの相対値を求める。次にメモリ9に保持したセンサ出力依存量算出情報とセンサ温度依存量算出情報とから基準とした測定対象基準温度T0に対する変化量であるセンサ出力依存量とセンサ温度依存量とを計算し、測定対象の測定対象温度Txを算出することができる。
【0041】
<放射体温計の動作例>
次に上記のように構成した放射体温計の全体の動作例を図2のフローチャートを用いて説明する。
【0042】
まず、電源スイッチ1をONにすると(ステップ101(以下S101と略す))、CPU5が調整時の赤外線センサ1のセンサ基準出力E0をメモリ9から読み出す(S102)。次にCPU5は調整時のセンサ基準温度Ta0における温度センサ2の出力(基準抵抗値)R0をメモリ9から読み出す(S103)。さらにCPU5は調整時の測定対象基準温度T0をメモリ9から読み出す(S104)。
【0043】
この状態で放射体温計の図示しないプローブが耳孔に挿入され、測定スイッチ8が押されると測定が開始され(S105)、CPU5は赤外線センサ1の出力E、温度センサ2の出力RをA/Dコンバータ4を通して取り込む(S106)。
【0044】
次にCPU5は温度センサ2の出力Rの基準抵抗値R0からの差分ΔRを算出する(S107)。次にCPU5は赤外線センサ1の出力Eのセンサ基準出力E0からの差分ΔEを算出する(S108)。次にCPU5は図7の結果から求めた実験式に従い、温度センサ2の出力の差分ΔRからセンサ温度依存量E1=f(ΔR)を求める(S109)。さらにCPU5は赤外線センサ1の出力の差分ΔEからセンサ出力依存量g(ΔE)を求め、これを温度センサ2によるセンサ温度依存量E1と加算し、これをE2とする(S110)。センサ温度依存量およびセンサ出力依存量の加算結果であるE2を温度に単位換算して測定温度変化量ΔTを求める(S111)。得られた測定対温度の相対変化量ΔTを測定対象基準温度T0に加算して測定対象の体温Txを得る(S112)。
【0045】
以上のように、調整時の測定対象基準温度T0からの相対量として測定対象の体温が測定されるので、赤外線センサ1や温度センサ2の絶対精度の影響を少なくすることが可能となり、個々のセンサの特性に依存せず安定して精度の高い放射体温計を提供することができる。これは図5〜図7において、実測した変動特性(図5の点線のグラフ100、図6の直線103および図7の直線104)上において、基準点(E0,Ta0)からの相対変化量(図5の矢印102に相当)を求めるものである。したがって、理論式(式1)で示す図5の直線101によって求める場合と比較して、係数Lに相当する検出感度および原点でのE軸のずれの双方をともに正確に調整することが可能になる。
【0046】
<変形例>
本実施の形態では、測定対象の体温の相対変化量ΔTを求める際、一旦温度センサ2の出力の差分ΔRを赤外線センサ1の出力変化E1に換算したが、これは単に単位を換算するための一例であって、本発明はこの処理に限定されるものではない。例えば、赤外線センサ1の出力の差分ΔEおよび温度センサ2の出力の差分ΔRを直接測定対象の相対温度変化に単位換算し、各々を測定対象基準温度T0に加算して体温Txを得ることができる((式3)通りの算出方法)。
【0047】
すなわち、本発明は、各単位を同一にした上で赤外線センサ1の出力の差分ΔEによる寄与および温度センサ2の出力の差分ΔRによる寄与を加算し、最終的に測定対象基準温度T0に対する相対変化量を求めればよいのであって、単位換算の順序によって限定されるものではない。
【0048】
また、上記実施の形態では、調整点のデータ(T0, E0,Ta0)として1点のみ使用したが、複数の調整点におけるデータをメモリ9に保持し、測定対象に応じて選択して使用し、または、複数の調整点のデータ(T0, E0,Ta0)を組み合わせても構わない。
【0049】
なお、本実施の形態では、赤外線センサ1としてサーモパイルを使用したが、焦電センサを使用しても構わない。
【0050】
また、本実施の形態では温度センサ2としてサーミスタを用いたが、本発明の温度センサ2はサーミスタに限定されるものではなく、他の測温抵抗材料(抵抗の温度係数が既知の金属材料),ダイオード等の半導体センサ,あるいは熱電対を使用することもできる。
【0051】
また、本実施の形態では温度センサ2を直接A/Dコンバータ4で変換しているが、温度センサ2の出力が微弱な場合は、予め増幅器により増幅してもよい。
【0052】
実施の形態1は、本発明をプローブを構成要素として備える体温計に適用したものであるが、本発明の実施はこれに限らない。例えば、地熱温度の測定や外気にさらされた状態での特定の測定対象からの赤外線放射に基づき温度を測定する場合のように体温以外の測定においても本発明を実施できる。要するに本発明のは、各センサが信号を検出するための物理的構成に限定されるものではなく、各センサから取り込まれた信号を処理する作用において特徴を有する。
【0053】
(実施の形態2)
実施の形態1の放射体温計は、赤外線センサ1および温度センサ2の双方の出力について、基準値からの差分を求めて、これに基づき測定対象基準温度T0に対するセンサ温度依存量およびセンサ出力依存量を算出して測定対象の体温を求める。
【0054】
一方、本発明では、センサ温度またはセンサ出力のいずれか一方のみを上述のような基準値からの変化量で求め、他方は従来の測定によって求めてもよい。すなわち、測定対象を測定する際の前記センサ温度測定部が測定するセンサ温度の前記センサ基準温度に対する差分から前記センサ温度依存量算出情報によって算出される相対センサ温度依存量と、前記赤外線センサ1のセンサ出力とに基づいて測定対象の体温を測定するものでもよい。
【0055】
この関係は以下の(式4)によって示される。
【0056】
ここでT(Ta,E):(式1)またはステファン・ボルツマン(Stefan-Boltzmann)の法則に則った、測定対象の体温を求める式である。例えば、理論式として(式1)を使用する場合、
T(Ta,E)=(E/L + Ta4)1/4である。
【0057】
Ta0:赤外線センサ1のセンサ基準温度である。
【0058】
ΔTa:赤外線センサ1のセンサ温度のセンサ基準温度からの差分である。
【0059】
f(ΔTa,E):相対センサ温度依存量である。関数fがEに大きく依存しない場合にセンサ出力EをE0に固定したf(ΔTa,E0)を用いることができるので特定の温度を有する基準となる測定対象からの赤外線を、複数点の異なるセンサ温度において検出した際の前記赤外線センサ1のセンサ出力とそのセンサ温度との関係に基づいて実験的に求めることができる。
【0060】
さらに、上記した(式4)においてセンサ温度Taを温度センサ2であるサーミスタの出力Rに書き換えた(式5)を示す。本実施の形態の放射体温計は、CPU5が制御プログラムを実行して、この(式5)に従い体温を算出するものである。ただし、相対センサ温度依存量f(ΔR,E0)は“f(ΔR)"で表す。
【0061】
体温Tx≒T(R0,E) + f(ΔR) (式5)
実施の形態2はCPU5によって実行される制御プログラム以外の構成および作用については実施の形態1と同一であり、必要に応じて図1を用いて説明する。また、本実施の形態でも、調整時において温度センサ2をセンサ基準温度Ta0(このとき温度センサ2の出力は基準抵抗値R0)において、測定対象基準温度T0の測定対象を測定して赤外線センサ1のセンサ基準出力E0を得ているものとする。
【0062】
図3は、本発明の実施の形態2を示すフローチャートである。図3に示すフローチャートの放射体温計でも実施の形態1と同様、電源スイッチ1がONになると(S121)、CPU5は調整時の温度センサ2の出力R0をメモリから読み出す(S122)。
【0063】
この状態で図示しないプローブが耳孔に挿入され、測定スイッチ8が押されると測定が開始される(S123)。まず、赤外線センサ1の出力E、温度センサ2の出力RがA/Dコンバータ4を通してCPU5に取り込まれる(S124)。
【0064】
次に温度センサ2の出力Rの基準抵抗値R0からの差分ΔRを算出する(S125)。さらに図7の結果から求めた変動特性(センサ温度依存量算出情報に相当する)を使用し、温度センサ2の出力の差分ΔRからセンサ温度依存量E1=f(ΔR)を求める(S127)。さらに赤外線センサ1の出力EからT(R0,E)を求め、上記センサ温度依存量E1を加算して測定量E2を求める(S128)。E2を温度に換算して測定対象の体温Txを得る。
【0065】
(実施の形態3)
上記実施の形態2の放射体温計は、温度センサ2の出力Rの基準抵抗値R0に対する差分からセンサ温度依存量を求め、このセンサ温度依存量と赤外線センサ1のセンサ出力Eとによって測定対象の体温を測定するものである。一方、測定対象を測定する際の前記赤外線センサ1の検出するセンサ出力の前記センサ基準出力に対する差分から前記センサ出力依存量算出情報に基づいて算出した相対センサ出力依存量と、前記センサ温度測定部の測定するセンサ温度とに基づいて測定対象の体温を測定してもよい。
【0066】
この関係は以下の(式6)によって示される。
【0067】
ここでE0:赤外線センサ1のセンサ基準出力である。
【0068】
ΔE:センサ出力のセンサ基準出力からの差分である。
【0069】
g(Ta,ΔE):相対センサ出力依存量である。関数gがTaに大きく依存しない場合にセンサ温度TaをTa0に固定したg(Ta0,ΔE)を用いることができるので、複数点の異なる測定対象温度における基準となる測定対象からの赤外線を、特定のセンサ温度において検出した際の前記赤外線センサ1のセンサ出力とその時の測定対象温度との関係に基づいて実験的に求めることができる。
【0070】
さらに(式6)においてセンサ温度Taを温度センサ2であるサーミスタの出力抵抗Rに書き換えた(式7)を示す(さらにTa0をR0に書き換えている)。本実施の形態の放射体温計では、CPU5が制御プログラムを実行して、この(式7)に従い体温を算出するものである。ただし、g(R0, ΔE)は、“g(ΔE)"で表す。
【0071】
体温Tx≒T(R,E0) + g(ΔE) (式7)
CPU5の実行する制御プログラム以外の構成および作用については実施の形態1と同一であり、必要に応じて図1を用いて説明する。また、本実施の形態でも、調整時において温度センサ2をセンサ基準温度Ta0(このとき温度センサ2の出力は基準抵抗値R0)において測定対象基準温度T0の測定対象を測定した際の赤外線センサ1のセンサ基準出力E0を得ているものとする。
【0072】
図4は、本発明の実施の形態3を示すフローチャートである。図4に示すフローチャートの放射体温計は、実施の形態1と同様、電源スイッチ1がONになると(S141)、CPU5は調整時の赤外線センサ1のセンサ基準出力E0をメモリ9から読み出す(S142)。
【0073】
この状態で放射体温計のプローブが耳孔に挿入され、測定スイッチ8が押されると測定が開始される(S143)。まず、CPU5が赤外線センサ1の出力E、温度センサ2の出力RをA/Dコンバータ4を通して取り込む(S144)。
【0074】
次にCPU5は赤外線センサ1の出力Eのセンサ基準出力E0からの差分ΔEを算出する(S146)。次にCPU5は温度センサ2の出力RからE1=T(R,E0)を求める(S147)。さらにCPU5は図6の結果から求めた変動特性(センサ出力依存量算出情報に相当する)を使用し、赤外線センサ1の出力の差分ΔEからセンサ出力依存量g(ΔE)を求め、E1に加算してE2を得る(S148)。さらにE2を温度に換算して体温Txを得る(S149)。最後の得られた体温を液晶ディスプレイに表示する(S150)。
【0075】
【発明の効果】
以上のように、本発明による放射体温計は、理論式に基づく絶対精度の向上によるのでなく、基準点から変化量を測定し、その変化量に基づく相対温度を算出するので、赤外線センサや温度センサの絶対精度に依存せず、正確な測定が可能となる。
【図面の簡単な説明】
【図1】本発明の実施の形態に係る放射体温計の構成を示すブロック図である。
【図2】実施の形態1に係る放射体温計の作用を示すフローチャートである。
【図3】実施の形態2に係る放射体温計の作用を示すフローチャートである。
【図4】実施の形態3に係る放射体温計の作用を示すフローチャートである。
【図5】放射温度計の検出特性の理論式及実測値を用いて本発明の測定原理を示すグラフである。
【図6】本発明の実施の形態のセンサ出力依存量の実験式を示す図である。
【図7】本発明の実施の形態のセンサ温度依存量の実験式を示す図である。
【図8】放射温度計の検出特性の理論式及実測値を示すグラフである。
【符号の説明】
1 赤外線センサ
2 温度センサ
3 増幅器
4 A/Dコンバータ
5 CPU
6 液晶ディスプレイ
100 実測値の例(放射体温計の変動特性)
101 理論式の直線
102 測定温度の変位(変動量)を示す矢印
103 放射体温計の変動特性
104 放射体温計の変動特性
Claims (9)
- 測定対象から放射される赤外線をセンサ出力として検出する赤外線センサと、この赤外線センサ自身の温度をセンサ温度として測定するセンサ温度測定部と、前記センサ出力と前記センサ温度とに基づいて測定対象の温度を測定対象温度として算出する制御手段とを備え、前記制御手段は、基準となる測定対象温度としての測定対象基準温度に係る情報と、基準となるセンサ温度としてのセンサ基準温度に係る情報と、前記測定対象基準温度を持つ前記測定対象から放射された赤外線を前記センサ基準温度を持つ赤外線センサで検出した際の基準となるセンサ出力としてのセンサ基準出力に係る情報とを保持し、前記センサ温度測定部によって測定されるセンサ温度と前記センサ基準温度に係る情報から得られるセンサ基準温度との差分としての第1の差分,前記赤外線センサによって検出されるセンサ出力と前記センサ基準出力に係る情報から得られるセンサ基準出力との差分としての第2の差分,及び前記測定対象基準温度に係る情報に基づいて測定対象の測定対象温度を算出する放射体温計。
- 前記制御手段は、予め測定された複数点の測定対象温度,センサ温度,及びセンサ出力の組み合わせによって特定される測定対象温度の変動特性を保持し、
前記保持した変動特性、前記第1の差分に依存する測定対象温度の変動量,前記第2の差分に依存する測定対象温度の変動量,および前記測定対象基準温度に係る情報に基づいて前記測定対象温度を算出する請求項1記載の放射体温計。 - 前記制御手段は、前記赤外線センサが特定の測定対象温度を有する測定対象からの赤外線を複数点の異なるセンサ温度にて夫々検出した際の各センサ出力とその時の各センサ温度との関係に基づいて求めたセンサ温度依存量算出情報と、前記赤外線センサが複数点の異なる測定対象温度を有する測定対象からの赤外線を特定のセンサ温度にて夫々検出した際の各センサ出力とその時の各測定対象温度との関係に基づいて求めたセンサ出力依存量算出情報とをさらに保持し、前記第1の差分と前記センサ温度依存量算出情報とに基づいて算出される相対センサ温度依存量,前記第2の差分と前記センサ出力依存量算出情報とに基づいて算出される相対センサ出力依存量,及び前記測定対象基準温度に係る情報に基づいて測定対象の測定対象温度を算出する請求項1記載の放射体温計。
- 測定対象から放射される赤外線をセンサ出力として検出する赤外線センサと、この赤外線センサ自身の温度をセンサ温度として測定するセンサ温度測定部と、前記センサ出力と前記センサ温度とに基づいて測定対象の温度を測定対象温度として算出する制御手段とを備え、前記制御手段は、基準となるセンサ温度としてのセンサ基準温度に係る情報を保持し、前記センサ温度測定部によって測定されるセンサ温度と前記センサ基準温度に係る情報から得られるセンサ基準温度との差分,及び前記赤外線センサによって検出されるセンサ出力に基づいて測定対象の測定対象温度を算出する放射体温計。
- 前記制御手段は、予め測定された複数点の測定対象温度,センサ温度,及びセンサ出力の組み合わせによって特定される測定対象温度の変動特性を保持し、
前記保持した変動特性、前記センサ温度測定部によって測定されるセンサ温度と前記センサ基準温度に係る情報から得られるセンサ基準温度との差分に依存する測定対象温度の変動量,及び前記赤外線センサによって検出されるセンサ出力に基づいて測定対象の測定対象温度を算出する請求項4記載の放射体温計。 - 前記制御手段は、前記赤外線センサが特定の測定対象温度を有する測定対象からの赤外線を複数点の異なるセンサ温度にて夫々検出した際の各センサ出力とその時の各センサ温度との関係に基づいて求めたセンサ温度依存量算出情報をさらに保持し、前記センサ温度測定部によって測定されるセンサ温度と前記センサ基準温度に係る情報から得られるセンサ基準温度との差分と前記センサ温度依存量算出情報とに基づいて算出される相対センサ温度依存量,及び前記赤外線センサによって検出されるセンサ出力に基づいて測定対象の測定対象温度を算出する請求項4記載の放射体温計。
- 測定対象から放射される赤外線をセンサ出力として検出する赤外線センサと、この赤外線センサ自身の温度をセンサ温度として測定するセンサ温度測定部と、前記センサ出力と前記センサ温度とに基づいて測定対象の温度を測定対象温度として算出する制御手段とを備え、前記制御手段は、基準となる測定対象温度の測定対象から放射される赤外線を基準となるセンサ温度を持つ赤外線センサで検出した際の基準となるセンサ出力としてのセンサ基準出力に係る情報を保持し、前記赤外線センサによって検出されるセンサ出力と前記センサ基準出力に係る情報から得られるセンサ基準出力との差分,及び前記センサ温度測定部によって測定されるセンサ温度に基づいて測定対象の測定対象温度を測定する放射体温計。
- 前記制御手段は、予め測定された複数点の測定対象温度,センサ温度,及びセンサ出力の組み合わせによって特定される測定対象温度の変動特性を保持し、前記赤外線センサによって検出されるセンサ出力と前記センサ基準出力に係る情報から得られるセンサ基準出力との差分による測定対象温度の変動量,及び前記センサ温度測定部によって測定されるセンサ温度に基づいて測定対象の測定対象温度を測定する請求項7記載の放射体温計。
- 前記制御手段は、前記赤外線センサが複数点の異なる測定対象温度を有する測定対象からの赤外線を特定のセンサ温度にて夫々検出した際の各センサ出力とその時の各測定対象温度との関係に基づいて求めたセンサ出力依存量算出情報をさらに保持し、前記赤外線センサによって検出されるセンサ出力と前記センサ基準出力に係る情報から得られるセンサ基準出力との差分と前記センサ出力依存量算出情報とに基づいて算出される相対センサ出力依存量,及び前記センサ温度測定部によって測定されるセンサ温度に基づいて測定対象の測定対象温度を算出する請求項7記載の放射体温計。
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17333699A JP3873528B2 (ja) | 1999-06-18 | 1999-06-18 | 放射体温計 |
EP00112812A EP1061348B1 (en) | 1999-06-18 | 2000-06-16 | Radiation thermometer |
EP04021009A EP1489396A1 (en) | 1999-06-18 | 2000-06-16 | Radiation thermometer |
EP04021010A EP1489397A1 (en) | 1999-06-18 | 2000-06-16 | Radiation thermometer |
ES00112812T ES2254074T3 (es) | 1999-06-18 | 2000-06-16 | Termometro de radiacion. |
DE60025662T DE60025662T2 (de) | 1999-06-18 | 2000-06-16 | Strahlungsthermometer |
US09/597,690 US6609824B1 (en) | 1999-06-18 | 2000-06-19 | Radiation thermometer |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17333699A JP3873528B2 (ja) | 1999-06-18 | 1999-06-18 | 放射体温計 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2001004451A JP2001004451A (ja) | 2001-01-12 |
JP3873528B2 true JP3873528B2 (ja) | 2007-01-24 |
Family
ID=15958551
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP17333699A Expired - Lifetime JP3873528B2 (ja) | 1999-06-18 | 1999-06-18 | 放射体温計 |
Country Status (5)
Country | Link |
---|---|
US (1) | US6609824B1 (ja) |
EP (3) | EP1061348B1 (ja) |
JP (1) | JP3873528B2 (ja) |
DE (1) | DE60025662T2 (ja) |
ES (1) | ES2254074T3 (ja) |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7036978B2 (en) * | 2000-06-13 | 2006-05-02 | Omron Corporation | Pyrometer |
US7014358B2 (en) * | 2001-02-19 | 2006-03-21 | Braun Gmbh | Radiation thermometer comprising a heated measuring tip |
US7140768B2 (en) * | 2002-07-15 | 2006-11-28 | Cold Chain Technologies, Inc. | System and method of monitoring temperature |
US7507019B2 (en) * | 2006-05-19 | 2009-03-24 | Covidien Ag | Thermometer calibration |
US7549792B2 (en) | 2006-10-06 | 2009-06-23 | Covidien Ag | Electronic thermometer with selectable modes |
DE102008031406B4 (de) * | 2008-07-02 | 2015-12-31 | Frank Schmidt | Empfängervorrichtung, Verwendung einer Empfängervorrichtung, System sowie Verfahren zum energiearmen Empfang von Daten |
CN101596102B (zh) * | 2009-07-03 | 2011-10-12 | 中山市创源电子有限公司 | 一种快速测量耳温枪 |
JP6318599B2 (ja) * | 2013-12-17 | 2018-05-09 | 株式会社リコー | 半導体集積回路 |
CN104068832A (zh) * | 2014-06-20 | 2014-10-01 | 京东方科技集团股份有限公司 | 一种体表温度计及可佩戴显示装置 |
EP3312579B1 (en) * | 2016-10-19 | 2022-09-14 | Melexis Technologies NV | Infrared sensor for measuring ambient air temperature |
CN110974186B (zh) * | 2018-10-02 | 2022-08-30 | 希尔-罗姆服务公司 | 用于确定目标区域温度变化的温度监测系统和方法 |
CN112097922A (zh) * | 2020-09-22 | 2020-12-18 | 深圳铯敏发科技有限公司 | 一种基于热电堆红外测温模组 |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
USRE34507E (en) * | 1988-04-12 | 1994-01-11 | Citizen Watch Co., Ltd. | Radiation clinical thermometer |
US5012813A (en) * | 1988-12-06 | 1991-05-07 | Exergen Corporation | Radiation detector having improved accuracy |
DE69120558T2 (de) * | 1990-03-12 | 1997-02-06 | Ivac Corp | System zur Temperaturbestimmung und Kalibrierung in einem biomedizinischen Thermometer |
RU2118116C1 (ru) * | 1990-12-12 | 1998-08-27 | Шервуд Медикал Кампани | Термометр для измерения температуры тела и способ измерения температуры тела пациента (варианты) |
WO1993003666A1 (en) * | 1991-08-20 | 1993-03-04 | Diatek, Incorporated | Infrared thermometer and related method of calibration |
CN1168090A (zh) * | 1995-11-13 | 1997-12-17 | 西铁城钟表股份有限公司 | 辐射体温计 |
DE19613229C2 (de) * | 1996-04-02 | 1999-01-28 | Braun Ag | Verfahren zur Kalibrierung eines Strahlungsthermometers |
JP3805039B2 (ja) * | 1996-11-14 | 2006-08-02 | シチズン時計株式会社 | 放射体温計 |
AU7807898A (en) * | 1997-06-03 | 1998-12-21 | Trutek, Inc. | Tympanic thermometer with modular sensing probe |
-
1999
- 1999-06-18 JP JP17333699A patent/JP3873528B2/ja not_active Expired - Lifetime
-
2000
- 2000-06-16 EP EP00112812A patent/EP1061348B1/en not_active Expired - Lifetime
- 2000-06-16 EP EP04021009A patent/EP1489396A1/en not_active Withdrawn
- 2000-06-16 EP EP04021010A patent/EP1489397A1/en not_active Ceased
- 2000-06-16 DE DE60025662T patent/DE60025662T2/de not_active Expired - Lifetime
- 2000-06-16 ES ES00112812T patent/ES2254074T3/es not_active Expired - Lifetime
- 2000-06-19 US US09/597,690 patent/US6609824B1/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JP2001004451A (ja) | 2001-01-12 |
DE60025662D1 (de) | 2006-04-13 |
EP1061348A3 (en) | 2003-08-13 |
ES2254074T3 (es) | 2006-06-16 |
EP1061348A2 (en) | 2000-12-20 |
EP1489397A1 (en) | 2004-12-22 |
EP1061348B1 (en) | 2006-01-25 |
US6609824B1 (en) | 2003-08-26 |
EP1489396A1 (en) | 2004-12-22 |
DE60025662T2 (de) | 2006-10-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101779761B1 (ko) | 거리 측정 센서를 이용한 온도 보정 체온계 및 방법 | |
WO1999015866A1 (fr) | Thermometre de mesure du rayonnement et procede de reglage | |
JP2826337B2 (ja) | 放射体温計 | |
JP4214124B2 (ja) | 耳式体温計 | |
JP3333353B2 (ja) | 温度測定装置 | |
KR102113121B1 (ko) | 거리 감지 및 보상을 갖는 비-접촉식 의료용 체온계 | |
KR101704222B1 (ko) | 열전대를 이용한 온도 측정 장치의 온도 드리프트 보정 방법 | |
JP3873528B2 (ja) | 放射体温計 | |
JP2603004B2 (ja) | 温度測定装置及び温度信号の提供方法 | |
US20040057494A1 (en) | Ear thermometer with improved temperature coefficient and method of calibration thereof | |
JP3040444B2 (ja) | 体温計 | |
JP2003070750A (ja) | 耳式体温計の温度補正装置 | |
JPH06142063A (ja) | 放射体温計 | |
JP5682822B2 (ja) | 温度ドリフト補正装置 | |
JPH03273121A (ja) | 放射体温計 | |
JP3733846B2 (ja) | 補正システムの制御方法、測温計および補正装置 | |
JPH11281489A (ja) | 温度計及び温度測定方法 | |
JP3175775B2 (ja) | 放射温度計の温度測定方法及び放射温度計 | |
RU2727564C1 (ru) | Самокалибрующийся датчик температуры | |
JP2000310565A (ja) | 放射温度計の経時変化の校正方法及び放射温度計 | |
JPH09126896A (ja) | サーモパイルの温度補償方法 | |
JP2001000400A (ja) | 放射温度計 | |
JPH07280650A (ja) | 放射温度計 | |
JP2002214045A (ja) | 赤外線体温計 | |
JPH0862047A (ja) | 温度測定装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20040402 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20041102 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20041228 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20050531 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060523 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060724 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20061003 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20061016 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 3873528 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101102 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101102 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111102 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121102 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121102 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131102 Year of fee payment: 7 |
|
EXPY | Cancellation because of completion of term |