[go: up one dir, main page]

JP3871071B2 - Fabrication method of fiber reinforced metal products - Google Patents

Fabrication method of fiber reinforced metal products Download PDF

Info

Publication number
JP3871071B2
JP3871071B2 JP00044996A JP44996A JP3871071B2 JP 3871071 B2 JP3871071 B2 JP 3871071B2 JP 00044996 A JP00044996 A JP 00044996A JP 44996 A JP44996 A JP 44996A JP 3871071 B2 JP3871071 B2 JP 3871071B2
Authority
JP
Japan
Prior art keywords
metal
fiber
lid
block
machining
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP00044996A
Other languages
Japanese (ja)
Other versions
JPH09184032A (en
Inventor
則光 亀谷
幹也 荒井
Original Assignee
石川島播磨重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 石川島播磨重工業株式会社 filed Critical 石川島播磨重工業株式会社
Priority to JP00044996A priority Critical patent/JP3871071B2/en
Publication of JPH09184032A publication Critical patent/JPH09184032A/en
Application granted granted Critical
Publication of JP3871071B2 publication Critical patent/JP3871071B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Manufacture Of Alloys Or Alloy Compounds (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は繊維で強化した金属製品の製作方法に関する。
【0002】
【従来の技術】
金属に人工的に繊維を付与した繊維強化型金属基複合材料(Fiber Reinforced Metals ; FRM)が現在注目されている。繊維としては炭素繊維、炭化ケイ素繊維SiCなどが用いられ、これらは1000℃を越えても強度が低下しない。マトリックス金属としては軽量化を目的とするFRMの場合は、アルミニウムAl,マグネシウムMgが中心となる。より耐熱性を要求されるものはチタンTiを用いる。Ti基のFRMの場合、母材Ti基合金の耐熱温度にもよるが、耐熱温度は400℃程度となる。このようにFRMは強度、耐熱性などに優れているので、ジェットエンジンやガスタービンの動翼などに使用する研究が行われている。
【0003】
図2はFRMによりジェットエンジンの動翼を製作するフロー図である。素材としてチタンTi箔と炭化ケイ素SiC繊維を用いる。Ti箔とSiC繊維を翼の形に成形しやすいような形に切断する。次にこれらを交互に積層した後、真空ホットプレス法によりプレスする。ホットプレス法(Hot Pressing) とはこの場合、黒鉛およびセラミックス型の中へ金属箔、繊維などの混合物を挿入し上下から加圧して金属箔どうしを拡散融合させる方法である。この後、クリープ変形させて動翼の形にし、動翼の台座を付けた後、機械加工、ケミカルミーリング(化学的仕上げ)を行い、動翼として完成させる。
【0004】
【発明が解決しようとする課題】
上記製作方法では、翼の形状をクリープ変形により形成しているが、繊維が弾性体であるためねじれが戻ってしまい正確な翼形状を得ることが困難である。また、最も強度と信頼性が必要な翼と台座の取合部分を接合しているので離れる恐れがある。また繊維は強度は大きいが衝撃荷重に対しては脆い。ジェットエンジンやガスタービンなどの動翼には異物が衝突する場合があり、耐衝撃性が要求される。
【0005】
本発明は、上述の問題点に鑑みてなされたもので、精度よく機械加工することが可能で、翼と台座は一体で構成され、かつ耐衝撃性に優れたFRM製品を製造する方法を提供することを目的とする。
【0006】
【課題を解決するための手段】
上記目的を達成するため、請求項1の発明では、製作対象物より小さな空間を有する金属ブロックと、その空間を覆う金属製の蓋を作成し、前記空間に金属箔と繊維を交互に積層し、前記蓋で覆った後、HIP法で融合し、機械加工により前記金属ブロックおよびその蓋の金属を周囲に残した状態で製作対象物の形状に切削する。
【0007】
請求項1の発明では、金属ブロックの中に金属箔と繊維が交互に積層されてFRMを形成している。機械加工は金属ブロックおよび蓋の範囲までしか行わないので繊維の端部は露出しない。このため機械加工は金属のみに対して行われるので切削が容易であり、精度よく加工できる。また衝撃に脆い繊維は露出しておらず、衝撃は繊維と金属箔を包む金属で吸収するため耐衝撃性は向上する。
【0008】
請求項2の発明では、前記機械加工後に更に製作対象物の金型を用いてホットプレスする。
【0009】
請求項2の発明では、請求項1の発明で機械加工後、歪みが解放されてわずかに変形が生じた場合、製作対象物を金型に入れてホットプレスすることにより金型に合った正確な形状に製作することができる。この場合変形が小さいのでクリープによる形状修正は可能である。
【0010】
請求項3の発明では、前記製作対象物を動翼とし、前記金属ブロック、前記蓋、および前記金属箔をチタンで構成し、前記繊維を炭化ケイ素とする。
【0011】
請求項3の発明では、製作対象物を動翼とし、Ti箔、SiC繊維を交互に積層し、金属ブロック、蓋をTiで構成することにより、耐熱性、耐衝撃性に優れ、正確な形状に機械加工された動翼を得ることができる。
【0012】
【発明の実施の形態】
以下、本発明の実施の形態を図面を参照して説明する。
図1は本実施の形態の動翼製作フロー図である。製作対象物としては耐熱性、耐衝撃性および大きな比強度を要求されるジェットエンジンまたはガスタービンの動翼とする。動翼は耐熱性、空気中の異物などが衝突するため耐衝撃性を要求される上、軽量にするため比強度(単位面積当たりの強度をその単位重量で割った値)を大きくする必要がある。このためTi箔、SiC繊維を用い、金属ブロックおよびその蓋はTiで構成する。
【0013】
図1において、金属ブロック成形工程ではTiブロック1を成形する。Tiブロック1は動翼の粗削りの形状とし、動翼より小さな空間2を彫り込む。次に蓋成形工程では、この空間2を覆いTiブロック1の上面の形状に合わせたTi製の蓋3を成形する。蓋3の厚みは加工代を考慮し4mm程度の厚みを確保する。切断工程ではSiC繊維4およびTi箔5を空間2および動翼の形状に合わせた形状に切断する。積層工程では空間2にSiC繊維4とTi箔5を交互に積層した後、蓋3をTiブロック1にエレクトロンビームで溶接する。
【0014】
次にHIP工程で高温高圧のガス雰囲気中でTiブロック1,蓋3,SiC繊維4,Ti箔5を一体に融合する。HIP法とはHot Isostatic Pressing法のことで、この場合金属箔、繊維等の混合物を金属、石英ガラスなどのカプセルに封入するなどして、あらかじめ結合させて、高温高圧のガス雰囲気中で金属箔どうしを拡散融合させる方法である。機械加工工程で動翼の形状に削り出す。切削はTiブロック1と蓋3の範囲で行い、SiC繊維4およびTi箔5まで切削しないように設計されている。このためチタン金属部分の切削なので正確な形状に切削できる。動翼の厚みが薄い場合、機械加工により融合時の歪みが解放されて変形する場合がある。このようなときは、動翼の金型6を作成し、ホットプレスによる最終成形工程を設ける。この最終成形工程は機械加工により変形した場合なので、常に必要な工程ではない。最終仕上げ工程としてケミカルミーリングにより表面を仕上げる。検査により所定の水準の動翼を得る。
【0015】
実施例では動翼を例にとり説明したが、動翼に限らず、FRMの複合材料を用いた製品の製作には適用できる。また金属箔、ブロック、蓋にはチタンを用い、繊維には炭化ケイ素を用いた場合を説明したが、これらは製品の用途に応じ適宜変えればよい。なお、金属ブロック、蓋、金属箔は同種類の金属としたが、同一種類でなくともよい。
【0016】
【発明の効果】
以上の説明より明らかなように、本発明は、金属箔と繊維を交互に配置してFRMを構成するが、この金属箔と繊維の積層部を金属で包み、機械加工はこの包んだ金属部分について行われるので加工性がよく、正確な形状に切削加工することができる。また本発明により製作された製品は、衝撃荷重に弱い積層部が露出せず、衝撃荷重に強い金属で覆われているので、耐衝撃性に優れている。
【図面の簡単な説明】
【図1】実施例のFRMブレード製作フロー図である。
【図2】従来行われているクリープ変形法によるFRMブレード製作フロー図である。
【符号の説明】
1 Tiブロック
2 空間
4 SiC繊維
5 Ti箔
6 金型
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method of manufacturing a metal product reinforced with fibers.
[0002]
[Prior art]
Currently, fiber reinforced metal matrix composites (FRM) in which fibers are artificially imparted to metals are attracting attention. As the fiber, carbon fiber, silicon carbide fiber SiC or the like is used, and the strength does not decrease even when the temperature exceeds 1000 ° C. In the case of the FRM intended for weight reduction as the matrix metal, aluminum Al and magnesium Mg are mainly used. Titanium Ti is used for those requiring higher heat resistance. In the case of Ti-based FRM, the heat-resistant temperature is about 400 ° C., although it depends on the heat-resistant temperature of the base material Ti-based alloy. As described above, FRM is excellent in strength, heat resistance, and the like, and researches are being conducted for use in jet engines, moving blades of gas turbines, and the like.
[0003]
FIG. 2 is a flowchart for producing a moving blade of a jet engine by FRM. Titanium Ti foil and silicon carbide SiC fiber are used as materials. Ti foil and SiC fiber are cut into a shape that makes it easy to form a wing shape. Next, after laminating them alternately, they are pressed by a vacuum hot press method. In this case, the hot pressing method is a method in which a mixture of metal foil and fiber is inserted into a graphite and ceramic mold and pressed from above and below to diffuse and fuse the metal foils together. After that, creep deformation is performed to form a moving blade, and after attaching a moving blade base, machining and chemical milling (chemical finishing) are performed to complete the moving blade.
[0004]
[Problems to be solved by the invention]
In the above manufacturing method, the shape of the wing is formed by creep deformation. However, since the fiber is an elastic body, the twist is returned and it is difficult to obtain an accurate wing shape. Moreover, since the joint part of the wing | blade and pedestal which needs the strongest and reliability is joined, there exists a possibility of leaving | separating. In addition, the fiber has high strength but is brittle with respect to impact load. Foreign matter may collide with a moving blade such as a jet engine or a gas turbine, and impact resistance is required.
[0005]
The present invention has been made in view of the above-mentioned problems, and can provide a method for manufacturing an FRM product that can be machined with high accuracy, the wing and the pedestal are integrally formed, and has excellent impact resistance. The purpose is to do.
[0006]
[Means for Solving the Problems]
To achieve the above object, in the invention of claim 1, alternating with metal block having between a small than fabricated object empty, creating a metal lid covering the space, a metal foil and a fiber into the space After being laminated and covered with the lid, they are fused by the HIP method, and are cut into the shape of the object to be manufactured with the metal block and the metal of the lid left around by machining.
[0007]
In invention of Claim 1, metal foil and a fiber are laminated | stacked alternately in a metal block, and FRM is formed. Since the machining is done only up to the metal block and lid, the end of the fiber is not exposed. For this reason, since machining is performed only on metal, cutting is easy and processing can be performed with high accuracy. Further, fibers that are brittle to impact are not exposed, and the impact is absorbed by the metal that wraps the fibers and the metal foil, so the impact resistance is improved.
[0008]
According to a second aspect of the present invention, after the machining, hot pressing is further performed using a mold of an object to be manufactured.
[0009]
In the second aspect of the present invention, when the distortion is released after the machining in the first aspect of the invention and a slight deformation occurs, the manufacturing object is placed in the mold and hot pressed to accurately match the mold. Can be manufactured in any shape. In this case, since the deformation is small, the shape can be corrected by creep.
[0010]
According to a third aspect of the present invention, the object to be manufactured is a moving blade, the metal block, the lid, and the metal foil are made of titanium, and the fiber is silicon carbide.
[0011]
In the invention of claim 3, the manufacturing object is a moving blade, Ti foils and SiC fibers are alternately laminated, and the metal block and the lid are made of Ti, so that it has excellent heat resistance and impact resistance and has an accurate shape. Can be obtained.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a flow chart for manufacturing a moving blade according to the present embodiment. The object to be manufactured is a moving blade of a jet engine or a gas turbine that requires heat resistance, impact resistance, and large specific strength. Rotor blades are required to have high heat resistance and impact resistance due to the impact of foreign objects in the air, and the specific strength (strength per unit area divided by unit weight) must be increased to reduce weight. is there. For this reason, Ti foil and SiC fiber are used, and the metal block and its lid are made of Ti.
[0013]
In FIG. 1, a Ti block 1 is formed in the metal block forming step. The Ti block 1 has a rough shape of a moving blade and engraves a space 2 smaller than the moving blade . Next, in the lid forming step, a Ti lid 3 that covers this space 2 and matches the shape of the upper surface of the Ti block 1 is formed. The lid 3 has a thickness of about 4 mm in consideration of the machining allowance. In the cutting step, the SiC fiber 4 and the Ti foil 5 are cut into a shape that matches the shape of the space 2 and the moving blade. In the laminating step, SiC fibers 4 and Ti foils 5 are alternately laminated in the space 2 and then the lid 3 is welded to the Ti block 1 by an electron beam.
[0014]
Next, in the HIP process, the Ti block 1, the lid 3, the SiC fiber 4, and the Ti foil 5 are integrally fused in a high-temperature and high-pressure gas atmosphere. The HIP method is a hot isostatic pressing method. In this case, a metal foil, fiber, etc. mixture is encapsulated in a capsule of metal, quartz glass, etc. and bonded in advance, and the metal foil in a high-temperature and high-pressure gas atmosphere. It is a method to diffuse and fuse together. Cutting into the shape of a moving blade in the machining process. Cutting is performed in the range of the Ti block 1 and the lid 3, and the SiC fiber 4 and the Ti foil 5 are not cut. For this reason, since the titanium metal portion is cut, it can be cut into an accurate shape. When the thickness of the moving blade is thin, the distortion at the time of fusion may be released by machining to be deformed. In such a case, a moving blade mold 6 is prepared and a final forming step by hot pressing is provided. Since this final forming process is a case where it is deformed by machining, it is not always a necessary process. The surface is finished by chemical milling as the final finishing process. A predetermined level of blade is obtained by inspection.
[0015]
In the embodiments, the description has been given by taking the moving blade as an example, but the present invention is not limited to the moving blade, and can be applied to manufacture of a product using a composite material of FRM. Moreover, although the case where titanium was used for metal foil, a block, and a lid | cover and the silicon carbide was used for the fiber was demonstrated, these should just change suitably according to the use of a product. In addition, although the metal block, the lid, and the metal foil are the same type of metal, they need not be the same type.
[0016]
【The invention's effect】
As is clear from the above description, in the present invention, the metal foil and the fiber are alternately arranged to constitute the FRM, and the laminated portion of the metal foil and the fiber is wrapped with metal, and machining is performed on the wrapped metal part. Therefore, it is easy to process and can be cut into an accurate shape. Further, the product manufactured according to the present invention is excellent in impact resistance because the laminated portion that is weak against impact load is not exposed and is covered with a metal that is strong against impact load.
[Brief description of the drawings]
FIG. 1 is a flowchart of manufacturing an FRM blade according to an embodiment.
FIG. 2 is a flowchart of manufacturing an FRM blade by a conventional creep deformation method.
[Explanation of symbols]
1 Ti block 2 Space 4 SiC fiber 5 Ti foil 6 Mold

Claims (3)

製作対象物より小さな空間を有する金属ブロックと、その空間を覆う金属製の蓋を作成し、
前記空間に金属箔と繊維を交互に積層し、前記蓋で覆った後、HIP法で融合し、
機械加工により前記金属ブロックおよびその蓋の金属を周囲に残した状態で製作対象物の形状に切削することを特徴とする繊維強化金属製品製作方法。
Create a metal block having between a small than fabricated object empty, the metal lid that covers the space,
After alternately laminating metal foil and fibers in the space, covering with the lid, and fusing by HIP method,
A method for producing a fiber-reinforced metal product, characterized in that the metal block and its lid metal are cut by machining to a shape of a production object.
前記機械加工後に更に製作対象物の金型を用いてホットプレスすることを特徴とする請求項1記載の繊維強化金属製品製作方法。  2. The method for producing a fiber reinforced metal product according to claim 1, further comprising hot pressing using a mold of an object to be produced after the machining. 前記製作対象物を動翼とし、前記金属ブロック、前記蓋、および前記金属箔をチタンで構成し、前記繊維を炭化ケイ素としたことを特徴とする請求項1または2記載の繊維強化金属製品製作方法。  3. The fiber-reinforced metal product manufacture according to claim 1, wherein the object to be manufactured is a moving blade, the metal block, the lid, and the metal foil are made of titanium, and the fiber is silicon carbide. Method.
JP00044996A 1996-01-08 1996-01-08 Fabrication method of fiber reinforced metal products Expired - Fee Related JP3871071B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP00044996A JP3871071B2 (en) 1996-01-08 1996-01-08 Fabrication method of fiber reinforced metal products

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP00044996A JP3871071B2 (en) 1996-01-08 1996-01-08 Fabrication method of fiber reinforced metal products

Publications (2)

Publication Number Publication Date
JPH09184032A JPH09184032A (en) 1997-07-15
JP3871071B2 true JP3871071B2 (en) 2007-01-24

Family

ID=11474109

Family Applications (1)

Application Number Title Priority Date Filing Date
JP00044996A Expired - Fee Related JP3871071B2 (en) 1996-01-08 1996-01-08 Fabrication method of fiber reinforced metal products

Country Status (1)

Country Link
JP (1) JP3871071B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2925896B1 (en) * 2007-12-28 2010-02-05 Messier Dowty Sa PROCESS FOR MANUFACTURING A CERAMIC FIBER REINFORCED METAL PIECE
CN108176884B (en) * 2018-02-09 2019-01-11 西北工业大学 Multiple material blade inlet edge titanium alloy is reinforced synchronizing symmetrical milling method inside and outside side

Also Published As

Publication number Publication date
JPH09184032A (en) 1997-07-15

Similar Documents

Publication Publication Date Title
CN104364031B (en) The method manufacturing the metal reinforcement of the blade for turbine engine
US8782887B2 (en) Method for producing a metal insert to protect a leading edge made of a composite material
US3088192A (en) Method of joining turbine blade parts
US4867644A (en) Composite member, unitary rotor member including same, and method of making
CN103328150B (en) Manufacture the method for metal reinforcements
US3940268A (en) Method for producing rotor discs
US5511604A (en) Method for making a titanium metal matrix composite
GB2117799A (en) Composite ceramic metal components
JP6026439B2 (en) The process of manufacturing metal parts such as turbine engine blade reinforcement
US9321100B2 (en) Method for producing a metal reinforcement for a turbomachine blade
JP5909507B2 (en) Method for making metal parts such as reinforcements for turbine engine blades
EP2050519B1 (en) Shape Correcting Components
GB2306353A (en) A method of manufacturing a blade
JPH0891951A (en) Aluminum-silicon nitride bonded body and method for producing the same
JP2015520033A (en) Method for forming a metal reinforcement with an insert for protecting a composite leading edge
US9296072B2 (en) Method for manufacturing a metal part
US7343677B2 (en) Method of manufacturing a fiber reinforced metal matrix composite article
CN108603511A (en) Method for the component for manufacturing rotating machinery
JP3871071B2 (en) Fabrication method of fiber reinforced metal products
US8495810B2 (en) Process for manufacturing a metal part reinforced with ceramic fibres
JP3053125B2 (en) Stator with blade
GB2239214A (en) A sandwich structure and a method of manufacturing a sandwich structure
WO2014204534A1 (en) Titanium-aluminide components
GB2252930A (en) Braze bonding of oxidation-resistant foils
JPH07164592A (en) Hybrid composite material land its manufacture

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060713

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060907

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060928

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061011

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091027

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091027

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101027

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101027

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111027

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121027

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131027

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees