JP3868443B2 - Ultrasonic inspection method of metal material and manufacturing method of steel pipe - Google Patents
Ultrasonic inspection method of metal material and manufacturing method of steel pipe Download PDFInfo
- Publication number
- JP3868443B2 JP3868443B2 JP2004254420A JP2004254420A JP3868443B2 JP 3868443 B2 JP3868443 B2 JP 3868443B2 JP 2004254420 A JP2004254420 A JP 2004254420A JP 2004254420 A JP2004254420 A JP 2004254420A JP 3868443 B2 JP3868443 B2 JP 3868443B2
- Authority
- JP
- Japan
- Prior art keywords
- defect
- defects
- ultrasonic
- wave
- oscillated
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000007689 inspection Methods 0.000 title claims description 27
- 238000000034 method Methods 0.000 title claims description 26
- 229910000831 Steel Inorganic materials 0.000 title claims description 24
- 239000010959 steel Substances 0.000 title claims description 24
- 239000007769 metal material Substances 0.000 title claims description 10
- 238000004519 manufacturing process Methods 0.000 title claims description 9
- 230000007547 defect Effects 0.000 claims description 171
- 238000001514 detection method Methods 0.000 claims description 34
- 239000000463 material Substances 0.000 claims description 20
- 230000035945 sensitivity Effects 0.000 claims description 11
- 239000002184 metal Substances 0.000 claims description 4
- 238000012360 testing method Methods 0.000 claims description 4
- 238000002604 ultrasonography Methods 0.000 claims 2
- 230000000149 penetrating effect Effects 0.000 description 27
- 238000010187 selection method Methods 0.000 description 19
- 238000001028 reflection method Methods 0.000 description 17
- 235000013372 meat Nutrition 0.000 description 12
- 230000035515 penetration Effects 0.000 description 11
- 238000002788 crimping Methods 0.000 description 6
- 230000001186 cumulative effect Effects 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 230000010354 integration Effects 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 230000010355 oscillation Effects 0.000 description 3
- 238000007796 conventional method Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000003111 delayed effect Effects 0.000 description 2
- 238000002592 echocardiography Methods 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 238000009825 accumulation Methods 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Images
Landscapes
- Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
Description
本発明は、フェイズドアレイセンサー(以下、単に「アレイセンサー」という。)を用いた金属材の超音波検査法及びこの超音波検査法を製造工程に含む鋼管の製造方法に関するもので、従来法では検出できなかった微細な貫通状欠陥や肉厚の中央部に存在する縦方向の未圧着(以下、「肉中の未圧着」と言う。)を内外面欠陥と識別して検出することを可能としたものである。 The present invention relates to an ultrasonic inspection method of a metal material using a phased array sensor (hereinafter simply referred to as “array sensor”) and a steel pipe manufacturing method including the ultrasonic inspection method in a manufacturing process. It is possible to detect and detect fine penetrating defects that could not be detected and longitudinal non-crimping in the center of the wall thickness (hereinafter referred to as “non-crimping in the flesh”) as internal and external defects. It is what.
例えば鋼管の超音波検査では、図3(a)に示すように、鋼管1の表面に対して超音波2を斜めに入射させ、鋼管1もしくはセンサー3を傾斜させて全断面を検査する斜角探傷法が一般的に用いられている。なお、図3(a)中のθ1は入射角度、θ2は屈折角度を示す。
For example, in ultrasonic inspection of a steel pipe, as shown in FIG. 3 (a), an oblique angle in which the
この超音波斜角探傷法で得られる信号波形(−般に「Aスコープ」と称す)は、例えばカップリングに水を用いる水浸法では、図3(b)に示すように、時間軸上で、外表面で反射する表面エコーS、欠陥で反射する内面欠陥エコーF1と外面欠陥エコーF2の順に現れるが、これらの表面エコーSと内面欠陥エコーF1、外面欠陥エコーF2を識別するために、欠陥検出ゲ−トG1,G2を用いて選択的に信号を抽出している。 A signal waveform (generally referred to as “A scope”) obtained by this ultrasonic oblique flaw detection method is, for example, on the time axis as shown in FIG. 3B in the water immersion method using water for coupling. Thus, the surface echo S reflected on the outer surface, the inner surface defect echo F1 reflected on the defect, and the outer surface defect echo F2 appear in this order. In order to identify these surface echo S, the inner surface defect echo F1, and the outer surface defect echo F2, A signal is selectively extracted using the defect detection gates G1 and G2.
また、鋼管の斜角探傷法では、鋼管の肉厚tと外径Dの比率t/Dの影響を受け、t/Dが大きくなるにつれて内面欠陥に対する超音波の入射角度θ3が小さくなり、超音波の反射率が低下する。しかしながら、入射角度θ1を微調整すれば、内外面欠陥の信号の大きさを近づけることができる。 In addition, the oblique flaw detection method for steel pipes is affected by the ratio t / D between the thickness t of the steel pipe and the outer diameter D, and as the t / D increases, the incident angle θ3 of the ultrasonic wave with respect to the inner surface defect decreases. The reflectance of the sound wave decreases. However, if the incident angle θ1 is finely adjusted, the magnitude of the signal of the inner and outer surface defects can be made closer.
また、近年、超音波ビームの制御技術として、複数の振動子からなるアレイセンサーを用いて振動子の発振タイミングを遅延制御することで任意の角度に超音波を発振したり、多チャンネルのアレイセンサー中の特定のアレイセンサーを選択的に使用して機械的な段取り替えを自動化したり、電気的な走査を加えて検査領域の広い超音波ビームを作り、高能率もしくは高範囲の検査を可能としたりするものが採用されるようになってきている。このうちの一例として、ブロック選択法により超音波の伝播角度を電気的に調整する際の原理を図4に示す。 In recent years, as an ultrasonic beam control technology, an ultrasonic wave can be oscillated at an arbitrary angle by delay-controlling the oscillation timing of the transducer using an array sensor composed of a plurality of transducers, or a multi-channel array sensor. A specific array sensor is selectively used to automate mechanical changeover, or electrical scanning is applied to create an ultrasonic beam with a wide inspection area, enabling high-efficiency or high-range inspection. Or something that is going to be adopted. As an example of these, FIG. 4 shows the principle of electrically adjusting the ultrasonic wave propagation angle by the block selection method.
複数の振動子4を選択してその発振タイミングを遅延制御すれば、超音波の斜め発振が可能になる。図4では、4つの振動子4で形成したブロック5を2つ選択し、それぞれのブロック5ごとに振動子4の発振タイミングを遅延制御することで、ブロック5ごとに被検査材であるたとえば鋼管1に対して超音波2を斜めに発振し、たとえば外面欠陥6を検出するものを示している。
If a plurality of transducers 4 are selected and their oscillation timing is delayed, it is possible to oscillate ultrasonic waves obliquely. In FIG. 4, two
下記表1に、前記図4の場合における屈折角度θ2の影響の具体例を示すが、この表1の場合は、内外面の欠陥信号の差が最も小さい、屈折角度θ2が45°の場合が最適である。 Table 1 below shows a specific example of the influence of the refraction angle θ2 in the case of FIG. 4. In this case, the difference between the defect signals on the inner and outer surfaces is the smallest, and the refraction angle θ2 is 45 °. Is optimal.
この表1の探傷を行う際に校正に用いた人工欠陥は、軸方向の内外表面に加工された深さ0.2mmの軸方向欠陥であり、内外欠陥エコーともほぼ同等の信号の大きさが得られた。 The artificial defect used for calibration when performing the flaw detection shown in Table 1 is an axial defect with a depth of 0.2 mm processed on the inner and outer surfaces in the axial direction, and the signal magnitude is almost the same as that of the inner and outer defect echoes. Obtained.
ところで、前記人工欠陥は反射面積が比較的大きいので、超音波の反射率が大きく、図5に示した波形例のように、比較的容易に内外面の欠陥を検出することができるが、電縫鋼管の溶接不良による微細な未溶着(貫通欠陥)やシームレス鋼管の微細な貫通割れ等の貫通状欠陥では、反射面積が微細で超音波の反射率が小さいので、図6に示した波形例のように、その検出が難しくなる。なお、図6中のF3は貫通孔エコーを示す。 By the way, since the artificial defect has a relatively large reflection area, the reflectance of the ultrasonic wave is large, and the defects on the inner and outer surfaces can be detected relatively easily as in the waveform example shown in FIG. Waveform example shown in FIG. 6 because the reflection area is fine and the ultrasonic reflectance is small for penetration defects such as fine unwelded (penetration defect) due to poor welding of the sewn steel pipe and fine penetration cracks in the seamless steel pipe. As such, the detection becomes difficult. In addition, F3 in FIG. 6 shows a through-hole echo.
また、肉中の未圧着は、斜角探傷法では、その原理上、反射エコーを受信することができないので、前記未圧着を検出することができない。 Further, in the case of the non-crimping in the meat, the oblique flaw detection method cannot receive the reflection echo in principle, so that the non-crimping cannot be detected.
そこで、微細な貫通状欠陥を検出する手法として、図7に示すような、被検査材であるたとえば鋼管1の肉厚に比べて長さの長いアレイセンサー7を用いて肉厚内の多重反射を利用して検出するアレイ探傷法(以下、「多重反射法」と言う。)がある。 Therefore, as a technique for detecting minute penetrating defects, multiple reflection within the wall thickness is performed using an array sensor 7 as shown in FIG. There is an array flaw detection method (hereinafter, referred to as “multiple reflection method”) that uses the above-described detection method.
しかしながら、この多重反射法では、貫通孔エコーF3は、図8に示したような多重波形となるので、時間軸の情報からだけでは内外面欠陥もしくは貫通状欠陥といった欠陥の種類の識別ができない点や、入射角度を調整して内外面欠陥の信号高さを調整することが難しいといった点が問題となる。 However, in this multiple reflection method, since the through-hole echo F3 has a multiple waveform as shown in FIG. 8, the type of defect such as an internal / external surface defect or a penetrating defect cannot be identified only from time axis information. Another problem is that it is difficult to adjust the signal height of the inner and outer surface defects by adjusting the incident angle.
つまり、多重反射法では、多重反射に伴う積算効果によって従来法では検出が困難であった微細な貫通状欠陥や肉中の未圧着等を検出することは可能であるが、内面欠陥エコーに比べて貫通状欠陥エコーの大きさが小さくなり、また、外面欠陥エコーでは図1(a)の2abの如く、欠陥で直接反射したエコーが存在するために、内面欠陥エコーに比べて外面欠陥エコー高さが大きくなる。したがって、微細な貫通状欠陥を検出しようとすると、内外面欠陥、特に外面欠陥の過検出が問題となる。たとえば、内面軸方向欠陥の信号を50%CRT、外面軸方向欠陥の信号を115%CRTに調整し、欠陥の検出レベルを25%CRTに調整した内面欠陥では深さ0.1mm以上の欠陥を、外面欠陥では深さ0.05mm以上の欠陥を大部分検出する可能性が極めて高くなる。従って、従来検査法における過検出を防止しつつ微細な貫通状欠陥等を検出する手法の確立が望まれている。 In other words, in the multiple reflection method, it is possible to detect fine penetrating defects and uncrimped in the meat that were difficult to detect by the conventional method due to the cumulative effect associated with multiple reflection, but compared to the inner surface defect echo The size of the penetrating defect echo is reduced, and the outer surface defect echo has an echo directly reflected by the defect as indicated by 2ab in FIG. Becomes bigger. Therefore, when trying to detect fine penetrating defects, overdetection of inner and outer surface defects, particularly outer surface defects, becomes a problem. For example, an inner surface defect in which the inner surface defect signal is adjusted to 50% CRT, the outer surface defect signal is adjusted to 115% CRT, and the defect detection level is adjusted to 25% CRT, the defect having a depth of 0.1 mm or more is detected. In the case of external defects, the possibility of detecting most defects having a depth of 0.05 mm or more is extremely high. Therefore, it is desired to establish a technique for detecting fine penetrating defects and the like while preventing overdetection in the conventional inspection method.
なお、本発明と関連する技術として、アレイセンサーを溶接管の円周方向に並べて、このアレイセンサーから平面波を形成するように超音波を送信し、被検査材から受信した反射波のうち、所定数の隣接した振動子群からの反射波を出力し、かつ、振動子群を順次シフトさせて、それぞれ異なった深さの測定部位を同時に探傷するようにして、ブローホール状の欠陥の検出性能を向上させる技術が開示されている。
また、管の円周方向に並べたアレイセンサーから送信する超音波の屈折角度を設定して、溶接部の底面から表面までをセクタ走査することで、溶接部の深さ方向の全域を見逃しがないようにして、特に微小なブローホール状の欠陥を精度良く検出する技術が開示されている。
また、管の円周方向に並べたアレイセンサーから送信する超音波を所定の屈折角度で集束させ、その集束位置をセクタ走査により厚さ方向および円周方向に変えながら探傷することで、溶接線が蛇行しても焦点位置を溶接線に合致させ、微細な欠陥を検出可能とする技術が開示されている。
これら特許文献で開示された技術では、たとえば特許文献2では肉厚方向に超音波ビームを走査することで不惑帯の発生防止を、また特許文献3では焦点ビームを用いることで微細な球形ブローホール状の欠陥の検出性能を向上できるとしている。
In the techniques disclosed in these patent documents, for example, in
しかしながら、前記貫通状欠陥の検出が難しいこと、また、原理上、肉中の未圧着を検出することができないことに変わりはない。 However, it is still difficult to detect the penetrating defect and, in principle, it is impossible to detect uncrimped in the meat.
本発明が解決しようとする問題点は、従来の超音波探傷法では、貫通状欠陥は、超音波の反射面積が小さいのでその検出が難しく、また、肉中の未圧着は、その原理上、反射信号を検出できないという点である。 The problem to be solved by the present invention is that, in the conventional ultrasonic flaw detection method, the penetrating defect is difficult to detect because the reflection area of the ultrasonic wave is small. This is that the reflected signal cannot be detected.
本発明の金属材の超音波検査法は、
貫通状欠陥や肉中の未圧着をも精度良く検出できるようにするために、
複数の振動子を配列したアレイセンサーを用いて、被検査材に存在する欠陥を斜角探傷法を用いて検査する超音波検査法であって、
まず、全てのアレイセンサーをブロックに分割して、ブロックの振動子からブロックごとに超音波を発振し、内外面に欠陥を有する試験材からの反射波を受信して、前記ブロックごとに分割動作させたときの感度を校正した後、
次に、全てのアレイセンサーの振動子から超音波を発振し、前記試験材からの反射波を受信して、全てのアレイセンサーを動作させたときの感度を、前記校正の際に得られた基準欠陥に対する欠陥エコー高さに基づき校正し、
これらの校正後、前記分割したブロックの振動子からブロックごとに超音波を発振したときの被検査材からの反射波Aと、前記全てのアレイセンサーの振動子から超音波を発振したときの被検査材からの反射波Bを受信し、
その後、前記反射波Aのエコー高さEHAと、前記反射波Bのエコー高さEHBの比EHB/EHA、すなわち、EHB/EHAが1.5未満のときは内面欠陥と、1.5以上、2.5以下のときは外面欠陥と、2.5を超えるときは貫通状欠陥或いは肉中の未圧着と識別することによって欠陥の種類を識別する点を最も主要な特徴としている。
The ultrasonic inspection method of the metal material of the present invention,
In order to be able to accurately detect penetration defects and uncrimped in meat,
An ultrasonic inspection method for inspecting defects existing in a material to be inspected using an oblique flaw detection method using an array sensor in which a plurality of transducers are arranged,
First, all array sensors are divided into blocks, ultrasonic waves are oscillated for each block from the transducer of the block, and reflected waves from a test material having defects on the inner and outer surfaces are received, and the dividing operation is performed for each block. After calibrating the sensitivity when
Next, the ultrasonic wave was oscillated from the transducers of all array sensors, the reflected waves from the test material were received, and the sensitivity when all the array sensors were operated was obtained during the calibration. Calibrate based on the height of the defect echo relative to the reference defect,
After these calibrations, the reflected wave A from the material to be inspected when the ultrasonic wave is oscillated for each block from the vibrators of the divided blocks, and the target when the ultrasonic wave is oscillated from the vibrators of all the array sensors. Receives the reflected wave B from the inspection material,
Thereafter, the echo height EH A of the reflected wave A, the ratio EH B / EH A echo height EH B of the reflected wave B, that the inner surface defects when EH B / EH A is less than 1.5 The most important feature is that the type of defect is identified by identifying the outer surface defect when it is 1.5 or more and 2.5 or less, and the penetration defect or the non-crimping in the meat when it exceeds 2.5. It is said.
前記の本発明方法において、被検査材からの反射波Aを受信する際に、内面欠陥を識別する欠陥検出ゲートおよび外面欠陥を識別する欠陥検出ゲートを用いて、内面欠陥または外面欠陥を検出し、
前記EHB/EHAの値と併せて欠陥の種類を識別するようにすれば、内面欠陥か外面欠陥かの識別を、より容易に、より確実に行えるようになる。
In the method of the present invention, when receiving the reflected wave A from the material to be inspected, an inner surface defect or an outer surface defect is detected using a defect detection gate for identifying an inner surface defect and a defect detection gate for identifying an outer surface defect. ,
If to identify the type of defect in conjunction with the value of the EH B / EH A, the identification of how the inner surface defect or an outer surface defects, more readily, would allow more reliably.
また、被検査材が鋼管である場合に、鋼管の製造工程に前記の本発明方法を含めた場合には、鋼管の製造ラインで、内外面欠陥のみならず貫通状欠陥や肉中の未圧着をも精度良く検出できるようになる。 In addition, when the material to be inspected is a steel pipe, when the above-described method of the present invention is included in the steel pipe manufacturing process, not only inner and outer surface defects but also penetration defects and unbonded in the meat in the steel pipe manufacturing line Can be detected with high accuracy.
本発明は、欠陥の識別に、分割したブロックの振動子から超音波を発振したときの被検査材からの反射波Aと、全てのアレイセンサーの振動子から超音波を発振したときの被検査材からの反射波Bを使用するので、内外面欠陥への過検出を引き起こすことなく、従来法では検出が不可能であった微細な貫通状欠陥や、肉中の未圧着も検出できるという利点がある。 The present invention uses a reflected wave A from a material to be inspected when ultrasonic waves are oscillated from vibrators of divided blocks, and an object to be inspected when ultrasonic waves are oscillated from vibrators of all array sensors. Since the reflected wave B from the material is used, it is possible to detect fine penetrating defects that could not be detected by the conventional method and non-crimping in meat without causing excessive detection of defects on the inner and outer surfaces. There is.
以下、本発明を実施するための最良の形態を、図1及び図2を用いて説明する。
本発明の金属管の超音波検査方法は、校正を行う第1工程、測定を行う第2工程、判定を行う第3工程の3つの工程を順に実施するもので、以下、これらの各工程について説明する。
Hereinafter, the best mode for carrying out the present invention will be described with reference to FIGS.
The ultrasonic inspection method for a metal tube according to the present invention sequentially performs three steps: a first step for performing calibration, a second step for performing measurement, and a third step for performing determination. explain.
〔第1工程〕
1.ブロック選択法による屈折角度の選定、欠陥検出ゲートの設定、検査感度の設定
屈折角度は、屈折角度を変化させて内外面人工欠陥から得られる信号の高さの差異が最も小さくなる屈折角度を選択する。鋼板の場合、この屈折角度は通常45°になる。しかしながら、鋼管の場合は内外面が湾曲しているために45°にはならない。
[First step]
1. Selection of refraction angle by block selection method, setting of defect detection gate, setting of inspection sensitivity The refraction angle is selected by changing the refraction angle to minimize the difference in signal height obtained from the internal and external artificial defects. To do. In the case of a steel plate, this refraction angle is usually 45 °. However, in the case of a steel pipe, the inner and outer surfaces are curved, so the angle is not 45 °.
また、欠陥検出ゲートは、たとえば2個の欠陥検出ゲートを用い、人工欠陥信号の振幅最大位置が、欠陥検出ゲートの中心となるようにゲート位置を検出する。また、検査感度は、内面欠陥エコー高さがCRT50%になるようにゲインを調整する。 In addition, for example, two defect detection gates are used as the defect detection gate, and the gate position is detected so that the maximum amplitude position of the artificial defect signal becomes the center of the defect detection gate. The inspection sensitivity adjusts the gain so that the inner surface defect echo height is CRT 50%.
2.多重反射法による屈折角度の選定、欠陥検出ゲートの設定、検査感度の設定
以上のブロック選択法による屈折角度の選定、欠陥検出ゲートの設定、検査感度の設定終了後、次に、全てのアレイセンサーから超音波を発振して超音波検査する多重反射法を実施する場合の屈折角度の選定、欠陥検出ゲートの設定、検査感度の設定を行う。
2. Selection of refraction angle by multiple reflection method, setting of defect detection gate, setting of inspection sensitivity After selection of refraction angle by the above block selection method, setting of defect detection gate, setting of inspection sensitivity, then all array sensors The selection of the refraction angle, the setting of the defect detection gate, and the setting of the inspection sensitivity are performed when the multiple reflection method in which the ultrasonic wave is oscillated from the ultrasonic wave is carried out.
この場合の屈折角度は、前記ブロック選択法で得られた屈折角度となるように遅延パラメータを調整する。また、欠陥検出ゲートは、1個の欠陥検出ゲートを用い、人工欠陥信号が発生する位置に欠陥検出ゲートを調整する。また、検査感度は、内面欠陥エコー高さがCRT50%になるようにゲインを調整する。 The delay parameter is adjusted so that the refraction angle in this case becomes the refraction angle obtained by the block selection method. The defect detection gate uses one defect detection gate and adjusts the defect detection gate to a position where an artificial defect signal is generated. The inspection sensitivity adjusts the gain so that the inner surface defect echo height is CRT 50%.
以上の校正によってブロック選択法と多重反射法によって得られる反射波のエコー高さを比較できるようになる。 The above calibration makes it possible to compare the echo heights of the reflected waves obtained by the block selection method and the multiple reflection method.
〔第2工程〕
1.ブロック選択法による欠陥の測定
前記の校正後は、まず、分割したブロックの振動子から超音波を発振して、例えば鋼管などの被検査材の内外面欠陥および貫通状欠陥或いは肉中の未圧着からの反射波Aのエコー高さEHAを測定する。下記表2は、屈折角度が45度の場合、軸方向の内表面に加工された深さが0.2mmの人工欠陥の信号を、内面欠陥エコー高さを50%CRTに調整したときに、外面欠陥エコー高さは67.5%CRT、φ0.3mmの貫通状欠陥を測定した場合のもので、そのエコー高さEHAは10%CRTであった。
[Second step]
1. Measurement of defects by block selection method After the above calibration, first, ultrasonic waves are oscillated from the vibrators of the divided blocks, and for example, inner and outer surface defects and penetrating defects in the inspection material such as steel pipes or unbonded in the meat echo height EH a reflected wave a from the measuring. Table 2 below shows that when a refraction angle is 45 degrees, a signal of an artificial defect having a depth of 0.2 mm processed on the inner surface in the axial direction is adjusted to an inner surface defect echo height of 50% CRT. the outer surface defect echo height intended when measured 67.5% CRT, a through defect of 0.3 mm, the echo height EH a was 10% CRT.
このブロック選択法では、センサーがブロックに分割されており、後述する多重反射法のような積算効果はないので、反射波は単純な形であり、欠陥検出ゲートを用いることで、内面欠陥による反射波なのか、外面欠陥による反射波なのかを容易に判別することができる。しかしながら、このブロック選択法では、貫通状欠陥や肉中の未圧着などの検出能が良くないことは先に説明した通りである。 In this block selection method, the sensor is divided into blocks, and since there is no integration effect as in the multiple reflection method described later, the reflected wave has a simple shape. It can be easily discriminated whether it is a wave or a reflected wave due to an external surface defect. However, as described above, this block selection method does not have good detection ability such as penetration defects and uncrimped in meat.
2.多重反射法による欠陥の測定
次に、全てのアレイセンサーの振動子から超音波を発振して、前記被検査材の内外面欠陥および貫通状欠陥や肉中の未圧着からの反射波Bのエコー高さEHBを測定する。上記表2に示した例では、屈折角度が45度の場合、軸方向の内表面に加工された深さが0.2mmの人工欠陥の信号を、内面欠陥エコー高さを50%CRTに調整したときに、外面欠陥エコー高さは115%CRT、φ0.3mmの貫通状欠陥のエコー高さEHBは、前記ブロック選択法の場合よりも大きな29.5%CRTであった。
2. Measurement of defects by multiple reflection method Next, ultrasonic waves are oscillated from transducers of all array sensors, and echoes of reflected waves B from the inner and outer surface defects and penetration defects of the inspected material and unbonded in the meat Measure height EH B. In the example shown in Table 2 above, when the refraction angle is 45 degrees, the signal of the artificial defect with a depth of 0.2 mm processed on the inner surface in the axial direction is adjusted to the inner surface defect echo height of 50% CRT. In this case, the echo height of the outer surface defect was 115% CRT, and the echo height EH B of the penetrating defect of φ0.3 mm was 29.5% CRT larger than that in the block selection method.
つまり、この多重反射法を使用すると、欠陥の種類により、反射波Bのエコー高さEHB に違いが現れることになる。これを模式的に示したものが図1である。
貫通状欠陥8の場合、振動子4a〜4cから発振され、被検査材であるたとえば鋼管1に入射した超音波が全ての場合において貫通状欠陥8で反射することになる。
That is, when this multiple reflection method is used, a difference appears in the echo height EH B of the reflected wave B depending on the type of defect. This is schematically shown in FIG.
In the case of the penetrating defect 8, ultrasonic waves that are oscillated from the vibrators 4a to 4c and are incident on, for example, the
すなわち、振動子4aから発振された超音波は、貫通状欠陥8の外面近傍に当たり、そのまま反射してきた経路を逆進してセンサー3に捕らえられる反射波(以下、この反射波を「逆進波2aa」という)と、鋼管1から直接、外に出る反射波2abの2つの反射波がセンサー3で感知される。
That is, the ultrasonic wave oscillated from the transducer 4 a hits the vicinity of the outer surface of the penetrating defect 8 and travels back as it is reflected to the reflected wave (hereinafter referred to as “reverse wave”). 2aa ”), two reflected waves of the reflected wave 2ab that directly go out from the
また、振動子4bから発振された超音波は、逆進波2baと貫通状欠陥8で反射した後しばらく鋼管1中を通って外に出る反射波2bbの2つの反射波がセンサー3で感知される。
In addition, the ultrasonic wave oscillated from the
また、振動子4cから発振された超音波は、逆進波2caのみがセンサー3で感知される。
結果として、多重反射法を使用すると、5つの反射波2aa,2ab,2ba,2bb,2caがセンサー3で受信されることになる(図1(a)参照)。
Further, only the
As a result, when the multiple reflection method is used, five reflected waves 2aa, 2ab, 2ba, 2bb and 2ca are received by the sensor 3 (see FIG. 1A).
一方、外面欠陥6の場合には、振動子4aから発振された超音波のみが外面欠陥6で反射する。この場合、上記の貫通状欠陥8の場合における振動子4aから発振された超音波と同じく、逆進波2aaと反射波2abがセンサー3で感知され、結果として2つの反射波が受信されることになる(図1(b)参照)。
On the other hand, in the case of the
また、内面欠陥9の場合には、振動子4cから発振された超音波のみが内面欠陥9で反射する。この場合、上記の貫通状欠陥8の場合における振動子4cから発振された超音波と同じく、逆進波2caのみが感知され、結果として1つの反射波がセンサー3で受信されることになる(図1(b)参照)。 In the case of the inner surface defect 9, only the ultrasonic wave oscillated from the vibrator 4 c is reflected by the inner surface defect 9. In this case, similarly to the ultrasonic wave oscillated from the transducer 4c in the case of the penetrating defect 8, only the backward wave 2ca is sensed, and as a result, one reflected wave is received by the sensor 3 ( (Refer FIG.1 (b)).
以上から、得られる多重反射による積算効果の大きさは貫通状欠陥>外面欠陥>内面欠陥の順に大きくなる。つまり、内面欠陥を基準とすると、貫通状欠陥では295%、外面欠陥では170%の効果が得られたこととなる。 From the above, the magnitude of the cumulative effect obtained by the multiple reflection increases in the order of penetrating defects> outer surface defects> inner surface defects. That is, when the inner surface defect is used as a reference, an effect of 295% is obtained for the penetrating defect and 170% for the outer surface defect.
ただし、積算効果が大きくなるだけで、貫通状欠陥の場合、受信する反射波の大きさが外面欠陥や内面欠陥より大きくなるとは限らない。すなわち、上述の積算効果のため、貫通状欠陥に対しては、ブロック選択法に比べて感度が良くなるに過ぎない。これを示したのが図2である。 However, only the accumulation effect is increased, and in the case of a penetrating defect, the magnitude of the reflected wave received is not necessarily larger than that of the outer surface defect or the inner surface defect. In other words, because of the above-described integration effect, the sensitivity to penetrating defects is only improved compared to the block selection method. This is shown in FIG.
また、積算効果は大きいものの、受信する反射波(上記で言う逆進波を含む反射波)は、反射経路によって若干受信する時間がずれるので、受信した反射波は、前述の図8のようにある時間の幅の中で複数回検出されることになる。よって、従来からのブロック選択法のように、時間軸の情報が適切に得られず、また、検出した反射波の位置により欠陥の種類が判別できないことになる。 In addition, although the integration effect is large, the received wave (reflected wave including the backward wave mentioned above) is slightly received depending on the reflection path, so the received reflected wave is as shown in FIG. It will be detected multiple times within a certain time span. Therefore, unlike the conventional block selection method, information on the time axis cannot be obtained appropriately, and the type of defect cannot be determined based on the position of the detected reflected wave.
〔第3工程〕
先に述べたように、多重反射法では、微細な貫通状欠陥8を検出しようとすると外面欠陥6および内面欠陥9への過検出が避けられず、また、反射波の大きさだけで欠陥の種類を判断することは困難である。一方、ブロック選択法では、貫通状欠陥などは精度良く検出することができない。
[Third step]
As described above, in the multiple reflection method, overdetection of the
よって、本発明では、これらの欠点を相互に補って、欠陥の種類を判定するのである。
すなわち、前記ブロック選択法によって得られた反射波Aのエコー高さをEHA、前記多重反射法によった得られた反射波Bのエコー高さをEHBとした場合、貫通状欠陥8では高い積算効果が期待できるので、EHB≫EHAとなる。また、外面欠陥6では少し積算効果が期待できるので、EHB>EHAとなる。これに対して、内面欠陥9では積算効果が期待できないので、EHB≒EHAとなる。したがって、本発明ではこの差を利用して、欠陥の種類を判別するのである。
Therefore, in the present invention, these types of defects are compensated for each other to determine the type of defect.
That is, when the echo height of the reflected wave A obtained by the block selection method is EH A and the echo height of the reflected wave B obtained by the multiple reflection method is EH B , so it can be expected high cumulative effect, the EH B »EH a. Also, since little cumulative effect in the
すなわち、前記エコー高さの比EHB/EHAが1.5未満のときは内面欠陥と、1.5以上、2.5以下のときは外面欠陥と、2.5を超えるときは貫通状欠陥あるいは肉中の未圧着と識別するのである。つまり、多重反射法の欠陥判定レベルを25%CRTに設定し、これを超えるエコーを検出した場合、ブロック選択法の検出エコー高さの比を用いて欠陥の種類を判定し、内外面欠陥と判定した場合はブロック選択法の評価結果を用い、貫通状欠陥と判定した場合は貫通状欠陥ありと判定すれば、欠陥種別の判定と共に内外面欠陥への過検出は防止される。なお、本判定基準は0.2mm深さの内外面欠陥とφ0.3mmの貫通状欠陥を検出する際のものであって、適宜、数値は変更すれば良い。 That is, the inner surface defect when less than the ratio EH B / EH A of the echo height is 1.5, 1.5 or more, and the outer surface defects when 2.5 or less, when more than 2.5 through shape They are identified as defects or uncrimped in the meat. That is, when the defect determination level of the multiple reflection method is set to 25% CRT and an echo exceeding this is detected, the type of the defect is determined using the ratio of the detected echo height of the block selection method, If it is determined, the evaluation result of the block selection method is used. If it is determined that there is a penetration defect when it is determined that there is a penetration defect, overdetection to the inner and outer surface defects is prevented together with the determination of the defect type. This criterion is used when detecting inner and outer surface defects having a depth of 0.2 mm and penetrating defects having a diameter of 0.3 mm, and the numerical values may be changed as appropriate.
以上が請求項1又は請求項2に係る本発明の金属材の超音波検査方法であるが、前記の第3工程での判定に代えて、選択ブロック法によって内面欠陥や外面欠陥を検出するような欠陥検出ゲートを用いれば、検出した欠陥が内面欠陥か外面欠陥かを、より容易に、より確実に判別することができる。これが請求項3に係る本発明の金属材の超音波検査方法である。
The above is the ultrasonic inspection method for a metal material of the present invention according to
本発明は上記の例に限らず、各請求項に記載された技術的思想の範囲内で、適宜実施の形態を変更しても良いことは言うまでもない。たとえば本発明の検査方法を鋼管の製造工程に含めた場合には、製造ライン中で、内外面欠陥のみならず貫通状欠陥や肉中の未圧着をも精度良く検出できるようになる。 The present invention is not limited to the above example, and it goes without saying that the embodiment may be appropriately changed within the scope of the technical idea described in each claim. For example, when the inspection method of the present invention is included in the manufacturing process of a steel pipe, not only inner and outer surface defects but also penetrating defects and unbonded parts in meat can be accurately detected in the production line.
本発明は、鋼管に限らず、他の金属管でも、また、金属板の超音波検査等にも利用できる。 The present invention can be used not only for steel pipes but also for other metal pipes and for ultrasonic inspection of metal plates.
1 鋼管
2 超音波
3 センサー
4 振動子
5 ブロック
6 外面欠陥
7 アレイセンサー
8 貫通状欠陥
9 内面欠陥
DESCRIPTION OF
Claims (5)
まず、全てのフェイズドアレイセンサーをブロックに分割して、ブロックの振動子からブロックごとに超音波を発振し、内外面に欠陥を有する試験材からの反射波を受信して、前記ブロックごとに分割動作させたときの感度を校正した後、
次に、全てのフェイズドアレイセンサーの振動子から超音波を発振し、前記試験材からの反射波を受信して、全てのフェイズドアレイセンサーを動作させたときの感度を、前記校正の際に得られた基準欠陥に対する欠陥エコー高さに基づき校正し、
これらの校正後、前記分割したブロックの振動子からブロックごとに超音波を発振したときの被検査材からの反射波Aと、前記全てのフェイズドアレイセンサーの振動子から超音波を発振したときの被検査材からの反射波Bを受信し、
その後、前記反射波Aのエコー高さEHAと、前記反射波Bのエコー高さEHBの比EHB/EHAによって欠陥の種類を識別することを特徴とする金属材の超音波検査法。 Using a phased array sensor in which a plurality of transducers are arranged, an ultrasonic inspection method for inspecting a defect existing in a material to be inspected using an oblique flaw detection method,
First, all phased array sensors are divided into blocks, ultrasonic waves are oscillated for each block from the transducer of the block, and reflected waves from the test material having defects on the inner and outer surfaces are received, and divided for each block. After calibrating the sensitivity when operating,
Next, the ultrasonic waves are oscillated from the transducers of all the phased array sensors, the reflected waves from the test material are received, and the sensitivity when all the phased array sensors are operated is obtained during the calibration. Calibrated based on the height of the defect echo relative to the reference defect
After these calibrations, the reflected wave A from the material to be inspected when the ultrasonic wave is oscillated for each block from the vibrator of the divided block, and the ultrasonic wave oscillated from the vibrators of all the phased array sensors Receives the reflected wave B from the material to be inspected,
Thereafter, the echo height EH A of the reflected wave A, ultrasonography of the metal material, characterized by identifying the ratio EH B / EH type of defect by the A echo height EH B of the reflected wave B .
前記EHB/EHAの値と併せて欠陥の種頼を識別することを特徴とする請求項1又は2に記載の金属材の超音波検査法。 When receiving the reflected wave A from the material to be inspected, a defect detection gate for identifying an inner surface defect and a defect detection gate for identifying an outer surface defect are used to detect an inner surface defect or an outer surface defect,
Ultrasonography of the metal material according to claim 1 or 2, wherein the identifying TaneYoriyuki defects together with the value of the EH B / EH A.
The manufacturing method of the steel pipe characterized by including the ultrasonic inspection method of the metal material of Claim 4 in a manufacturing process.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004254420A JP3868443B2 (en) | 2004-09-01 | 2004-09-01 | Ultrasonic inspection method of metal material and manufacturing method of steel pipe |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004254420A JP3868443B2 (en) | 2004-09-01 | 2004-09-01 | Ultrasonic inspection method of metal material and manufacturing method of steel pipe |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2006071420A JP2006071420A (en) | 2006-03-16 |
JP3868443B2 true JP3868443B2 (en) | 2007-01-17 |
Family
ID=36152220
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004254420A Expired - Lifetime JP3868443B2 (en) | 2004-09-01 | 2004-09-01 | Ultrasonic inspection method of metal material and manufacturing method of steel pipe |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3868443B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4955359B2 (en) * | 2006-09-27 | 2012-06-20 | 株式会社日立製作所 | Ultrasonic flaw detection apparatus and ultrasonic flaw detection method |
GB2482300A (en) | 2010-07-28 | 2012-02-01 | Guided Ultrasonics Ltd | Processing signals acquired during guided wave testing |
CN110118824A (en) * | 2019-05-16 | 2019-08-13 | 武汉中科创新技术股份有限公司 | A kind of oblique shortcoming detection system of pipeline and method |
CN113340982B (en) * | 2021-05-14 | 2022-10-14 | 中石化石油机械股份有限公司沙市钢管分公司 | Magnetic flux leakage detection equipment calibration device and detection method for surface quality of steel pipe |
-
2004
- 2004-09-01 JP JP2004254420A patent/JP3868443B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JP2006071420A (en) | 2006-03-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4910770B2 (en) | Tubular ultrasonic inspection apparatus and ultrasonic inspection method | |
JP4910768B2 (en) | Calibration method of ultrasonic flaw detection, tube quality control method and manufacturing method | |
JP4910769B2 (en) | Pipe quality control method and manufacturing method | |
JP4544240B2 (en) | Tubular ultrasonic inspection apparatus and ultrasonic inspection method | |
JP4884930B2 (en) | Ultrasonic flaw detection apparatus and method | |
JP5003275B2 (en) | Ultrasonic flaw detection apparatus and ultrasonic flaw detection method for tubular body | |
CA2496370C (en) | Ultrasonic flaw detecting method and ultrasonic flaw detector | |
Feng et al. | Enhanced sizing for surface cracks in welded tubular joints using ultrasonic phased array and image processing | |
JP2011027754A (en) | Circuit device for ultrasonic nondestructive test of test object | |
KR20190016086A (en) | Ultrasonic Flaw Detector, Ultrasonic Flaw Detector, Manufacturing Method of Welded Steel Pipe, and Quality Control Method of Welded Steel Pipe | |
JP2010276465A (en) | Ultrasonic flaw detector and method therefor | |
CN113939735A (en) | Ultrasonic flaw detection method, ultrasonic flaw detection device, steel product manufacturing equipment line, steel product manufacturing method, and steel product quality assurance method | |
CN110988139A (en) | Phased array ultrasonic detection method for welding buoy base plate and sampan | |
AU2004288099C1 (en) | Method for checking a weld between two metal pipelines | |
JP2010043989A (en) | Defect height estimation method by ultrasonic flaw detection | |
JP5574731B2 (en) | Ultrasonic flaw detection test method | |
JP6871534B2 (en) | Comparison test piece and ultrasonic phased array flaw detection test method | |
JP3868443B2 (en) | Ultrasonic inspection method of metal material and manufacturing method of steel pipe | |
JP2014077708A (en) | Inspection device and inspection method | |
WO2020184521A1 (en) | Ultrasonic flaw detection method, ultrasonic flaw detection device, facility for manufacturing steel material, method for manufacturing steel material, and steel material quality control method | |
JP2008286639A (en) | Coupling check method for ultrasonic oblique angle flaw detector | |
CN114487120A (en) | A method for measuring the height of internal defects in fillet welds | |
JP5118339B2 (en) | Ultrasonic flaw detection apparatus and method | |
JP6109061B2 (en) | Inspection method for remaining life of welded parts of heat-resistant materials | |
JP2005257465A (en) | Automatic ultrasonic flaw inspection method and device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20060828 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20060912 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20061010 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 3868443 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091020 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101020 Year of fee payment: 4 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111020 Year of fee payment: 5 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121020 Year of fee payment: 6 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131020 Year of fee payment: 7 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R360 | Written notification for declining of transfer of rights |
Free format text: JAPANESE INTERMEDIATE CODE: R360 |
|
R360 | Written notification for declining of transfer of rights |
Free format text: JAPANESE INTERMEDIATE CODE: R360 |
|
R371 | Transfer withdrawn |
Free format text: JAPANESE INTERMEDIATE CODE: R371 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |