[go: up one dir, main page]

JP3867247B2 - Snow melting water transmission device - Google Patents

Snow melting water transmission device Download PDF

Info

Publication number
JP3867247B2
JP3867247B2 JP2003384345A JP2003384345A JP3867247B2 JP 3867247 B2 JP3867247 B2 JP 3867247B2 JP 2003384345 A JP2003384345 A JP 2003384345A JP 2003384345 A JP2003384345 A JP 2003384345A JP 3867247 B2 JP3867247 B2 JP 3867247B2
Authority
JP
Japan
Prior art keywords
water
permeable
layer
aggregate
snow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003384345A
Other languages
Japanese (ja)
Other versions
JP2005113658A (en
Inventor
英之 泉
Original Assignee
泉建設株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 泉建設株式会社 filed Critical 泉建設株式会社
Priority to JP2003384345A priority Critical patent/JP3867247B2/en
Publication of JP2005113658A publication Critical patent/JP2005113658A/en
Application granted granted Critical
Publication of JP3867247B2 publication Critical patent/JP3867247B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Cleaning Of Streets, Tracks, Or Beaches (AREA)

Description

本発明は、人や車が通行可能な路面に降り積もる雪を融かす融雪透水装置に関する。  The present invention relates to a snow melting water-permeable device that melts snow that accumulates on a road surface on which people and vehicles can pass.

従来、雪は熱すれば融ける性質を利用し、平板に埋めた放熱パイプに水蒸気等の熱媒体を通ずることにより融雪する技術や(例えば特許文献1を参照)、コンクリート体に埋めた発熱体により融雪する技術が知られている(例えば特許文献2を参照)。
特開2002−188108号公報(第4−6頁,図1) 特開2001−193008号公報(第4−7頁,図1−4)
Conventionally, snow uses a property that melts when heated, and technology that melts snow by passing a heat medium such as water vapor through a heat radiating pipe buried in a flat plate (see, for example, Patent Document 1), a heating element buried in a concrete body A technique for melting snow is known (see, for example, Patent Document 2).
Japanese Patent Laid-Open No. 2002-188108 (page 4-6, FIG. 1) Japanese Patent Laid-Open No. 2001-193008 (page 4-7, FIG. 1-4)

しかし、従来の技術では放熱パイプに熱媒体を通ずることから、熱源(熱媒体を供給する設備)が必要となるだけでなく、媒体を熱するのに膨大なエネルギーを必要とした。水道水を媒体として融雪を行うには、放熱パイプが地中に埋められる点を考慮すると、水温は雪の温度(一般的には0〜1℃)よりも相当高くなければならない。
本発明は、路床(または路盤)を舗装できるとともに、熱源を必要とせずに融雪が行えるようにした融雪透水装置を提供することを目的とする。
However, in the conventional technology, since the heat medium is passed through the heat radiating pipe, not only a heat source (equipment for supplying the heat medium) is required, but also enormous energy is required to heat the medium. In order to melt snow using tap water as a medium, the water temperature must be considerably higher than the snow temperature (generally 0 to 1 ° C.), considering that the heat radiating pipe is buried in the ground.
An object of the present invention is to provide a snow melting water-permeable device capable of paving a road bed (or road bed) and capable of melting snow without requiring a heat source.

(1)課題を解決するための手段(以下では単に「解決手段」と呼ぶ。)1は、図1に模式的に表すように、骨材と接着剤とを混合し、前記骨材の粒径3〜15mmと透水率との関係に基づいて目的の透水率2.208〜4.082で形成した透水層3と、前記透水層3中に埋設し水圧によって孔から水を噴出する有孔管4と、前記透水層3の下方に備え前記透水層3よりも透水率を低くした遮水層5とを有し、前記透水層3の表面側に浸透させて水を張ったような状態で融雪を行うことを要旨とする。(1) Means for solving the problem (hereinafter simply referred to as “solution means”) 1 is a mixture of an aggregate and an adhesive as schematically shown in FIG. A water permeable layer 3 formed with a target water permeability of 2.208 to 4.082 based on the relationship between the diameter of 3 to 15 mm and the water permeability, and a hole that is embedded in the water permeable layer 3 and ejects water from the hole by water pressure. A state in which a pipe 4 and a water shielding layer 5 provided below the water permeable layer 3 and having a lower water permeability than the water permeable layer 3 are infiltrated into the surface side of the water permeable layer 3 and are filled with water. The main point is to melt the snow.

解決手段1によれば、透水層3は骨材の粒径3〜15mmと透水率との関係に基づいて目的の透水率2.208〜4.082で形成する。骨材(資材や廃材)は素材によって粒径が異なり、同じ骨材であっても破砕や粉砕等を行えば粒径を小さくすることもできる。こうして粒径が大きかったり小さければ、骨材どうしが当たって生ずる隙間も異なる。隙間が広がれば水は浸透し易くなり、逆に隙間が狭くなれば水は浸透し難くなる。よって骨材の粒径と透水率との関係について実験や実地試験等で予め求めておき、目的の透水率からなる透水層3を容易に製造することが可能になる。According to the solution 1, the water permeable layer 3 is formed with the target water permeability of 2.208 to 4.082 based on the relationship between the aggregate particle size of 3 to 15 mm and the water permeability. Aggregates (materials and waste materials) have different particle sizes depending on the materials, and even the same aggregates can be reduced in size by crushing or grinding. If the particle size is large or small in this way, the gap generated when the aggregates hit each other is also different. If the gap is wide, water becomes easy to penetrate. Conversely, if the gap is narrow, water becomes difficult to penetrate. Therefore, the relationship between the particle size of the aggregate and the water permeability can be obtained in advance through experiments or field tests, and the water permeable layer 3 having the desired water permeability can be easily manufactured.

透水層3には有孔管4を埋設しており、当該有孔管4の孔から水圧によって噴出した水が透水層3に浸透すると、路面F(すなわち透水層3の表面)が水で浸される。よって路面Fに水を張ったと同じような状態となり、雪が直接水に触れて融雪することができる。また、有孔管4から水を連続して(または間欠的に)噴出するので、降り続く雪でも確実に融かすことができ、路面Fへの積雪を防止できる。さらに、有孔管4から噴出する水は圧力があるので、透水層3に入り込んだゴミやほこりを洗い流すこともできる。有孔管4に供給する水は噴出するための圧力(すなわち水圧)が必要となるので、ポンプ6等の動力源を利用するほか、標高差や落差等の位置エネルギーを利用したり、河川を流れる水の圧力を利用することができる。遮水層5の透水率を透水層3よりも低くしたので、有孔管4から噴出する水が路床G(または路盤;以下同様である。)に浸透するのを少なく抑えられる。例えば敷設する路床Gの透水率を測っておき、当該透水率と同等の透水率で遮水層5を形成すれば、遮水層5と路床Gとの間に水が溢れるようなことは殆どなくなり、遮水層5に浸透した水はそのまま路床Gに浸透してゆく。
なお、融雪を実現するには路面Fを水で浸す必要があるので、当該路面Fをほぼ平坦に施工する必要がある。そのため有孔管4から噴出可能な水量との関係によっては、坂道のような傾斜した路面Fへの適用は困難となる場合がある。路面Fには、道路(車道および歩道を含む。)、階段、駐車場、歩道橋、橋梁、護岸等が該当する。
A perforated pipe 4 is embedded in the water permeable layer 3, and when water ejected from the hole of the perforated pipe 4 by water pressure penetrates the water permeable layer 3, the road surface F (that is, the surface of the water permeable layer 3) is immersed in water. Is done. Therefore, when the road surface F is filled with water, the snow is melted by directly touching the water. Moreover, since water is continuously ejected from the perforated pipe 4 (or intermittently), it is possible to reliably melt the snow that continues to fall and prevent snow accumulation on the road surface F. Furthermore, since the water ejected from the perforated pipe 4 has pressure , dust and dust that have entered the water permeable layer 3 can be washed away. Since the water supplied to the perforated pipe 4 requires pressure to be ejected (that is, water pressure) , in addition to using a power source such as the pump 6, potential energy such as an altitude difference or a head is used, The pressure of flowing water can be used. Since the water permeability of the water-impervious layer 5 is lower than that of the water-permeable layer 3, it is possible to reduce the amount of water ejected from the perforated pipe 4 from permeating the road bed G (or roadbed; the same applies hereinafter). For example, if the water permeability of the road bed G to be laid is measured and the water shielding layer 5 is formed with a water permeability equivalent to the water permeability, water will overflow between the water shielding layer 5 and the road bed G. The water that has permeated the impermeable layer 5 permeates the road bed G as it is.
In addition, since it is necessary to immerse the road surface F in water in order to implement | achieve snow melting, it is necessary to construct the said road surface F substantially flatly. Therefore, depending on the relationship with the amount of water that can be ejected from the perforated pipe 4, application to an inclined road surface F such as a slope may be difficult. Road surface F includes roads (including roadways and sidewalks), stairs, parking lots, pedestrian bridges, bridges, revetments, and the like.

(2)解決手段2は、解決手段1に記載した融雪透水装置であって、有孔管から水を連続して噴出させ、透水層の表面側に張ったような状態の水が側溝に流れる構成としたことを要旨とする。(2) The solving means 2 is the snow melting water-permeable device described in the solving means 1, in which water is continuously ejected from the perforated pipe, and water in a state stretched on the surface side of the water-permeable layer flows into the side groove. The gist is that it is configured .

解決手段2によれば、有孔管から連続して噴出させた水は、透水層の表面側に張ったような状態になり、その後は側溝に流れる。 According to the solution 2, the water continuously ejected from the perforated tube is in a state of being stretched on the surface side of the water permeable layer, and thereafter flows into the side groove.

(3)解決手段3は、解決手段1または2に記載した融雪透水装置であって、路面を浸す量を調整する弁を有することを要旨とする。(3) The solution means 3 is the snow melting water-permeable device described in the solution means 1 or 2 , and has a gist that includes a valve that adjusts the amount of immersion of the road surface .

解決手段3によれば、路面Fを浸す量は弁(すなわち制水弁,排水弁)によって調整できるので、適量の水で融雪を確実に行える。 According to the solution 3, since the amount of dipping the road surface F can be adjusted by a valve (that is, a water control valve or a drain valve), snow melting can be reliably performed with an appropriate amount of water.

(4)解決手段4は、解決手段1からから3のいずれか一項に記載した融雪透水装置であって、有孔管4に流す水の圧力は、位置エネルギーまたは河川の水圧を利用する構成としたことを要旨とする。(4) solving device 4, a snow melting water permeation apparatus according to any one of 3 from the solutions 1, the pressure of the water flowing through the perforated pipe 4 utilizes water pressure potential energy or river configuration The summary is as follows.

解決手段4によれば、有孔管4から水を噴出させるには圧力が必要となるが、標高差や落差等の位置エネルギーを利用したり、河川を流れる水の圧力を利用すれば、ポンプ6等の動力源が不要となる。したがって、水圧を得るのに電力を必要としない。  According to the solution 4, pressure is required to eject water from the perforated pipe 4, but if position energy such as an altitude difference or a head is used, or if the pressure of water flowing through the river is used, the pump A power source such as 6 becomes unnecessary. Therefore, no electric power is required to obtain the water pressure.

(5)解決手段5は、解決手段1から4のいずれか一項に記載した融雪透水装置であって、有孔管4に接続し、排水路1を流れる水を汲み上げて送水するポンプ6を有することを要旨とする。(5) The solving means 5 is the snow melting water permeation device described in any one of the solving means 1 to 4, and is connected to the perforated pipe 4 and has a pump 6 that pumps up and flows the water flowing through the drainage channel 1. It is summarized as having .

解決手段5によれば、排水路1を流れる水(以下では単に「排水」と呼ぶ。)をポンプ6によって汲み上げて、当該排水を有孔管4の孔から噴出して透水層3の表面(例えば天端)を浸す。ポンプ6を動かすためのエネルギーが必要となるものの、排水の有効利用を図ることができる。 According to the solution 5, water flowing through the drainage channel 1 (hereinafter simply referred to as “drainage”) is pumped up by the pump 6, and the drainage is ejected from the hole of the perforated pipe 4 to form the surface of the permeable layer 3 ( Soak the top edge, for example. Although energy for moving the pump 6 is required, the waste water can be effectively used.

(6)解決手段6は、解決手段1からのいずれか一項に記載した融雪透水装置であって、路床または路盤に隣接してかつ上部を開放して設けられ、透水層3または遮水層5を流れてきた水を貯めておく貯水部2と、有孔管4に接続し前記貯水部2に貯まった水を汲み上げて送水するポンプ6とを有し、水を循環させて融雪を行うことを要旨とする。(6) The solving means 6 is the snow melting water-permeable device according to any one of the solving means 1 to 5 , and is provided adjacent to the road bed or the roadbed and with the upper part open, and the water-permeable layer 3 or the shielding film. It has a water storage part 2 for storing the water flowing through the water layer 5 and a pump 6 connected to the perforated pipe 4 for pumping the water stored in the water storage part 2 and sending it, and circulating the water to melt the snow. The gist is to do .

解決手段6によれば、貯水部2は路床Gに隣接してかつ上部を開放して設けられる。透水層3や遮水層5(特に表面)を流れてきた水は貯水部2に貯めておく。貯まった水はポンプ6で汲み上げ、当該水を有孔管4の孔から噴出して透水層3の表面を浸す。すなわち公園の噴水のように水を循環させ、融雪を行う。ポンプ6を動かすためのエネルギーが必要となるものの、雪解け水を利用して循環させれば外部から水を調達しなくて済む。 According to the solution 6, the water reservoir 2 is provided adjacent to the roadbed G and opened at the top. The water that has flowed through the water permeable layer 3 and the water shielding layer 5 (particularly the surface) is stored in the water storage section 2. The accumulated water is pumped up by the pump 6, and the water is ejected from the hole of the perforated pipe 4 to immerse the surface of the water permeable layer 3. In other words, snow is melted by circulating water like a fountain in a park. Although energy for moving the pump 6 is required, it is not necessary to procure water from the outside if it is circulated using snowmelt water.

(7)解決手段7は、解決手段1から6のいずれか一項に記載した融雪透水装置であって、透水層3は、硬い材質の骨材を用いて形成した上層部と、当該上層部よりも軟らかい材質の骨材を用いて形成した下層部とを有することを要旨とする。(7) The solving means 7 is the snow-melting water-permeable device according to any one of the solving means 1 to 6, wherein the water-permeable layer 3 includes an upper layer portion formed using a hard material aggregate, and the upper layer portion. And having a lower layer portion formed using an aggregate made of a softer material.

解決手段7によれば、硬い材質の骨材には、例えばコンクリート片,プラスチック片,石類(砂,砂利,石片等を含む)などが該当する。軟らかい材質の骨材には、例えば籾殻,ゴムチップ,木屑,ウッドチップ等が該当する。硬い材質の骨材を用いた上層部は、車や人が通行しても変形しにくい。軟らかい材質の骨材を用いた下層部は、クッションの役目を果たし、路床Gの表面の凹凸を吸収して路面Fをほぼ平坦にすることができる。特に、歩道に融雪透水装置を施工(または設置)した場合には、上述したクッション性により歩くときに足にかかる衝撃を少なく抑えるので、歩きやすくなる。  According to the solution 7, the aggregate made of a hard material corresponds to, for example, concrete pieces, plastic pieces, stones (including sand, gravel, stone pieces, etc.). Examples of the soft aggregate include rice husks, rubber chips, wood chips, and wood chips. The upper layer portion using the hard aggregate is not easily deformed even if a car or a person passes. The lower layer portion using the soft aggregate serves as a cushion and can absorb the unevenness on the surface of the roadbed G to make the road surface F substantially flat. In particular, when a snowmelt water-permeable device is constructed (or installed) on the sidewalk, the cushioning property described above reduces the impact on the foot when walking, making it easier to walk.

次に、本発明を実施するための最良の形態について、実施例に従って説明する。  Next, the best mode for carrying out the present invention will be described with reference to examples.

実施例1はポンプを用いて水圧を得る例であって、図2から図9までを参照しながら説明する。なお、透水層3に相当する部材にはほぼ平板状の透水ブロック(「透水パネル」とも呼ぶ。)を適用し、遮水層5に相当する部材には土間コンクリートおよび遮水壁を適用し、連結部に相当する部材には連結部材を適用する。  The first embodiment is an example of obtaining water pressure using a pump, and will be described with reference to FIGS. In addition, a substantially flat water-permeable block (also referred to as “water-permeable panel”) is applied to a member corresponding to the water-permeable layer 3, and soil concrete and a water-impervious wall are applied to a member corresponding to the water-impervious layer 5, A connecting member is applied to a member corresponding to the connecting portion.

〔透水層の製造〕
まず、透水ブロックの製造工程(製造方法)について、フローチャートで表した図2を参照しながら説明する。なお、土間コンクリートおよび遮水壁の施工工程については、周知のコンクリートの施工工程と同様であるので、図示および説明を省略する。
[Manufacture of permeable layer]
First, the manufacturing process (manufacturing method) of a water permeable block is demonstrated, referring FIG. 2 represented with the flowchart. In addition, about the construction process of soil concrete and a water-impervious wall, since it is the same as that of a well-known concrete construction process, illustration and description are abbreviate | omitted.

図2に示す製造工程において、透水ブロックを製造するにあたって骨材の粒径と透水率との関係が分かっていない場合には(ステップS10でNO)、実験や実地試験等を行なって骨材の粒径と透水率との関係を導き出しておく〔ステップS12〕。
実験例としては、試料となる骨材を箱に投入し、箱の上側から一定容量(ミリリットル)の水を注ぐ。そして、骨材の上面から水が無くなるまでに要する浸透時間(秒)を複数回計測し、その計測結果の平均値から流量(ミリリットル/秒)や浸透速度(センチメートル/秒)を算出する。すなわち、算術式〔流量=(注いだ水の容量)/(浸透時間),浸透速度=(流量)/(箱の断面積)〕に基づいて求める。こうして求めた浸透速度は透水率に相当する。骨材には、資材(主に工業用資材)を用いてもよく、廃材(自然廃材および工業廃材を含む。)を用いてもよい。例えば、籾殻,木屑,ウッドチップ,砂利等を骨材として用いた場合の試験結果を表1に示す。
In the manufacturing process shown in FIG. 2, when the relationship between the particle size of the aggregate and the water permeability is not known in manufacturing the water permeable block (NO in step S10), an experiment or a field test is performed to check the aggregate. The relationship between the particle size and the water permeability is derived [Step S12].
As an experimental example, a sample aggregate is put into a box, and a fixed volume (milliliter) of water is poured from the upper side of the box. Then, the permeation time (seconds) required until water disappears from the upper surface of the aggregate is measured a plurality of times, and the flow rate (milliliter / second) and permeation rate (centimeter / second) are calculated from the average value of the measurement results. That is, it calculates | requires based on the arithmetic expression [flow volume = (volume of the poured water) / (permeation time), permeation speed = (flow volume) / (cross-sectional area of a box)]. The permeation rate thus obtained corresponds to the water permeability. As the aggregate, materials (mainly industrial materials) may be used, and waste materials (including natural waste materials and industrial waste materials) may be used. For example, Table 1 shows the test results when rice husks, wood chips, wood chips, gravel, etc. are used as aggregates.

Figure 0003867247
Figure 0003867247

上記試験結果によれば、砂利は粒径が小さくなるほどに透水率は小さくなる。これは粒径が大きくなると、骨材どうしが当たることで生ずる隙間も広がって、透水率は大きくなる。逆に粒径が小さくなると、隙間は狭くなって、透水率も小さくなる。
これに対して、籾殻と木屑とでは粒径は異なるものの、近い透水率になっている。砂利との違いは素材の弾力性であることから、籾殻は粒径が小さくてもある程度の隙間を確保することで透水率を高めていると考えられる。
According to the test results, the permeability of gravel decreases as the particle size decreases. As the particle size increases, the gap formed by the contact of the aggregates also increases, and the water permeability increases. Conversely, when the particle size is reduced, the gap is narrowed and the water permeability is also reduced.
On the other hand, the rice husks and the wood chips have close water permeability although the particle sizes are different. Since the difference from gravel is the elasticity of the material, the rice husks are thought to increase the water permeability by securing a certain gap even if the particle size is small.

ステップS16の実験や実地試験等によって骨材の粒径と透水率との関係を導き出すか、あるいは当該関係を既に導き出していたときは(ステップS10でYES)、骨材が目的とする透水率に見合う粒径になっているかを検査する〔ステップS14〕。もし、目的の透水率に見合う粒径であれば(YES)、そのまま用いる。一方、目的の透水率に見合う粒径でないときは(NO)、当該透水率に見合う粒径になるまで粉砕機(あるいは破砕機)を用いて骨材を砕く〔ステップS16〕。こうして適切な粒径の骨材を得る。  If the relationship between the particle size of the aggregate and the water permeability is derived by the experiment in step S16 or the field test, or if the relationship has already been derived (YES in step S10), the aggregate has the desired water permeability. It is inspected whether the particle size is suitable [step S14]. If the particle size matches the target water permeability (YES), it is used as it is. On the other hand, when the particle diameter does not match the target water permeability (NO), the aggregate is crushed using a pulverizer (or a crusher) until the particle diameter meets the water permeability [step S16]. Thus, an aggregate having an appropriate particle size is obtained.

次に、骨材と接着剤とを所定の割合で混合する〔ステップS18〕。骨材どうしを接着させる接着剤には、例えばエステル系高分子ポリマーとメタノール溶液との混合物を用いるのが望ましい。この場合には、植物の生育にほとんど障害を与えず、自然環境を保全することができる。混合比率は、骨材(素材)の構造や水分吸収率等の影響を受けるため、予め骨材ごとに実験等を行なって設定しておく。上述した表1に示した骨材についての混合比率(すなわち骨材重量:接着剤重量)は、例えば次の表2のようになる。  Next, the aggregate and the adhesive are mixed at a predetermined ratio [Step S18]. It is desirable to use, for example, a mixture of an ester polymer and a methanol solution as an adhesive that bonds the aggregates together. In this case, the natural environment can be preserved with little damage to the growth of the plant. Since the mixing ratio is affected by the structure of the aggregate (material), the moisture absorption rate, and the like, it is set in advance by conducting an experiment for each aggregate. The mixing ratio (that is, aggregate weight: adhesive weight) for the aggregate shown in Table 1 is as shown in Table 2 below, for example.

Figure 0003867247
Figure 0003867247

上述したような混合比率で骨材と接着剤とを混合し、その混合物を目的形状(例えばブロック形状,柱形状,円形状等)の型枠に入れて形成し〔ステップS20〕、硬化して完成させた透水ブロックを取り出す〔ステップS22〕。一定形状に形成しない場合には、ステップS18で得た混合物を土間コンクリートおよび遮水壁に流し込んで硬化させてもよい。他に同一形状の透水ブロックを製造するときは(ステップS24でYES)、骨材と接着剤の混合から行う場合には実線で示すようにステップS18から繰り返し、混合物が多くあって形成のみで済む場合には二点鎖線で示すようにステップS20から繰り返す。この繰り返しによって、必要数量の透水ブロックを製造することができる。
なお、遮水層(本例では遮水コンクリートおよび遮水壁)を上述した透水ブロックと同等の部材で製造することも可能であるが、透水ブロックよりも透水率を低く設定する必要があり、敷設する路床Gの透水率と同等の透水率に設定するのが望ましい。
Aggregate and adhesive are mixed in the mixing ratio as described above, and the mixture is formed in a mold of a target shape (for example, block shape, column shape, circular shape, etc.) [step S20] and cured. The completed water-permeable block is taken out [Step S22]. In the case where it is not formed into a fixed shape, the mixture obtained in step S18 may be poured into the soil concrete and the impermeable wall to be cured. In addition, when manufacturing a water-permeable block having the same shape (YES in step S24), when mixing is performed from the aggregate and the adhesive, the process is repeated from step S18 as indicated by the solid line, and there is a large amount of the mixture and only the formation is required. In this case, the process is repeated from step S20 as indicated by a two-dot chain line. By repeating this, a necessary quantity of water-permeable blocks can be manufactured.
In addition, although it is also possible to manufacture a water-impervious layer (water-impregnated concrete and water-impervious wall in this example) with the same member as the water-permeable block described above, it is necessary to set the water permeability lower than the water-permeable block. It is desirable to set the water permeability equivalent to that of the roadbed G to be laid.

上述した製造工程によって透水ブロックを製造できるが、大量に製造したい場合や、透水率や形状等の精度を一定範囲に維持したい場合には、製造装置を用いて製造するのがよい。製造装置の構成例について、図3を用いて説明する。当該図3には、製造装置の構成例をブロック図で表す。なお、骨材を砕く機械としては粉砕機や破砕機等があるが、ここでは粉砕機を用いた例を説明する。  Although the water permeable block can be manufactured by the manufacturing process described above, when it is desired to manufacture it in large quantities or when it is desired to maintain the accuracy of the water permeability or shape within a certain range, it is preferable to manufacture it using a manufacturing apparatus. A configuration example of the manufacturing apparatus will be described with reference to FIG. FIG. 3 is a block diagram illustrating a configuration example of the manufacturing apparatus. In addition, although there exist a crusher, a crusher, etc. as a machine which crushes an aggregate, the example using a crusher is demonstrated here.

〔透水層の製造装置〕
本製造装置は、骨材を一時的に貯留するホッパー20や、当該ホッパー20から送り込まれた骨材を所定粒径に粉砕する粉砕機22、接着剤を注入する注入機24、粉砕機22から送られた骨材と注入機24から注入された接着剤とを混合する混合機26、混合機26から送られた混合物を型枠に入れて形成する成形機28、これらの機器の作動を個別に制御する製造制御装置10などを有する。
[Water-permeable layer manufacturing equipment]
The manufacturing apparatus includes a hopper 20 for temporarily storing aggregates, a pulverizer 22 for pulverizing aggregates fed from the hopper 20 to a predetermined particle size, an injector 24 for injecting adhesive, and a pulverizer 22. The mixer 26 that mixes the sent aggregate and the adhesive injected from the injector 24, the molding machine 28 that forms the mixture sent from the mixer 26 into a mold, and the operation of these devices are individually The manufacturing control device 10 is controlled.

製造制御装置10は、透水ブロックの製造を司るべくCPU(プロセッサ)12を中心に構成する。当該製造制御装置10は、製造制御プログラムや所要のデータ等を格納したROM14、処理時間等のような一時的データを記憶可能なRAM16、その他には入出力処理回路や通信制御回路などを備える。CPU12は、ROM14に格納された製造制御プログラムを実行して透水ブロックの製造を実現する。当該製造制御プログラムには、上述した図2の製造工程を実現するプログラムや透水ブロックの製造に必要な他のプログラムを含む。上述した骨材の粒径と透水率との関係や、骨材と接着剤との混合比率、混合や形成に要する時間等に関するデータ(以下では単に「製造用データ」と呼ぶ。)は、ROM14やRAM16等の記憶部に記憶する。その他の構成要素については周知の技術と同様であるので、図示および説明を省略する。  The production control device 10 is configured with a CPU (processor) 12 as a center in order to manage the production of water permeable blocks. The manufacturing control apparatus 10 includes a ROM 14 that stores a manufacturing control program and required data, a RAM 16 that can store temporary data such as processing time, and the like, and an input / output processing circuit and a communication control circuit. The CPU 12 executes the manufacturing control program stored in the ROM 14 to realize the manufacture of the water permeable block. The manufacturing control program includes a program for realizing the manufacturing process of FIG. 2 described above and other programs necessary for manufacturing the water permeable block. The above-mentioned data relating to the relationship between the particle size of the aggregate and the water permeability, the mixing ratio of the aggregate and the adhesive, the time required for mixing and formation (hereinafter simply referred to as “manufacturing data”), and the ROM 14. Or in a storage unit such as the RAM 16. Other components are the same as those in the well-known technology, and thus illustration and description thereof are omitted.

まず製造に先立つ準備として、ホッパー20には骨材を貯留させ、注入機24には接着剤を充填しておき、製造用データをROM14(またはRAM16等)に記憶しておく。図2との関係では、製造制御装置10は次のように制御する。すなわち、ホッパー20から骨材を送り出した後、粉砕機22によって目的の粒径になるまで当該骨材を粉砕する(ステップS16)。混合比率に従った割合で骨材と接着剤とを混合機26に投入し、骨材のほぼ全体が接着剤でコーティングされるのに適切な時間だけ混合する(ステップS18)。こうしてできた混合物を成形機28に投入し、硬化させるのに適切な時間をかけて形成を行い(ステップS20)、硬化した後に取り出す(ステップS22)。透水ブロックの場合は有孔管を埋め込む必要があるので、ステップS18によってできた混合物を成形機28に投入する前に、所定の位置に有孔管を配置する必要がある。そして、上述した{(1)骨材の粉砕および接着剤の注入→(2)混合→(3)形成→(4)取り出し}のプロセスを繰り返すと、有孔管を埋設した透水ブロックを必要数量だけ製造することができる。  First, as preparation prior to manufacturing, aggregate is stored in the hopper 20, the injection machine 24 is filled with an adhesive, and manufacturing data is stored in the ROM 14 (or the RAM 16). In relation to FIG. 2, the manufacturing control apparatus 10 controls as follows. That is, after sending the aggregate from the hopper 20, the aggregate is pulverized by the pulverizer 22 until the desired particle size is obtained (step S16). Aggregate and adhesive are charged into the mixer 26 at a ratio according to the mixing ratio, and mixed for an appropriate time so that almost the entire aggregate is coated with the adhesive (step S18). The mixture thus formed is charged into the molding machine 28, formed over a period of time appropriate for curing (step S20), and taken out after curing (step S22). In the case of a water permeable block, it is necessary to embed a perforated tube, and therefore, it is necessary to dispose the perforated tube at a predetermined position before the mixture formed in step S18 is put into the molding machine 28. Then, when the above-mentioned process of {(1) aggregate crushing and adhesive injection → (2) mixing → (3) formation → (4) removal} is repeated, the required quantity of water-permeable blocks with a perforated pipe embedded therein Can only be manufactured.

なお、可燃性の骨材(例えば籾殻,木屑,ウッドチップ等)を用いたとしても、当該骨材のほぼ全体を接着剤でコーティングすれば、硬化後は素材自体が表面に表れない。そのため、コーティングした接着剤が熱によって融解されるまでの時間(あるいはその温度)までは、炎をさえぎって燃えにくくなる。
また、製造制御装置10では透水ブロックと同等の部材によって遮水層(本例では遮水コンクリートおよび遮水壁)を必要数量だけ製造することも可能である。
Even if flammable aggregates (eg, rice husks, wood chips, wood chips, etc.) are used, if the entire aggregate is coated with an adhesive, the material itself does not appear on the surface after curing. Therefore, until the time (or the temperature) until the coated adhesive is melted by heat, the flame is blocked and it becomes difficult to burn.
In addition, the production control device 10 can produce a necessary amount of a water shielding layer (in this example, water shielding concrete and a water shielding wall) by a member equivalent to the water permeable block.

〔透水ブロックを用いた施工例〕
上述のようにして製造した透水ブロックを用いて融雪透水装置を施工し、融雪を実現する例について、図4と図5を参照しながら説明する。ここで図4(A)には路床を施工した状態を縦断面図で示し、図4(B)には路床上に遮水コンクリートおよび遮水壁を敷設した状態を縦断面図で示し、図4(C)には遮水コンクリート上に透水ブロックを敷設した状態を縦断面図で示す。また施工後の融雪透水装置について、平面図を図5(A)に示し、図5(A)におけるB−B線縦断面図を図5(B)に示す。
[Example of construction using water-permeable blocks]
An example of constructing a snowmelt water-permeable device using the water-permeable block manufactured as described above and realizing snowmelt will be described with reference to FIGS. 4 and 5. Here, FIG. 4A shows a state in which the roadbed is constructed in a longitudinal sectional view, and FIG. 4B shows in a longitudinal sectional view a state in which impermeable concrete and a water shielding wall are laid on the roadbed, FIG. 4C is a longitudinal sectional view showing a state where a water permeable block is laid on the water-impervious concrete. Moreover, about the snowmelt water-permeable apparatus after construction, a top view is shown to FIG. 5 (A), and the BB longitudinal cross-sectional view in FIG. 5 (A) is shown to FIG. 5 (B).

まず、従前からある(または新たに施工した)側溝30に隣接する地面32を掘り下げて、図4(A)に示すような路床34を施工する。この施工にあたっては、土間コンクリートを敷設する部位の路床34は、側溝30に向かって下り傾斜させる(例えば1〜2%程度の水勾配)。こうすれば、土間コンクリートの施工厚みを均一にできる。  First, the ground 32 adjacent to the existing (or newly constructed) gutter 30 is dug down to construct a road bed 34 as shown in FIG. In this construction, the roadbed 34 where the soil concrete is laid is inclined downward toward the gutter 30 (for example, a water gradient of about 1 to 2%). If it carries out like this, the construction thickness of soil concrete can be made uniform.

路床34を施工し終えた後は、図4(B)に示すように遮水層となる土間コンクリート36aおよび遮水壁36bを施工する。土間コンクリート36aは上記路床34と同様にして側溝30に向かってやや下り傾斜させ、遮水壁36bの天端は水平となるように仕上げるのが望ましい。土間コンクリート36aおよび遮水壁36bのうち一方または双方は、通常のコンクリート(透水率がゼロ)で施工してもよく、透水ブロックより低く設定した透水率からなる透水コンクリートで施工してもよい。  After the construction of the road bed 34, as shown in FIG. 4 (B), the interstitial concrete 36a and the water shielding wall 36b to be a water shielding layer are constructed. It is desirable that the dirt concrete 36a is inclined slightly downward toward the side groove 30 in the same manner as the road bed 34, and the top end of the impermeable wall 36b is finished to be horizontal. One or both of the soil-concrete 36a and the water-impervious wall 36b may be constructed with normal concrete (water permeability is zero), or may be constructed with water-permeable concrete having a water permeability set lower than the water-permeable block.

養生期間を経てコンクリートが固化した後は、図4(C)に示すように多数の孔から水を噴出可能な透水管38や、当該透水管38と取水ポンプ40とを接続する導水管50、側溝30から水を汲み上げて当該導水管50を通じて透水管38に送り込む取水ポンプ40、噴出しなかった水を側溝30に排水する排水管48などのような水廻り部材を設置する。配管(透水管38,導水管50および排水管48など)の破損等を防止するためには、鉄管やHI−VP管などのように凍結に強い材質のものを用いるのが望ましく、融雪を行う冬季には絶えず水を流すのが望ましい。側溝30には管を通すので、予め側溝30に孔をあけておくのが望ましい。当該透水管38を配管する際には、図5(A)に示すように透水管38への送水量を調整する制水弁52と、側溝30への排水量を調整する排水弁42とを設置する。  After the concrete has solidified through the curing period, as shown in FIG. 4 (C), a water permeable tube 38 capable of ejecting water from a large number of holes, a water conduit 50 connecting the water permeable tube 38 and the water intake pump 40, A water supply member such as a water intake pump 40 that draws water from the side groove 30 and sends it to the permeable pipe 38 through the water guide pipe 50, and a drain pipe 48 that drains the water that has not been ejected to the side groove 30 is installed. In order to prevent damage to pipes (permeable pipe 38, conduit pipe 50, drain pipe 48, etc.), it is desirable to use a material resistant to freezing, such as an iron pipe or an HI-VP pipe, which melts snow. It is desirable to keep water flowing constantly in winter. Since the pipe is passed through the side groove 30, it is desirable to make a hole in the side groove 30 in advance. When piping the permeation pipe 38, as shown in FIG. 5A, a water control valve 52 for adjusting the amount of water supplied to the permeation pipe 38 and a drain valve 42 for adjusting the amount of drainage to the side groove 30 are installed. To do.

水廻り部材の設置を終えた後は、コンクリート打ちと同様に、土間コンクリート36a上に透水ブロック46を施工する。すなわち、目的の透水率が得られるように所定の割合で混合した混合物(骨材と接着剤の混合物;図2のステップS18を参照)を流し込み、遮水壁36bの天端とほぼ同一水準になるようにならす。透水ブロック46の天端と透水管38との距離は、一定の距離(例えば2センチメートル)以上を確保するのが望ましい。固化期間を経ると透水ブロック46が固化し、こうして全施工を終えて完成した融雪透水装置44の例を図5に示す。  After the installation of the water-circulating member, the water-permeable block 46 is constructed on the soil concrete 36a in the same manner as the concrete placing. That is, a mixture (a mixture of aggregate and adhesive; see step S18 in FIG. 2) mixed at a predetermined ratio so as to obtain the desired water permeability is poured into the top end of the impermeable wall 36b. To become. The distance between the top end of the water permeable block 46 and the water permeable tube 38 is desirably secured at a certain distance (for example, 2 centimeters) or more. FIG. 5 shows an example of the snow-melting water-permeable device 44 that has been solidified after the solidification period and thus completed the entire construction.

図5(A)に示す例では、融雪透水装置44の透水管38は梯子状に配管している。配管方法は任意であって、当該梯子状以外の形状(例えば格子状,渦巻き状,鋸刃状、矩形状など)で配管してもよい。こうして施工した融雪透水装置44について、取水ポンプ40を作動させ、側溝30から汲み上げた水を図5(A)の矢印に沿って透水管38に流し、図5(B)の矢印のように透水管38の孔から噴出させる。噴出した水は透水ブロック46に浸透してゆき、当該透水ブロック46の天端(すなわち路面F)を浸すようになる。制水弁52および排水弁42を適切に操作することにより、降雪量に応じて路面Fを浸す量を調整することができる。すなわち降雪量が多ければ路面Fを浸す量を多くし、降雪量が少なければ路面Fを浸す量を少なくすれば、適量の水で融雪を確実に行える。  In the example shown in FIG. 5A, the water permeable tube 38 of the snow melting water permeable device 44 is arranged in a ladder shape. The piping method is arbitrary, and piping may be performed in a shape other than the ladder shape (for example, a lattice shape, a spiral shape, a saw blade shape, a rectangular shape, or the like). With respect to the snowmelt water-permeable device 44 thus constructed, the water intake pump 40 is operated, and the water pumped up from the side groove 30 is caused to flow through the water-permeable pipe 38 along the arrow in FIG. 5A, and the water-permeable as shown by the arrow in FIG. It is ejected from the hole of the tube 38. The jetted water penetrates into the water permeable block 46 and immerses the top end (that is, the road surface F) of the water permeable block 46. By appropriately operating the water control valve 52 and the drain valve 42, the amount of the road surface F immersed can be adjusted according to the amount of snowfall. That is, if the amount of snowfall is large, the amount of the road surface F immersed is increased, and if the amount of snowfall is small, the amount of the surface F immersed is decreased, so that snow melting can be reliably performed with an appropriate amount of water.

なお、本例では骨材と接着剤の混合物を土間コンクリート36aおよび遮水壁36bに流し込んで硬化させる工法を適用したが、透水管38を埋設した透水ブロック46(図2のステップS22)を土間コンクリート36aに貼り付ける工法を適用してもよい。後者の工法では現場で固化させる期間が不要となるので、工期を短縮することができる。  In this example, a method of pouring a mixture of aggregate and adhesive into the soil concrete 36a and the water-impervious wall 36b and curing is applied. However, the water-permeable block 46 (step S22 in FIG. 2) in which the water-permeable pipe 38 is embedded is used as the soil. You may apply the construction method affixed on the concrete 36a. The latter method does not require a solidifying period at the site, so the construction period can be shortened.

また、複数の透水ブロックを用いて上述した透水ブロック46を構成する場合には、図6から図8に示すように連結部材54を用いて連結するのが望ましい。すなわち図6(A)に示すように、まず土間コンクリート36a上に透水ブロック46a,46bを敷いておく。その後、透水ブロック46a,46bの相互に対応した切欠き56b(あるいは切欠き56aや切欠き56c等)に対して、連結部材54を上方から矢印のように下ろして嵌める。こうして透水ブロック46a,46bを嵌合させた状態を図6(B)に示す。
二以上の透水ブロック46を連結するのに用いる連結部材54は「接合ジョイント」とも呼ばれ、例えば図7に示すように平面が水中メガネを模した形状をなす板状の部材である。これに対して連結には用いず、透水ブロック46の連結部材54部分の埋め合わせには、端片部材58を用いる。図8には、三行三列に並べて敷いた透水ブロック46に対して12個の連結部材54(クロスハッチで図示)を用いて連結した例を示す。
Further, when the above-described water permeable block 46 is constituted by using a plurality of water permeable blocks, it is desirable to connect them using a connecting member 54 as shown in FIGS. That is, as shown in FIG. 6A, first, the water permeable blocks 46a and 46b are laid on the soil concrete 36a. Thereafter, the connecting member 54 is fitted into the notch 56b (or the notch 56a, the notch 56c, etc.) corresponding to each other of the water permeable blocks 46a, 46b, as shown by an arrow. FIG. 6B shows a state in which the water permeable blocks 46a and 46b are thus fitted.
The connecting member 54 used to connect two or more water permeable blocks 46 is also called a “joint joint”, and is a plate-like member whose plane is shaped like an underwater eyeglass as shown in FIG. 7, for example. On the other hand, the end piece member 58 is used to make up for the connecting member 54 portion of the water-permeable block 46 without being used for connection. FIG. 8 shows an example in which twelve connecting members 54 (illustrated by cross hatching) are connected to the water-permeable blocks 46 arranged in three rows and three columns.

さらに、透水ブロック46を二層構造にする例としては、図9に示すように上層部60と下層部62とで異なる硬度の骨材を用いて構成してもよい。例えば上層部60には硬い材質の骨材{例えばコンクリート片,プラスチック片,石類(砂,砂利,石片等を含む。)など}を用いて形成し、下層部62には当該上層部60よりも軟らかい材質の骨材{例えば籾殻,ゴムチップ,木屑,ウッドチップなど}を用いて形成する。こうすれば、上層部60の硬さによって、車や人が通行しても変形しにくくなる。また、下層部62のクッション機能によって、路床Gの表面の凹凸を吸収して路面をほぼ平坦にすることができる。本例では透水ブロック46を二層構造としたが、透水ブロック46を上層部60と同様に硬い材質の骨材を用いて形成し、土間コンクリート36aを下層部62と同様に軟らかい材質の骨材を用いて形成した場合も同様の作用効果が得られる。
なお、上述したような二層構造に限らず、必要であれば透水率および硬度のうちで一方または双方を変えて三層構造以上の多層構造としてもよい。いずれの場合でも水を浸透させて路面Fを浸すことにより、融雪を行うことができる。
Furthermore, as an example in which the water permeable block 46 has a two-layer structure, the upper layer portion 60 and the lower layer portion 62 may be configured using aggregates having different hardnesses as shown in FIG. For example, the upper layer portion 60 is formed using a hard aggregate (for example, concrete pieces, plastic pieces, stones (including sand, gravel, stone pieces, etc.)), and the lower layer portion 62 has the upper layer portion 60. It is formed using an aggregate of a softer material (for example, rice husk, rubber chip, wood chip, wood chip). If it carries out like this, according to the hardness of the upper layer part 60, it will become difficult to deform | transform even if a car and a person pass. In addition, the cushion function of the lower layer portion 62 can absorb the unevenness on the surface of the road bed G and make the road surface substantially flat. In this example, the water permeable block 46 has a two-layer structure. However, the water permeable block 46 is formed by using a hard material aggregate similarly to the upper layer portion 60, and the soil concrete 36a is a soft material aggregate similar to the lower layer portion 62. The same effect can be obtained when formed using.
In addition to the two-layer structure as described above, if necessary, one or both of the water permeability and hardness may be changed to form a multilayer structure of three or more layers. In any case, snow can be melted by immersing the road surface F by infiltrating water.

上述した実施例1によれば、次のような各効果を得ることができる。
(a1)骨材と接着剤とを混合して所定の透水率で形成した透水ブロック46(透水層3に相当)と、透水ブロック46中に埋設して孔から水を噴出する透水管38(有孔管4に相当)と、透水ブロック46の下方に備えて透水ブロック46よりも透水率を低くした土間コンクリート36aおよび遮水壁36b(遮水層5に相当)とを有し、透水ブロック46の表面(すなわち路面F)に浸透した水によって融雪を行う構成とした{図5を参照}。この構成によれば、路床Gの舗装とともに、熱源を必要とせずに融雪を行える。すなわち透水管38の孔から噴出した水が透水ブロック46に浸透してゆき、当該透水ブロック46の天端たる路面Fが水で浸される。こうなると路面Fに水を張ったと同等の状態となり、雪が直接水に触れて融ける。また、制水弁52や排水弁42を調整すれば透水管38から水を連続して(または間欠的に)噴出させることができるので、降り続く雪でも確実に融かすことができ、路面Fへの積雪を防止できる。さらに、透水管38から噴出する水によって、透水ブロック46に入り込んだゴミやほこりを洗い流すこともできる。土間コンクリート36aおよび遮水壁36bの透水率を透水ブロック46よりも低くしたので、透水管38から噴出する水が路床Gに浸透するのを少なく抑えられる。もし路床Gと同等の透水率で土間コンクリート36aおよび遮水壁36bを形成すれば、土間コンクリート36aおよび遮水壁36bと路床Gとの間に水が溢れるようなことは殆どなくなり、土間コンクリート36aおよび遮水壁36bに浸透した水はそのまま路床Gに浸透してゆく。
According to the first embodiment described above, the following effects can be obtained.
(A1) A water permeable block 46 (corresponding to the water permeable layer 3) formed by mixing aggregate and adhesive and having a predetermined water permeability, and a water permeable pipe 38 (equivalent to the water permeable layer 3) embedded in the water permeable block 46 and ejecting water from the hole. A perforated pipe 4), a soil concrete 36 a and a water shielding wall 36 b (corresponding to the water shielding layer 5) provided below the water permeable block 46 and having a lower water permeability than the water permeable block 46. It was set as the structure which melts snow with the water which permeated the surface (namely, road surface F) of 46 (refer FIG. 5). According to this configuration, snow melting can be performed together with the pavement of the roadbed G without requiring a heat source. That is, the water ejected from the hole of the water permeable tube 38 permeates the water permeable block 46, and the road surface F which is the top end of the water permeable block 46 is immersed in water. If it becomes like this, it will be in the state equivalent to having watered the road surface F, and snow will touch and melt directly. Further, by adjusting the water control valve 52 and the drain valve 42, water can be continuously (or intermittently) ejected from the permeable pipe 38, so that it is possible to reliably melt the snow that continues to fall, and to the road surface F. Can prevent snow accumulation. Furthermore, the dust and the dust that have entered the permeable block 46 can be washed away by the water ejected from the permeable pipe 38. Since the water permeability of the dirt concrete 36a and the water-impervious wall 36b is made lower than that of the water-permeable block 46, the water squirting from the water-permeable pipe 38 can be suppressed from penetrating into the road bed G. If the interstitial concrete 36a and the impermeable wall 36b are formed with the same permeability as the roadbed G, there will be almost no water overflowing between the interstitial concrete 36a and the impermeable wall 36b and the roadbed G. The water that has permeated the concrete 36a and the impermeable wall 36b permeates the road bed G as it is.

また、従来のようにノズルから散水して融雪する方法に比べると、次のような効果を得ることができる。第1に、水は飛散せずに透水ブロック46に留まるので、水温低下が少なく、より多くの雪を融かすことができる。第2に、透水ブロック46の表面(路面F)を濡らすものの、散水のようには広がらないので、走行は歩行の妨げが少ない。第3に、透水ブロック46に浸透した水は、晴天下で道路に散水した水に比べて蒸発しにくいので、路面Fの焼け(ひいてはヒートアイランド現象)を防止して、涼しい環境を提供することができる。第4に、多雨時(例えば梅雨時)には排水弁42を大きく開けることにより排水を促して、路面Fをドライに維持することも可能になる。  In addition, the following effects can be obtained as compared with the conventional method of melting snow by spraying water from a nozzle. First, since water does not scatter and stays in the permeable block 46, there is little drop in water temperature, and more snow can be melted. Secondly, although the surface (road surface F) of the water permeable block 46 is wetted, it does not spread like watering, so traveling is less hindered by walking. Thirdly, the water that has penetrated into the water-permeable block 46 is less likely to evaporate than the water sprayed on the road under fine weather, so it is possible to prevent the burning of the road surface F (and hence the heat island phenomenon) and provide a cool environment. it can. Fourthly, in heavy rain (for example, during the rainy season), it is possible to promote drainage by opening the drain valve 42 to keep the road surface F dry.

なお、融雪を実現するには路面Fを水で浸す必要があるので、当該路面Fをほぼ平坦に施工する必要がある。そのため透水管38から噴出可能な水量との関係によっては、坂道のような傾斜した路面Fへの適用は困難となる場合がある。路面Fには、道路(車道および歩道を含む。)、階段、駐車場、歩道橋、橋梁、護岸等のいずれでも適用できる。  In addition, since it is necessary to immerse the road surface F in water in order to implement | achieve snow melting, it is necessary to construct the said road surface F substantially flatly. Therefore, depending on the relationship with the amount of water that can be ejected from the water permeable pipe 38, application to an inclined road surface F such as a slope may be difficult. Any of roads (including roadways and sidewalks), stairs, parking lots, pedestrian bridges, bridges, revetments, etc. can be applied to the road surface F.

(a2)透水管38に接続し、側溝30(排水路1に相当)を流れる水を汲み上げて送水する取水ポンプ40(ポンプ6に相当)を有する構成とした。透水管38に供給する水は噴出するための圧力が必要となるので、取水ポンプ40の動力源として利用した。この構成によれば、側溝30を流れる排水を取水ポンプ40によって汲み上げて、透水管38の孔から噴出して路面Fを浸す。したがって、排水の有効利用を図ることができる。
一方、平野部では高低差による位置エネルギーを活用することができないことから、河川や湖等のような遠方から引水せざるを得ない。しかし、引水のために管路を設置するのは莫大なコストが必要となり、経済的でない。その反面、取水ポンプ40は安価で調達することができるので、結果として全体の施工コストを低く抑えることができる。
なお、取水ポンプ40を作動させるための電力源は、自然エネルギーを利用した発電装置(例えば風力発電機や太陽電池等)から得るのが望ましい。凍結防止等のために常に透水管38に水を流す場合には、管内に内蔵したプロペラを発電機に接続することにより、取水ポンプ40の作動に必要な電力の一部を賄うこともできる。
(A2) Connected to the water permeable pipe 38 and configured to have a water intake pump 40 (corresponding to the pump 6) that pumps up and flows the water flowing through the side groove 30 (corresponding to the drainage channel 1). Since the water supplied to the permeable pipe 38 requires pressure to be ejected, it was used as a power source for the water intake pump 40. According to this configuration, the drainage flowing through the side groove 30 is pumped up by the water pump 40, and is ejected from the hole of the water permeable pipe 38 to immerse the road surface F. Therefore, effective use of waste water can be achieved.
On the other hand, in the plains, the potential energy due to the height difference cannot be utilized, so water must be drawn from a distant place such as a river or a lake. However, it is not economical to install a pipeline for drawing water because it requires enormous costs. On the other hand, since the water intake pump 40 can be procured at a low cost, the overall construction cost can be kept low as a result.
In addition, as for the electric power source for operating the intake pump 40, it is desirable to obtain from the electric power generating apparatus (for example, a wind power generator, a solar cell, etc.) using natural energy. When water is always passed through the water permeable pipe 38 to prevent freezing or the like, a part of electric power necessary for the operation of the water intake pump 40 can be provided by connecting a propeller built in the pipe to the generator.

(a3)土間コンクリート36a上に敷く複数の透水ブロック46どうしを連結する連結部材54(連結部に相当)を有する構成とした{図6〜図8を参照}。土間コンクリート36a上に敷く複数の透水ブロック46どうしを連結部材54で連結すればズレが生じないので、透水ブロック46相互間に砂(いわゆる砂目地)を注入してズレを防止する必要もない。したがって、複数の透水ブロック46の施工に必要な手間と時間を少なく抑えられる。なお、連結部材54を取り外し可能な構造(例えば切欠き56のナット形状に対するボルト形状)に形成すれば、透水ブロック46の移動や取り替えが容易になる。ズレ等のような不都合がない場合には、透水ブロック46を土間コンクリート36aに貼り付けてもよく、施工に必要な手間と時間が一層少なく抑えられる。(A3) A structure having a connecting member 54 (corresponding to a connecting portion) for connecting a plurality of water permeable blocks 46 laid on the soil concrete 36a {see FIGS. 6 to 8}. If a plurality of water permeable blocks 46 laid on the soil concrete 36a are connected to each other by the connecting member 54, no deviation occurs. Therefore, it is not necessary to inject sand (so-called grain texture) between the water permeable blocks 46 to prevent the deviation. Therefore, labor and time required for the construction of the plurality of water permeable blocks 46 can be reduced. In addition, if the connection member 54 is formed in a detachable structure (for example, a bolt shape with respect to the nut shape of the notch 56), the water permeable block 46 can be easily moved or replaced. If there is no inconvenience such as displacement, the water permeable block 46 may be attached to the soil concrete 36a, and the labor and time required for construction can be further reduced.

(a4)骨材の粒径3〜15mmと透水率との関係に基づいて目的の透水率2.208〜4.082で透水ブロック46を構成した{図2,表1を参照}。この構成によれば、骨材(資材や廃材)は素材によって粒径が異なり、当該粒径の相違によって透水ブロック46の透水率を異ならせることができる。よって骨材の粒径と透水率との関係について実験や実地試験等で予め求めておき、目的の透水率からなる透水ブロック46等を容易に製造することが可能になる。( A4 ) Based on the relationship between the aggregate particle size of 3 to 15 mm and the water permeability, the water permeable block 46 was configured with a target water permeability of 2.208 to 4.082 (see FIG. 2 and Table 1). According to this configuration, the aggregate (material or waste material) has a different particle size depending on the material, and the water permeability of the water permeable block 46 can be varied depending on the difference in the particle size. Therefore, the relationship between the particle size of the aggregate and the water permeability can be obtained in advance through experiments or field tests, and the water-permeable block 46 having the desired water permeability can be easily manufactured.

(a5)透水ブロック46は、硬い材質の骨材を用いて形成した上層部60と、当該上層部60よりも軟らかい材質の骨材を用いて形成した下層部62とを有する構成とした{図9を参照}。この構成によれば、硬い材質の骨材を用いた上層部60は、車や人が通行しても変形しにくい。軟らかい材質の骨材を用いた下層部62は、クッションの役目を果たし、路床G表面の凹凸を吸収して路面Fをほぼ平坦にすることができる。特に歩道に融雪透水装置44を施工(または設置)した場合には、上述したクッション性により歩くときに足にかかる衝撃を少なく抑えるので、歩きやすくなる。(A5) The water permeable block 46 includes an upper layer portion 60 formed using a hard material aggregate and a lower layer portion 62 formed using an aggregate material softer than the upper layer portion 60 {FIG. 9}. According to this configuration, the upper layer portion 60 using the hard aggregate is not easily deformed even when a car or a person passes. The lower layer portion 62 using a soft aggregate serves as a cushion and can absorb the unevenness on the surface of the road bed G to make the road surface F substantially flat. In particular, when the snowmelt water-permeable device 44 is constructed (or installed) on the sidewalk, the shock applied to the foot when walking is reduced due to the cushioning property described above, so that walking becomes easier.

実施例2は雪を融かす水を循環させる例であって、図10を参照しながら説明する。当該図10には、図5に代わる施工例を示す。融雪透水装置44は実施例1と同様であり、図示および説明を簡単にするために実施例2では実施例1と異なる点について説明する。よって実施例1で用いた要素と同一の要素には同一の符号を付して説明を省略する。  Example 2 is an example of circulating water for melting snow, and will be described with reference to FIG. FIG. 10 shows a construction example instead of FIG. The snow-melting and water-permeable device 44 is the same as that of the first embodiment, and in order to simplify the illustration and description, the second embodiment will be described with respect to differences from the first embodiment. Therefore, the same elements as those used in the first embodiment are denoted by the same reference numerals and description thereof is omitted.

図10に示す施工例が図5の施工例と異なるのは、側溝30に代えて貯水溝64を用いた点である。当該貯水溝64には、路面Fから溢れて流れた水を貯水溝64に逃がす凹部66を備える。取水ポンプ40を作動させると、貯水溝64から汲み上げた水を図10(A)の矢印に沿って透水管38に流し、図10(B)の矢印のように透水管38の孔から噴出させる。噴出した水は透水ブロック46に浸透してゆき、当該透水ブロック46の天端(すなわち路面F)を浸すようになる。路面Fから溢れて流れる水は凹部66を通じて貯水溝64に戻し、貯めた水を取水ポンプ40で汲み上げて透水管38から噴出させるので、融雪に必要な水を循環して使用することができる。
本例では路面Fから溢れた水は凹部66を通じて貯水溝64に戻す構成としたが、貯水溝64にあけた小孔を通じて貯水溝64に戻す構成としてもよい。
The construction example shown in FIG. 10 is different from the construction example in FIG. 5 in that a water storage groove 64 is used instead of the side groove 30. The water storage groove 64 is provided with a recess 66 that allows water that has overflowed from the road surface F to escape to the water storage groove 64. When the water intake pump 40 is operated, the water pumped from the water storage groove 64 flows into the water permeable pipe 38 along the arrow of FIG. 10A, and is ejected from the hole of the water permeable pipe 38 as shown by the arrow of FIG. . The jetted water penetrates into the water permeable block 46 and immerses the top end (that is, the road surface F) of the water permeable block 46. The water overflowing from the road surface F is returned to the water storage groove 64 through the recess 66, and the stored water is pumped up by the water pump 40 and ejected from the water permeable pipe 38. Therefore, water necessary for melting snow can be circulated and used.
In this example, the water overflowing from the road surface F is returned to the water storage groove 64 through the recess 66, but may be returned to the water storage groove 64 through a small hole formed in the water storage groove 64.

上述した実施例2によれば、次のような各効果を得ることができる。
(b1)透水ブロック46や土間コンクリート36aを流れてきた水を貯めておく貯水溝64(貯水部2に相当)と、透水管38に接続し貯水部2に貯まった水を汲み上げて送水する取水ポンプ40とを有し、水を循環させて融雪を行う構成とした{図9を参照}。この構成によれば、公園の噴水のように、水を循環させて融雪を行うことができる。取水ポンプ40を動かすためのエネルギーが必要となるものの、雪解け水を利用して循環させれば外部から水を調達しなくて済む。
(b2)その他の要件,構成,作用,作動結果等については実施例1と同様であるので、当該実施例1と同様の効果が得られる{上述した事項(a1)〜(a5)を参照}。
According to the second embodiment described above, the following effects can be obtained.
(B1) A water storage groove 64 (corresponding to the water storage unit 2) for storing water flowing through the water permeable block 46 and the soil concrete 36a, and a water intake pumped up to the water stored in the water storage unit 2 connected to the water permeable pipe 38 The pump 40 is configured to melt snow by circulating water {see FIG. 9}. According to this structure, snow can be melted by circulating water like a fountain in a park. Although energy for moving the water intake pump 40 is required, it is not necessary to procure water from the outside if it is circulated using snowmelt water.
(B2) Other requirements, configurations, operations, operation results, and the like are the same as those of the first embodiment, and thus the same effects as those of the first embodiment can be obtained {see the above-described items (a1) to (a5)}. .

実施例3は位置エネルギーや河川の水圧を利用して透水管38に流す水の圧力を得る例であって、図11を参照しながら説明する。当該図11(A)には位置エネルギーを利用する例を示し、図11(B)には河川の水圧を利用する例である。融雪透水装置44は実施例1と同様であり、図示および説明を簡単にするために実施例3では実施例1と異なる点について説明する。よって実施例1で用いた要素と同一の要素には同一の符号を付して説明を省略する。  The third embodiment is an example of obtaining the pressure of water flowing through the permeable pipe 38 by using potential energy or river water pressure, and will be described with reference to FIG. FIG. 11A shows an example using potential energy, and FIG. 11B shows an example using river water pressure. The snow-melting and water-permeable device 44 is the same as that of the first embodiment, and in order to simplify the illustration and description, the third embodiment will be described with respect to differences from the first embodiment. Therefore, the same elements as those used in the first embodiment are denoted by the same reference numerals and description thereof is omitted.

図11(A)に示すように、透水管38に接続して水を送る導水管50は、標高差H(落差)だけ上方にあるダム68(または湖,池,河川等)から導水するように敷設する。導水管50や透水管38の直径にもよるが、標高差Hは10メートル程度もあれば噴出に必要な水圧が得られる。よって、ビル等の建築物に水を貯めておくタンクを設け、当該タンクに導水管50を接続して水圧を確保することもできる。また、建築物に設けられた雨樋を導水管50の一部として利用することも可能である。  As shown in FIG. 11 (A), the water conduit 50 connected to the permeable pipe 38 to send water is to conduct water from the dam 68 (or lake, pond, river, etc.) above the elevation difference H (head). Lay in. Although depending on the diameters of the water guide pipe 50 and the water permeable pipe 38, if the altitude difference H is about 10 meters, the water pressure required for ejection can be obtained. Therefore, a tank for storing water in a building such as a building can be provided, and the water conduit 50 can be connected to the tank to ensure water pressure. It is also possible to use a gutter provided in the building as a part of the water conduit 50.

図11(B)に示すように、導水管50の取水口50aを河川70に設置する。一般的に河川70は川底から川面に近付くにつれて流れが速くなることから、川面に近い位置のほうが高い水圧を得やすい。よって、河川70の川面に近い位置に取水口50aがくるように設置するのが望ましい。また、二点鎖線で示すように取水口50aの端部側に近付くつれて口径が広がるように(すなわちラッパ状に)導水管50を構成すれば、管内を流れてゆくにつれて口径が小さくなことから水圧が高まるので、傾斜が緩やかな河川70でも所望の水圧を得ることが可能になる。したがって、上流側の河川70から導水するのが望ましいが、下流側の河川70であっても水圧を確保することが可能である。  As shown in FIG. 11B, the water intake 50 a of the water conduit 50 is installed in the river 70. Generally, the flow of the river 70 increases as it approaches the river surface from the bottom of the river, and therefore, a higher water pressure is more easily obtained at a position near the river surface. Therefore, it is desirable to install so that the water intake 50a comes to a position near the river surface of the river 70. Further, if the water guide pipe 50 is configured so that the diameter of the water intake 50a approaches the end of the water intake 50a as shown by a two-dot chain line (that is, in a trumpet shape), the diameter of the water pipe 50 decreases as it flows through the pipe. Therefore, the desired water pressure can be obtained even in the river 70 with a gentle slope. Therefore, it is desirable to conduct water from the upstream river 70, but it is possible to ensure water pressure even in the downstream river 70.

上述した実施例3によれば、次のような各効果を得ることができる。
(c1)透水管38に流す水の圧力は、位置エネルギーまたは河川70の水圧を利用する構成とした{図11を参照}。この構成によれば、標高差や落差等の位置エネルギーを利用したり、河川70を流れる水の圧力を利用して透水管38の水圧を確保するので、取水ポンプ40等の動力源が不要となる。したがって、動力源が不要となる分だけ施工コストを低く抑えることができ、電力が不要となるのでランニングコストもかからない。
(c2)その他の要件,構成,作用,作動結果等については実施例1と同様であるので、当該実施例1と同様の効果が得られる{上述した事項(a1)〜(a5)を参照}。
According to the third embodiment described above, the following effects can be obtained.
(C1) The pressure of the water flowing through the permeable pipe 38 is configured to use potential energy or the water pressure of the river 70 {see FIG. 11}. According to this configuration, since the water pressure of the permeable pipe 38 is ensured by using potential energy such as an altitude difference or a head or by using the pressure of water flowing through the river 70, a power source such as the intake pump 40 is not necessary. Become. Therefore, the construction cost can be kept low as much as the power source becomes unnecessary, and no power is required, so there is no running cost.
(C2) Since other requirements, configurations, operations, operation results, and the like are the same as in the first embodiment, the same effects as in the first embodiment can be obtained {see the items (a1) to (a5) described above} .

他の実施例Other examples

以上では、本発明を実施するための最良の形態について実施例に従って説明したが、本発明は当該実施例に何ら限定されるものではなく、本発明の要旨を逸脱しない範囲内において、種々なる形態で実施し得ることは勿論である。例えば、次に示す各形態を実施することもできる。  In the above, the best mode for carrying out the present invention has been described according to the embodiment. However, the present invention is not limited to the embodiment, and various forms are possible without departing from the gist of the present invention. Of course, it can be implemented. For example, the following embodiments can be implemented.

(d1)上述した実施例1,2,3では、土間コンクリート36a上に敷設する透水ブロック46の透水率をほぼ一定にした{図5,図10を参照}。この形態に代えて、側溝30(または貯水溝64)に近い透水ブロック46ほど透水率を低くするように構成してもよい。例えば図12に示すように、透水ブロック46を透水ブロック46c,透水ブロック46dおよび透水ブロック46eによって構成する。この場合、透水ブロック46c,透水ブロック46d,透水ブロック46eの順番に透水率が高まるように施工する。こうすれば、透水管38から噴出した水は側溝30へ流れてゆくにつれて緩やかになるので、ほぼ均一の透水率からなる透水ブロック46に比べて水勾配を高めることができる。したがって、坂道などのような傾斜した道路等にも適用することが可能になる。(D1) In Examples 1, 2, and 3 described above, the water permeability of the water permeable block 46 laid on the soil concrete 36a was made substantially constant {see FIG. 5 and FIG. 10}. It may replace with this form and you may comprise so that water permeability may become low as the water-permeable block 46 near the side groove | channel 30 (or water storage groove 64). For example, as shown in FIG. 12, the water permeable block 46 includes a water permeable block 46c, a water permeable block 46d, and a water permeable block 46e. In this case, construction is performed so that the water permeability increases in the order of the water permeable block 46c, the water permeable block 46d, and the water permeable block 46e. By so doing, the water ejected from the water permeable tube 38 becomes gentler as it flows into the side groove 30, so that the water gradient can be increased compared to the water permeable block 46 having a substantially uniform water permeability. Therefore, it can be applied to an inclined road such as a slope.

(d2)上述した実施例1,2,3では、透水ブロック46の天端(すなわち路面F)がほぼ平坦となるような道路等に適用した{図5,図10等を参照}。この形態に代えて、透水ブロック46を階段状に設けることにより、階段に適用してもよい。例えば図13に示すように、透水ブロック46を段差のある透水ブロック46f,透水ブロック46gおよび透水ブロック46hによって構成する。本例では簡単のために三段に形成したが、四段以上の必要な段数を形成する場合も同様である。また、取水ポンプ40によって透水管38に送水することで揚水する構成としたが、最上段側に水源がある場合には、当該水源から導水することにより透水ブロック46を水で浸透させる構成としてもよい。この場合には取水ポンプ40等の動力源が不要になるので、施工コストおよびランニングコストを低く抑えることができる。(D2) In the first, second, and third embodiments described above, the present invention is applied to a road or the like in which the top end (that is, the road surface F) of the water permeable block 46 is substantially flat {see FIG. 5, FIG. It replaces with this form and you may apply to a staircase by providing the water-permeable block 46 in a staircase shape. For example, as shown in FIG. 13, the water permeable block 46 includes a water permeable block 46f, a water permeable block 46g, and a water permeable block 46h having steps. In this example, it is formed in three stages for the sake of simplicity, but the same applies to the case where four or more necessary stages are formed. Moreover, although it was set as the structure pumped up by sending water to the permeable pipe 38 with the intake pump 40, when there exists a water source in the uppermost stage side, it is good also as a structure which permeate | transmits the permeable block 46 with water by introducing water from the said water source. Good. In this case, a power source such as the water intake pump 40 becomes unnecessary, so that the construction cost and running cost can be kept low.

(d3)上述した実施例1,2,3では、透水層3(透水ブロック46)と遮水層5(土間コンクリート36aおよび遮水壁36b)とを別体に形成した{図4,図5を参照}。この形態に代えて、透水層3と遮水層5とを一体に形成してもよい。図9に示す例を用いれば、上層部60を透水層3とし、下層部62を遮水層5とする。一体化された透水層3および遮水層5を用いて融雪透水装置44を施工すると、作業工程が少なくなるので、工期を短縮することができる。(D3) In the above-described Examples 1, 2, and 3, the water-permeable layer 3 (water-permeable block 46) and the water-impervious layer 5 (the soil concrete 36a and the water-impervious wall 36b) are separately formed {FIGS. 4 and 5 See}. Instead of this form, the water permeable layer 3 and the water shielding layer 5 may be integrally formed. If the example shown in FIG. 9 is used, let the upper layer part 60 be the water-permeable layer 3, and let the lower layer part 62 be the water-impervious layer 5. When the snowmelt water-permeable device 44 is constructed using the integrated water-permeable layer 3 and the water-impervious layer 5, the work process is reduced, so that the construction period can be shortened.

(d4)上述した実施例1,2,3では、透水ブロック46等の製造に用いる骨材は簡単のために一種類を適用したが、複数種類の骨材を混在させたものを骨材として用いてもよい。例えばコンクリート片とゴム片を混在させると、コンクリート片の硬さとゴム片の弾力性とを兼ねた透水ブロック46等を製造することが可能になる。このように、路床Gの舗装を施す場所等に応じて混在させる骨材の種類を異ならせて透水ブロック46等を製造すれば、融雪が可能な路面Fの舗装を簡単に行えるようになる。(D4) In the first, second, and third embodiments described above, one kind of aggregate is used for manufacturing the water-permeable block 46 and the like for simplicity, but a mixture of a plurality of kinds of aggregate is used as the aggregate. It may be used. For example, when a concrete piece and a rubber piece are mixed, it is possible to manufacture a water permeable block 46 or the like that has both the hardness of the concrete piece and the elasticity of the rubber piece. In this way, if the water permeable block 46 and the like are manufactured by changing the type of aggregate to be mixed according to the place where the roadbed G is to be paved, the road surface F capable of melting snow can be easily paved. .

(d5)上述した実施例1,2,3では、側溝30(または貯水溝64)から汲み上げた水をそのまま透水管38に送水する構成とした{図5,図10を参照}。この形態に代えて、取水ポンプ40や融雪透水装置44(透水ブロック46,土間コンクリート36a)などに熱源(ヒーター)を備える構成としてもよい。こうすれば路面Fを浸す水の温度を上げることができるので、融雪をより効果的に行うことができる。(D5) In the first, second, and third embodiments described above, the water pumped up from the side groove 30 (or the water storage groove 64) is directly supplied to the water permeable pipe 38 {see FIGS. 5 and 10}. Instead of this configuration, a heat source (heater) may be provided in the water intake pump 40, the snow melting water transmission device 44 (water transmission block 46, soil concrete 36a), or the like. If it carries out like this, since the temperature of the water which immerses the road surface F can be raised, snow melting can be performed more effectively.

本発明の構成を模式的に示す縦断面図である。It is a longitudinal section showing the composition of the present invention typically. 製造工程を説明するフローチャートである。It is a flowchart explaining a manufacturing process. 製造装置を説明するブロック図である。It is a block diagram explaining a manufacturing apparatus. 路床上に施工する例を示す縦断面図である。It is a longitudinal cross-sectional view which shows the example constructed on a roadbed. 融雪透水装置の一施工例を示す図である。It is a figure which shows one construction example of a snow melting water-permeable device. 連結部材を用いて透水ブロックを連結する例を示す図である。It is a figure which shows the example which connects a water permeable block using a connection member. 連結部材および端片部材の各例を示す斜視図である。It is a perspective view which shows each example of a connection member and an end piece member. 路床上に敷き詰めて舗装した状態の透水ブロックを示す平面図である。It is a top view which shows the water permeable block of the state paved and paved on the roadbed. 透水ブロックを二層構造にする例を示す図である。It is a figure which shows the example which makes a water-permeable block a two-layer structure. 融雪透水装置の一施工例を示す図である。It is a figure which shows one construction example of a snow melting water-permeable device. 位置エネルギーや河川の水圧を利用して透水管に流す水の圧力を得る例を示す図である。It is a figure which shows the example which obtains the pressure of the water which flows into a permeation | transmission pipe | tube using a potential energy or the water pressure of a river. 融雪透水装置の一施工例を示す図である。It is a figure which shows one construction example of a snow melting water-permeable device. 融雪透水装置の一施工例を示す図である。It is a figure which shows one construction example of a snow melting water-permeable device.

符号の説明Explanation of symbols

1 排水路
2 貯水部
3 透水層
4 有孔管
5 遮水層
6 ポンプ
F 路面
G 路床(または路盤)
10 製造制御装置
12 CPU
14 ROM
16 RAM
20 ホッパー
22 粉砕機
24 注入機
26 混合機
28 成形機
30 側溝(排水路)
32 地面
34 路床(または路盤)
36a 土間コンクリート(遮水層)
36b 遮水壁(遮水層)
38 透水管(有孔管)
40 取水ポンプ(ポンプ;動力源)
42 排水弁
44 融雪透水装置
46(46a,46b,…) 透水ブロック(透水層)
48 排水管
50 導水管
52 制水弁
54 連結部材(連結部)
56(56a,56b,…) 切欠き
58 端片部材(連結部)
60 上層部(透水層)
62 下層部(透水層)
64 貯水溝(貯水部)
66 凹部
68 ダム
70 河川
DESCRIPTION OF SYMBOLS 1 Drainage channel 2 Reservoir part 3 Water permeable layer 4 Perforated pipe 5 Water shielding layer 6 Pump F Road surface G Subgrade (or roadbed)
10 Manufacturing control device 12 CPU
14 ROM
16 RAM
20 Hopper 22 Crusher 24 Injection machine 26 Mixer 28 Molding machine 30 Side groove (drainage)
32 Ground 34 Roadbed (or roadbed)
36a Dirt concrete (water shielding layer)
36b Impermeable wall (impermeable layer)
38 Permeable pipe (perforated pipe)
40 Water intake pump (pump; power source)
42 Drain valve 44 Snow melting water-permeable device 46 (46a, 46b, ...) Water-permeable block (water-permeable layer)
48 Drain pipe 50 Conduit pipe 52 Water control valve 54 Connecting member (connecting part)
56 (56a, 56b, ...) Notch 58 End piece member (connecting portion)
60 Upper layer (permeable layer)
62 Lower layer (permeable layer)
64 Reservoir (Reservoir)
66 Concavity 68 Dam 70 River

Claims (7)

骨材と接着剤とを混合し、前記骨材の粒径3〜15mmと透水率との関係に基づいて目的の透水率2.208〜4.082で形成した透水層と、
前記透水層中に埋設し、水圧によって孔から水を噴出する有孔管と、
前記透水層の下方に備え、前記透水層よりも透水率を低くした遮水層とを有し、
前記透水層の表面側に浸透させて水を張ったような状態で融雪を行う融雪透水装置。
Aggregate and adhesive are mixed, and a water permeable layer formed at a target water permeability of 2.208 to 4.082 based on the relationship between the particle size of 3 to 15 mm of the aggregate and the water permeability,
A perforated pipe embedded in the water permeable layer and ejecting water from the hole by water pressure;
A water shielding layer having a water permeability lower than that of the water permeable layer, provided below the water permeable layer,
A snow-melting water-permeable device that melts snow in a state where water is permeated into the surface side of the water-permeable layer.
請求項1に記載した融雪透水装置であって、
有孔管から水を連続して噴出させ、透水層の表面側に張ったような状態の水が側溝に流れる構成とした融雪透水装置。
The snow melting water-permeable device according to claim 1,
A snow melting water-permeable device configured such that water is continuously ejected from a perforated tube, and water in a state of being stretched on the surface side of the water-permeable layer flows into a side groove .
請求項1または2に記載した融雪透水装置であって、
路面を浸す量を調整する弁を有する融雪透水装置。
The snow melting water-permeable device according to claim 1 or 2 ,
A snowmelt water-permeable device having a valve for adjusting an amount of dipping the road surface .
請求項1から3のいずれか一項に記載した融雪透水装置であって、
有孔管に流す水の圧力は、位置エネルギーまたは河川の水圧を利用する構成とした融雪透水装置。
The snow melting water-permeable device according to any one of claims 1 to 3 ,
A snowmelt water-permeable device that uses potential energy or river water pressure as the pressure of water flowing through the perforated pipe.
請求項1から4のいずれか一項に記載した融雪透水装置であって、
有孔管に接続し、排水路を流れる水を汲み上げて送水するポンプを有する融雪透水装置。
The snow melting water-permeable device according to any one of claims 1 to 4 ,
A snowmelt water-permeable device having a pump connected to a perforated pipe and pumping up and flowing water flowing through a drainage channel .
請求項1から5のいずれか一項に記載した融雪透水装置であって、
路床または路盤に隣接してかつ上部を開放して設けられ、透水層または遮水層を流れてきた水を貯めておく貯水部と、
有孔管に接続し、前記貯水部に貯まった水を汲み上げて送水するポンプとを有し、
水を循環させて融雪を行う融雪透水装置。
The snow melting water-permeable device according to any one of claims 1 to 5,
A water storage part that is adjacent to the roadbed or roadbed and that is open at the top, and stores water that has flown through the water-permeable layer or the water-impervious layer;
A pump connected to the perforated pipe and pumping up and storing the water stored in the water storage section;
A snowmelt permeable device that melts snow by circulating water .
請求項1から6のいずれか一項に記載した融雪透水装置であって、
透水層は、硬い材質の骨材を用いて形成した上層部と、当該上層部よりも軟らかい材質の骨材を用いて形成した下層部とを有する融雪透水装置。
The snow melting water-permeable device according to any one of claims 1 to 6,
The water permeable layer is a snow melting water permeable device having an upper layer portion formed using a hard material aggregate and a lower layer portion formed using an aggregate material softer than the upper layer portion.
JP2003384345A 2003-10-09 2003-10-09 Snow melting water transmission device Expired - Fee Related JP3867247B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003384345A JP3867247B2 (en) 2003-10-09 2003-10-09 Snow melting water transmission device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003384345A JP3867247B2 (en) 2003-10-09 2003-10-09 Snow melting water transmission device

Publications (2)

Publication Number Publication Date
JP2005113658A JP2005113658A (en) 2005-04-28
JP3867247B2 true JP3867247B2 (en) 2007-01-10

Family

ID=34544781

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003384345A Expired - Fee Related JP3867247B2 (en) 2003-10-09 2003-10-09 Snow melting water transmission device

Country Status (1)

Country Link
JP (1) JP3867247B2 (en)

Also Published As

Publication number Publication date
JP2005113658A (en) 2005-04-28

Similar Documents

Publication Publication Date Title
JP5258898B2 (en) Pavement body, pavement construction method
US10385520B2 (en) Sports field construction
CN100441775C (en) Method of upgrading gravel and/or dirt roads and a composite road resulting therefrom
CN106869143A (en) For environmental combination bank protection and the construction method of the punishment of road runoff pollution
CN109914240B (en) Construction method for treating bump at bridge head by polyurethane high polymer grouting under traffic conditions
CN100582371C (en) Construction method of environment-friendly permeable pavement
JP3867247B2 (en) Snow melting water transmission device
JP4147154B2 (en) Water-retaining pavement and its construction method
CN107447617B (en) A dust-proof curing process for temporary construction roads
KR100926538B1 (en) Temperature and humidity control system for sidewalks and bicycle roads through the circulation of geothermal and rainwater, and eco-friendly walkways and construction methods for bicycle roads
JP4997482B2 (en) Artificial grass ground construction method
JP4133594B2 (en) Water-retaining pavement structure and construction method
KR20110100805A (en) Pavement and road pavement methods including multiple permeable and repair layers
JP2006144280A (en) Water-retentive pavement structure
JP2004068465A (en) Pumping pavement and its paving method
JP3829306B2 (en) Pavement
JP2006144548A (en) Paving body, its manufacturing device, and road paving method using the same
JP2003160906A (en) Pavement with both permeable/drainable and water retentive functions, and method for its work execution
JP4052563B2 (en) Pumped pavement
JP2797012B2 (en) Paving equipment
CN209277102U (en) A kind of TBS ecological slope protection
JP2006097447A (en) Snow-melting panel and snow-melting device
JP4681423B2 (en) Water retentive pavement and construction method of water retentive pavement
JP3096882U (en) Snow melting pavement combining permeable pavement and linear heater
Chen Maintenance and improvement in the ecological environment of the island: The design and application in high bearing structure pervious pavement

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051213

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060516

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060602

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060919

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060927

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121020

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121020

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151020

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees