[go: up one dir, main page]

JP3866355B2 - Method for removing dissolved selenium from selenium-containing effluent - Google Patents

Method for removing dissolved selenium from selenium-containing effluent Download PDF

Info

Publication number
JP3866355B2
JP3866355B2 JP04290897A JP4290897A JP3866355B2 JP 3866355 B2 JP3866355 B2 JP 3866355B2 JP 04290897 A JP04290897 A JP 04290897A JP 4290897 A JP4290897 A JP 4290897A JP 3866355 B2 JP3866355 B2 JP 3866355B2
Authority
JP
Japan
Prior art keywords
selenium
ions
electrolysis
effluent
titanium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP04290897A
Other languages
Japanese (ja)
Other versions
JPH10219490A (en
Inventor
宏則 立岩
浩之 永本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Original Assignee
Mitsui Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP04290897A priority Critical patent/JP3866355B2/en
Publication of JPH10219490A publication Critical patent/JPH10219490A/en
Application granted granted Critical
Publication of JP3866355B2 publication Critical patent/JP3866355B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Removal Of Specific Substances (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)
  • Electrolytic Production Of Metals (AREA)

Description

【0001】
【発明の属する技術分野】
本発明はセレン、特に6価セレンを溶存含有するセレン含有排液中から電解法によりセレンをメタルとして除去する方法に関する。
【0002】
【従来の技術】
一般に、銅精錬等の電解沈殿物の処理工程等から排出される排液中にはセレンが含有される場合があり、セレンは有害であり環境汚染を生じるため、工場排出水中の許容限度は0.1ppmであり、排液発生源でこれら有害なセレンを極力除去する処理が必要となる。
【0003】
従来、前記排液中のセレンを除去する方法として、例えば特公昭48−30558号公報、特開平5−78105号および特開平6−79286号公報等に示されるように、鉄塩等の沈殿剤を添加し、溶液のpHを調整して排液中に溶存しているセレンを水酸化鉄等の沈殿物と共沈させる方法、あるいはUSP596117に示されるように排液中に亜鉛粉を添加しセレンを亜鉛により還元しセレンをメタルとして除去する方法、鉄イオンを添加しセレンを亜鉛により還元しセレンをメタルとして除去する方法が開示されている。しかしながら、上記従来方法のうち、セレンを水酸化鉄等の沈殿物と共沈させる方法では、+6価のセレンイオンに対してはほとんど除去効果がないという問題点を有し、また亜鉛粉等の還元剤の添加により+6価のセレンイオンをメタルに還元して除去する方法では大過剰の亜鉛粉等の還元剤を必要とし、コスト的に問題を有するものであった。
【0004】
一方、前記のような沈殿剤あるいは還元剤等の添加に代えて、排液を電解に供することにより排液中に溶存しているセレンをメタルとして除去する電解法が考えられる。通常の電解法では−2価および+4価のセレンイオンは0.1ppm以下まで容易に除去できるが、+6価のセレンイオンについては常温もしくは常温に近い処理温度において、0.1ppm以下まで除去するには極めて長時間の電解が必要であり、実用的ではなかった。
【0005】
【発明が解決しようとする課題】
本発明はセレン、特に6価セレンを溶存含有するセレン含有排液中から電解法により常温もしくは常温に近い温度でセレンをメタルとして効率良く、短時間にかつ経済的に除去し得る方法を提供することを目的とするものである。
【0006】
【課題を解決するための手段】
本発明方法は、6価セレン含有排液中から溶存セレンを除去する方法であって、該排液中にチタンイオンを10.3〜500ppm添加して、pH2.5以下で電解することにより、6価セレンをメタルとして除去することを特徴とするものである。
【0007】
【発明の実施の形態】
本発明において、−2価、4価のセレンイオンは電解法で0.1ppm以下まで容易に除去できるが、6価のセレンイオンは−2価および4価のセレンイオンと比べて電解温度が低いほど除去効率が低下し、常温、特に20℃以下の温度で6価セレンの電解除去を行う場合は、従来は非常に長時間の電解が必要であった。本発明では、処理排液中にチタンイオンを10.3〜500ppm添加して電解することにより、6価のセレンの電解効率が向上し、常温、特に20℃以下の低温でも短時間に6価セレンがメタルとして電解除去できる。
【0008】
本発明において、排液中にチタンイオンを添加することにより電解効率が向上することの作用は、チタンイオンがセレンの電解還元反応の触媒として働くためと思われる。このチタンイオンの添加効果を得るためには、少なくとも10.3ppm以上の濃度となるように排液中に添加させることが必要である。しかし、チタンイオンが500ppmを越えると後工程でスラッジ量が増加するようになりその処理に経費が嵩むようになるため、10.3〜500ppmの範囲、好ましくは50〜120ppmとする。チタンイオンの添加は、通常硫酸チタン溶液、塩化チタン溶液等を添加することにより行う。
【0009】
本発明方法を実施するに際し、処理排液のpHは好ましくは2.5以下、より好ましくは1以下とし、通常は適宜の酸を添加してpH調整を行うようにするが、チタンイオン添加源が硫酸チタンである場合には硫酸を用いることが好ましい。
【0010】
【実施例1】
6価のセレンイオンを10ppm含有する液1リットルに約30%硫酸チタン溶液を添加し表1に示すチタンイオン濃度(電解前)にそれぞれ調整し、硫酸を添加して処理液のpHを1または2に調整し、濾過した液を表1に示す温度で、カソードには25cm2のステンレス板(SUS 304)、アノードには25cm2のチタン白金板を用いて、0.5Aの定電流電解を行った。電解前、電解1時間後、3時間後、6時間後、12時間後および60時間後のセレン濃度を分析し、その結果を表1に示す。また電解60時間後のチタンイオン濃度を分析し、その結果をも併せて表1に示す。
【0011】
【表1】

Figure 0003866355
【0012】
【比較例】
実施例で用いたと同様の液にチタンイオンを添加しない場合(比較例1)および鉄イオン1g/lを添加した(比較例2)こと以外は同様に電解処理して液中のセレン濃度を一定の電解時間経過毎に分析した。その結果を表2に示す。
【0013】
【表2】
Figure 0003866355
【0014】
表1より、処理液温度が60℃では6時間以内にほぼ完全にセレンが除去され、20℃および40℃では12時間以内にセレンがほぼ除去された。処理液温度が15℃でも60時間後にはセレンがほぼ完全に除去されることが分かる。一方、チタンイオンを添加しない比較例1および鉄イオンを添加した従来例を示す比較例2では処理液温度が15℃であると、60時間経過後にもかなりのセレンが液中に残留していることが分かる。
【0015】
【発明の効果】
以上のように、本発明によれば、従来除去が困難とされていた+6価のセレンイオンを含有する排液でも常温、もしくは常温に近い比較的低温で、かつ短時間に効率良くに除去することが可能になる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for removing selenium as a metal by electrolysis from selenium-containing effluent containing dissolved selenium, particularly hexavalent selenium.
[0002]
[Prior art]
Generally, selenium is sometimes contained in the effluent discharged from the electrolytic precipitation treatment process such as copper refining, and since selenium is harmful and causes environmental pollution, the allowable limit in factory effluent is 0. Therefore, it is necessary to remove the harmful selenium as much as possible at the drainage generation source.
[0003]
Conventionally, as a method for removing selenium in the effluent, as shown in, for example, Japanese Patent Publication No. 48-30558, Japanese Patent Application Laid-Open No. 5-78105, Japanese Patent Application Laid-Open No. 6-79286, etc. And adjusting the pH of the solution to co-precipitate selenium dissolved in the drainage with a precipitate such as iron hydroxide, or adding zinc powder to the drainage as shown in USP596117 A method of reducing selenium with zinc and removing selenium as metal, and a method of adding iron ions and reducing selenium with zinc to remove selenium as metal are disclosed. However, among the above conventional methods, the method in which selenium is co-precipitated with a precipitate such as iron hydroxide has a problem that there is almost no removal effect on +6 valent selenium ions. The method of reducing and removing +6 valent selenium ions by adding a reducing agent requires a large excess of reducing agent such as zinc powder, and has a problem in cost.
[0004]
On the other hand, instead of adding a precipitating agent or a reducing agent as described above, an electrolytic method is conceivable in which selenium dissolved in the effluent is removed as a metal by subjecting the effluent to electrolysis. In the usual electrolysis method, -2 and +4 selenium ions can be easily removed to 0.1 ppm or less, but +6 selenium ions can be removed to 0.1 ppm or less at room temperature or a processing temperature close to room temperature. Requires very long electrolysis and was not practical.
[0005]
[Problems to be solved by the invention]
The present invention provides a method capable of efficiently removing selenium as a metal at a room temperature or near a room temperature by electrolysis from a selenium-containing effluent containing dissolved selenium, particularly hexavalent selenium, in a short time and economically. It is for the purpose.
[0006]
[Means for Solving the Problems]
The present invention is a method for removing dissolved selenium from in hexavalent selenium-containing effluent, a titanium ion 10.3 ~500Ppm added to exhaust fluid, by electrolysis in pH2.5 or less, Hexavalent selenium is removed as metal.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
In the present invention, -2 and tetravalent selenium ions can be easily removed by electrolysis up to 0.1 ppm or less, but hexavalent selenium ions have a lower electrolysis temperature than -2 and 4 valent selenium ions. As the removal efficiency is lowered, the electrolysis of hexavalent selenium at room temperature, particularly at a temperature of 20 ° C. or less, has conventionally required very long electrolysis. In the present invention, the electrolysis efficiency of hexavalent selenium is improved by adding 10.3 to 500 ppm of titanium ions in the treated effluent, and the hexavalent selenium is improved in a short time even at room temperature, particularly at a low temperature of 20 ° C. or less. Selenium can be electrolytically removed as a metal.
[0008]
In the present invention, the effect that the electrolytic efficiency is improved by adding titanium ions to the effluent seems to be because the titanium ions act as a catalyst for the electroreduction reaction of selenium. In order to obtain this titanium ion addition effect, it is necessary to add it to the drainage so that the concentration is at least 10.3 ppm. However, if the titanium ion exceeds 500 ppm, the amount of sludge increases in the subsequent process and the cost for the treatment increases, so the range is from 10.3 to 500 ppm, preferably from 50 to 120 ppm. The addition of titanium ions is usually performed by adding a titanium sulfate solution, a titanium chloride solution, or the like.
[0009]
In carrying out the method of the present invention, the pH of the treatment waste liquid is preferably 2.5 or less, more preferably 1 or less, and usually an appropriate acid is added to adjust the pH. When is a titanium sulfate, it is preferable to use sulfuric acid.
[0010]
[Example 1]
About 30% titanium sulfate solution is added to 1 liter of a solution containing 10 ppm of hexavalent selenium ions to adjust the titanium ion concentration shown in Table 1 (before electrolysis), and sulfuric acid is added to adjust the pH of the treatment solution to 1 or 2 and the filtered liquid was subjected to constant current electrolysis of 0.5 A using a 25 cm 2 stainless steel plate (SUS 304) for the cathode and a 25 cm 2 titanium platinum plate for the anode at the temperature shown in Table 1. went. Selenium concentrations before and after electrolysis, 1 hour, 3 hours, 6 hours, 12 hours and 60 hours were analyzed, and the results are shown in Table 1. Further, the titanium ion concentration after 60 hours of electrolysis was analyzed, and the results are also shown in Table 1.
[0011]
[Table 1]
Figure 0003866355
[0012]
[Comparative example]
The same selenium concentration in the solution was obtained by the same electrolytic treatment except that no titanium ions were added to the same solution used in the examples (Comparative Example 1) and 1 g / l of iron ions were added (Comparative Example 2). Each time the electrolysis time of was analyzed. The results are shown in Table 2.
[0013]
[Table 2]
Figure 0003866355
[0014]
From Table 1, selenium was almost completely removed within 6 hours when the treatment liquid temperature was 60 ° C, and selenium was almost removed within 12 hours at 20 ° C and 40 ° C. It can be seen that selenium is almost completely removed after 60 hours even at a treatment liquid temperature of 15 ° C. On the other hand, in Comparative Example 1 in which titanium ions are not added and in Comparative Example 2 in which conventional ions are added, if the treatment liquid temperature is 15 ° C., considerable selenium remains in the liquid even after 60 hours. I understand that.
[0015]
【The invention's effect】
As described above, according to the present invention, drainage containing +6 selenium ions, which has conventionally been difficult to remove, can be efficiently removed at a normal temperature or a relatively low temperature close to normal temperature in a short time. It becomes possible.

Claims (1)

6価セレン含有排液中から溶存セレンを除去する方法であって、該排液中にチタンイオンを10.3〜500ppm添加して、pH2.5以下で電解することにより、6価セレンをメタルとして除去することを特徴とするセレン含有排液からの溶存セレンの除去方法。A method of removing dissolved selenium from a hexavalent selenium-containing effluent, adding 10.3 to 500 ppm of titanium ions to the effluent , and electrolyzing at a pH of 2.5 or less to convert the hexavalent selenium into a metal. A method for removing dissolved selenium from a selenium-containing effluent, wherein
JP04290897A 1997-02-12 1997-02-12 Method for removing dissolved selenium from selenium-containing effluent Expired - Fee Related JP3866355B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04290897A JP3866355B2 (en) 1997-02-12 1997-02-12 Method for removing dissolved selenium from selenium-containing effluent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04290897A JP3866355B2 (en) 1997-02-12 1997-02-12 Method for removing dissolved selenium from selenium-containing effluent

Publications (2)

Publication Number Publication Date
JPH10219490A JPH10219490A (en) 1998-08-18
JP3866355B2 true JP3866355B2 (en) 2007-01-10

Family

ID=12649141

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04290897A Expired - Fee Related JP3866355B2 (en) 1997-02-12 1997-02-12 Method for removing dissolved selenium from selenium-containing effluent

Country Status (1)

Country Link
JP (1) JP3866355B2 (en)

Also Published As

Publication number Publication date
JPH10219490A (en) 1998-08-18

Similar Documents

Publication Publication Date Title
KR100240470B1 (en) Retrieving and recycling method for sn plating solution
US5326439A (en) In-situ chromate reduction and heavy metal immobilization
KR20140122274A (en) Electrode for electrochemical abatement of chemical oxygen demand of industrial wastes
JP3866355B2 (en) Method for removing dissolved selenium from selenium-containing effluent
JP3842861B2 (en) Method for electrolytic removal of hexavalent selenium
CN111333152A (en) Method for treating high-concentration nickel-phosphorus-containing organic waste liquid through electrolytic oxidation
CN113697905B (en) Method for synchronously treating comprehensive wastewater
JP4071041B2 (en) Regeneration method of copper alloy pickling waste liquid
JP3254580B2 (en) Etching waste liquid treatment method and etching waste liquid treatment apparatus
JPH09279382A (en) Removing method of selenium from waste liquid containing selenium
JP3144906B2 (en) Method for removing fluorine ions from zinc electrolyte
JPH0615253A (en) Pretreatment method for thermal hydrolysis of cyanide-containing waste liquid
JP2005177647A (en) Method and apparatus for removing selenium in wastewater
SU709551A1 (en) Method of iron removal from water
JPS6380897A (en) Electrolytic oxidizing treatment of waste plating liquid containing phosphite ion
JPS5923875B2 (en) Processing method for chemical cleaning waste liquid
JP2002205030A (en) Electrochemical recovery of heavy metals from fly ash.
JP2003103265A (en) Method for treating molybdenum-containing acidic wastewater
JPH10263557A (en) Treatment of selenium-containing waste water
EP2944709B1 (en) A method for electrowinning of metallic chromium from acidic waste electrolytes
JP2000015264A (en) Treatment method for fluorine-containing water
CN116514309A (en) Electrochemical-based recycling treatment method for copper-containing and silicon-containing alkaline wastewater
JPH0527093A (en) Treatment method of radioactive metal sludge
JPH08199366A (en) Treatment of waste electroless nickel plating solution
JP2012001760A (en) Method for refining nickel chloride solution

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060411

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060606

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060926

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061005

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees