[go: up one dir, main page]

JP3864590B2 - Battery charge state detection device - Google Patents

Battery charge state detection device Download PDF

Info

Publication number
JP3864590B2
JP3864590B2 JP33474298A JP33474298A JP3864590B2 JP 3864590 B2 JP3864590 B2 JP 3864590B2 JP 33474298 A JP33474298 A JP 33474298A JP 33474298 A JP33474298 A JP 33474298A JP 3864590 B2 JP3864590 B2 JP 3864590B2
Authority
JP
Japan
Prior art keywords
soc
battery
electromotive voltage
charge
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP33474298A
Other languages
Japanese (ja)
Other versions
JP2000166109A (en
Inventor
義晃 菊池
佳行 中山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP33474298A priority Critical patent/JP3864590B2/en
Publication of JP2000166109A publication Critical patent/JP2000166109A/en
Application granted granted Critical
Publication of JP3864590B2 publication Critical patent/JP3864590B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Landscapes

  • Tests Of Electric Status Of Batteries (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、バッテリの充電状態(以下SOCという)を検出するバッテリ充電状態検出装置、特にバッテリ電流及びバッテリ電圧の両方に基づいてSOCを検出するものに関する。
【0002】
【従来の技術】
従来より、バッテリの充電状態を検出する充電状態(SOC)検出装置が知られている。例えば、電気自動車のバッテリについてのSOC検出装置は、通常バッテリの電流(充放電電流)を積算し、SOCを検出している。電気自動車においては、回生制動による充電は期待できるが、走行中は基本的にバッテリは放電する。そして、走行しないときに充電器によってバッテリを満充電にすることで充電状態を回復する。従って、SOC検出装置は、基本的に満充電からの放電電流を積算し、SOCを検出している。携帯型のパーソナルコンピュータなど各種機器においても、基本的に同様であり、満充電からの放電量を積算することでバッテリのSOCを検出している。
【0003】
【発明が解決しようとする課題】
エンジン発電機を搭載するハイブリッド車においても、そのバッテリのSOC検出には、バッテリ電流の積算を利用する場合が多い。ところが、ハイブリッド車においては、バッテリSOCが50%程度に維持されるように、充放電を制御する。従って、長期間バッテリが満充電とならず、バッテリの充放電電流を長期間積算し、SOCを検出することになる。充放電電流の検出の精度はそれ程悪くはないが、長期間充放電電流の検出を繰り返すと、その誤差がかなり大きくなってしまう。
【0004】
本発明は、上記課題に鑑みなされたものであって、簡単な手段で電流積算によるSOC検出を補正して、より正確なSOC検出を行うことができるバッテリ充電状態検出装置を提供することを目的とする。
【0005】
【課題を解決するための手段】
本発明は、バッテリの充電状態(以下SOCという)を検出するバッテリ充電状態検出装置において、バッテリの充放電電流の積算により積算SOCを求める積算SOC検出手段と、バッテリの充放電電流とバッテリの電圧を検出しこれらに基づいてバッテリの起電圧 0 を求めると共に、求められた起電圧V 0 と予め記憶している起電圧−SOC特性に基づいてSOCを求めるSOC検出手段と、求められた積算SOC及びSOCの差ΔSOCに基づいて積算SOCを補正することで、バッテリSOCを算出するSOC算出手段と、を有し、前記SOC算出手段は、積算SOC及び実SOCの差ΔSOCが所定値γを超えたときに、積算SOCを、予め決定されている量であって前記所定値γより小さな量βだけ実SOCに近づけることでバッテリのSOCを算出することを特徴とする。
【0006】
このように、本発明では、バッテリの充放電電流の積算により積算SOCを検出する。一方、バッテリの電圧及び電流からバッテリの起電圧を求め、この起電圧と予め記憶している起電圧−SOC特性から実SOCを求める。この実SOCはそのときの電流電圧から求められるもので、誤差は大きいが誤差の蓄積はない。一方、積算SOCは、精度は高いが誤差が蓄積される。
【0007】
そこで、両者の差が大きくなった場合には、積算SOCの誤差が蓄積されたと判断し、積算SOCを実SOCに近づける。これによって、積算SOCの大きな誤差を解消することができる。積算SOCを検出したSOCとして用いることで、好適なSOC検出が行える。
【0008】
また、積算SOCからそれに対応する起電圧V 0SOC を求め、起電圧V 0SOC と起電圧V 0 の差が所定値αを越えたときに積算SOCをβだけ補正してもよい。
【0009】
【発明の実施の形態】
以下、本発明の実施の形態(以下実施形態という)について、図面に基づいて説明する。
【0010】
図1は、本発明のバッテリ充電状態検出装置をハイブリッド車に適用したシステムの構成を示すブロック図である。バッテリ10は、多数のバッテリセルからなっている。本実施形態では、このバッテリ10は、ニッケル水素バッテリであり、20個のバッテリセルをまとめて1ブロックとして、このブロックを12個接続している。従って、240個のバッテリセルを直列接続した300V程度の出力電圧を有している。
【0011】
バッテリ10の電圧は、電圧検出器12で計測され、電池ECU14に供給される。また、この電池ECU14には、バッテリ電流を検出する電流センサ16も接続されており、バッテリ電流が電池ECU14に供給される。
【0012】
そして、この電池ECU14は、供給される各種データに基づいて、バッテリ10の充電状態(SOC)を検出し、これをHVECU18に供給する。
【0013】
HVECU18は、アクセル開度、ブレーキ踏み込み量、車速などの情報に基づいてトルク指令を決定し、モータジェネレータ22の出力がトルク指令に合致するように制御する。すなわち、HVECU18は、インバータ20におけるスイッチングを制御して、モータジェネレータ22の出力がトルク指令に合致したものに制御する。
【0014】
また、HVECU18は、電池ECU14から供給されるSOCに応じて、エンジン24の出力をある程度制御し、これによってバッテリ10のSOCが目標値(例えば、50%)になるように制御する。例えば、エンジン24の出力の方がモータジェネレータ22の出力より大きい場合には、インバータ20から電力がバッテリ10に向けて出力されバッテリ10が充電される。一方、エンジン24の出力がモータジェネレータ22より小さい場合には、インバータ20からモータジェネレータ22に電力が供給され、バッテリ10が放電される。
【0015】
そこで、充電要求(または放電要求)に応じて、エンジン24の出力を制御することで、バッテリ10のSOCを制御することができる。しかし、この制御はエンジン駆動車のような出力トルクをトルク指令に応じて制御するようなものではなく、所定の範囲内で変更する。なお、実際のモータジェネレータ22の出力の変化は大きく、充電要求がでているときでも放電が行われ、また放電要求がでているときでも充電が行われる。
【0016】
次に、電池ECU14におけるバッテリ10のSOC検出について、図2に基づいて説明する。
【0017】
まず、電池ECU12は、電流センサ16の検出値であるバッテリ10の充放電電流を積算し、積算SOCを検出する(S11)。この積算SOCは、前回の積算SOCに今回までの電流量を加算することで算出する。例えば、測定された電流がIであり、前回から今回までの時間がt(通常、制御ループの1サイクルの時間)であったときに、
積算SOC←積算SOC+I×t
により求める。
【0018】
ここで、この積算SOCは、バッテリ10のSOCが完全放電に近い20%や満充電に近い80%という予め定められた値になったときにIV判定によってリセットされる。すなわち、完全放電や満充電に近い状態では、バッテリ電流とバッテリ電圧にかなりの相関が現れ、この電流電圧の関係からSOC20%や80%を判定できる。そこで、このようなIV判定によって、SOCが検出できたときには、SOCをその値に置き換え積算をリセットする。
【0019】
次に、電流電圧特性からバッテリ10の起電圧V0を算出する(S12)。起電圧V0とは、バッテリ10の出力電圧から、バッテリ10における内部抵抗Rに起因する電圧降下を減算し、そのときのバッテリ電流の影響を排除した電圧を意味する。すなわち、図3に示すように、バッテリ電圧Vは、電流の増加に伴い減少する。この増減分は、バッテリ内部抵抗R×電流Iで決定される内部抵抗に伴う電圧降下分であり、電流Iに対するバッテリ電圧Vの傾きは内部抵抗値Rに等しくなる。このバッテリ電流が0の時のバッテリ電圧を起電圧V0という。従って、V0=V+RIにより起電圧を算出できる。なお、内部抵抗Rは、温度によって変化するため、バッテリ10の温度を検出し補正するとよい。
【0020】
次に、S11で求めた積算SOCに基づいて、対応する起電圧V0SOCを算出する(S13)。ニッケル水素バッテリにおいては、SOCと起電圧の関係は、図4に示すようなものであり、SOCが中間付近の値の場合には、SOCの変化による起電圧の変化はそれ程大きくない。しかしながら、一応の関係があり、本実施形態の電池ECU14は、電池ECU14がこの関係をマップとして持っている。そこで、このマップに基づき、積算SOCに対応するV0SOCを算出する。
【0021】
次に、S12、13において得られた起電圧V0、V0SOCの差ΔV0=V0−V0SOCを算出する(S14)。そして、このΔV0が所定値αより大きいかを判定し(S15)、大きかった場合には積算SOCに所定値βを減算して積算SOCを補正する(S16)。これによって、積算SOCが電流電圧特性から求められるSOCに所定値βだけ近づけられる。
【0022】
すなわち、図5に示すように、積算SOCに対応する起電圧VOSOCと電流電圧特性から求めた起電圧V0の差ΔV0が所定値αより大きかった場合には、所定値βだけ積算SOCを電流電圧特性から求めたSOC(実SOCという)に近づける。
【0023】
また、S15においてNOの場合には、起電圧V0の差ΔV0が所定値−αより小さいかを判定し(S17)、小さかった場合には積算SOCから所定値βを加算して積算SOCを補正する(S18)。これによっても、積算SOCが電流電圧特性から求められるSOCに所定値βだけ近づけられる。差ΔV0が±αの範囲内であった場合には、積算SOCの補正は行われない。
【0024】
積算SOCが正しく、またそのときの電流電圧特性から求めた起電圧と積算SOCから求めた起電圧も正しければ、両者は等しいはずである。求められた2つの起電圧は両者とも誤差を含むものであるが、両者の差があまり大きければ、両者またはいずれかが誤っていると考えられる。電流電圧特性から求めた起電圧は、誤差があるもののその誤差は積算されるものではない。一方、積算SOCはその誤差が積算されるものであり、誤差が大きくなっている可能性がある。そこで、本実施形態では、両者の差が非常に大きくなった場合には、これを補正する。
【0025】
なお、ニッケル水素バッテリでは、バッテリの充放電を繰り返しているうちに、同じSOCであってもバッテリの起電圧が低下してくるメモリ効果と呼ばれる現象がある。また、バッテリ電圧は、電極活物質における分極によりその電圧が変動する。すなわち、同じSOCであっても、その前に放電していたか充電していたかによって、起電圧が変動する。例えば、充電を続けていると分極により起電圧が高くなり、その後放置することにより起電圧は下がる。反対に放電を続けていると分極により起電圧が低くなり、その後放置することにより起電圧が上昇する。
【0026】
そこで、メモリ効果や分極により発生する電圧を考慮し、上記所定値α(例えば、240Vに対し10V程度の値)をこれらの和より大きく設定することが好適である。
【0027】
また、積算SOCを補正する補正値βは、図5に示されるように電圧差αに相当するSOC差より小さくする(例えば、10%ずれていたら5%ずらす)のが好適である。これは、ニッケル水素バッテリにおいては、上述のようにメモリ効果や分極の影響があり、かつ図4に示すように、SOCの変化に対する起電圧の変化はあまり大きくないため、電流電圧特性から求められる起電圧V0にもかなりな誤差があるからである。
【0028】
上述の例では、起電圧の差ΔV0から積算SOCを補正した。しかし、本実施形態の処理では、起電圧V0と実SOCには1対1の関係があり、起電圧V0SOCと積算SOCには、1対1の関係がある。そこで、電流電圧特性から算出して起電圧V0に基づいて実SOCを求め、この実SOCと積算SOCの差が所定値を超えたときに、積算SOCを補正するようにしても実質的に同一の処理が行える。この処理について、図6に示す。
【0029】
このように、S12において、電流電圧特性から起電圧V0を算出した後、その起電圧V0から実SOCを算出し(S23)、ΔSOC=積算SOC−実SOCによりSOCの差を演算する(S24)。そして、その差ΔSOCが所定値γ(起電圧の差αに対応するSOCの差)より大きいかを判定し(S25)、大きい場合には、積算SOCからβを減算し、積算SOCをβだけ実SOCに近づける(S16)。
【0030】
S25において、NOの場合には、ΔSOCが−γより小さいかを判定し(S27)、小さかった場合には積算SOCにβを加算し、積算SOCをβだけ実SOCに近づける(S18)。ΔSOCが±γの範囲内であれば積算SOCの補正は行われない。
【0031】
【発明の効果】
以上説明したように、本発明によれば、起電圧に基づいて電流積算によるSOC検出を補正することにより、より正確なSOC検出を行うことができる。
【図面の簡単な説明】
【図1】 本発明のバッテリ充電状態検出装置をハイブリッド電気自動車に適用したシステムの構成を示すブロック図である。
【図2】 動作を示すフローチャートである。
【図3】 起電圧を説明する図である。
【図4】 SOCと起電圧の関係を示す図である。
【図5】 SOCの補正を説明する図である。
【図6】 他の動作を示すフローチャートである。
【符号の説明】
10 バッテリ、12 電圧検出器、14 電池ECU、16 電流センサ、18 HVECU、20 インバータ、22 モータジェネレータ、24 エンジン。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a battery charge state detection device that detects a state of charge of a battery (hereinafter referred to as SOC), and more particularly to a device that detects SOC based on both battery current and battery voltage.
[0002]
[Prior art]
Conventionally, a state of charge (SOC) detection device for detecting a state of charge of a battery is known. For example, an SOC detection apparatus for a battery of an electric vehicle normally detects the SOC by integrating current (charge / discharge current) of the battery. In an electric vehicle, charging by regenerative braking can be expected, but the battery is basically discharged during traveling. And when not driving | running | working, a charging state is recovered by fully charging a battery with a charger. Therefore, the SOC detector basically integrates the discharge current from full charge and detects the SOC. The same applies to various devices such as portable personal computers, and the SOC of the battery is detected by integrating the amount of discharge from full charge.
[0003]
[Problems to be solved by the invention]
Even in a hybrid vehicle equipped with an engine generator, battery current integration is often used to detect the SOC of the battery. However, in a hybrid vehicle, charging / discharging is controlled so that the battery SOC is maintained at about 50%. Accordingly, the battery is not fully charged for a long time, and the charge / discharge current of the battery is integrated for a long time to detect the SOC. Although the accuracy of detection of the charge / discharge current is not so bad, if the detection of the charge / discharge current is repeated for a long time, the error becomes considerably large.
[0004]
The present invention has been made in view of the above problems, and it is an object of the present invention to provide a battery state-of-charge detection device capable of performing more accurate SOC detection by correcting SOC detection by current integration with simple means. And
[0005]
[Means for Solving the Problems]
The present invention relates to a battery charge state detection device for detecting a charge state (hereinafter referred to as SOC) of a battery, an integrated SOC detection means for obtaining an integrated SOC by integrating a charge / discharge current of the battery, a charge / discharge current of the battery, and a voltage of the battery with detected on the basis of these seek electromotive voltage V 0 which batteries and a real SOC detection means for determining an actual SOC based on the electromotive voltage -SOC characteristic stored in advance with the obtained electromotive voltage V 0, prompted was by correcting the integration SOC and the integration SOC based on the actual SOC difference [Delta] SOC, possess a SOC calculation unit that calculates a SOC of the battery, and the SOC calculation unit, the integration SOC and the actual SOC difference [Delta] SOC When the predetermined value γ is exceeded, the integrated SOC is brought close to the actual SOC by a predetermined amount that is smaller than the predetermined value γ. In and calculates the SOC of the battery.
[0006]
Thus, in the present invention, the integrated SOC is detected by integrating the charge / discharge current of the battery. On the other hand, we obtain the voltage and electromotive voltage of the battery from the current of the battery, determining the electromotive voltage caused previously stores a voltage -SOC characteristics or RaMinoru SO C. The actual SOC is obtained from the current voltage at that time. The error is large, but no error is accumulated. On the other hand, the accumulated SOC has high accuracy but accumulates errors.
[0007]
Therefore, when the difference between the two becomes large, it is determined that the accumulated SOC error has been accumulated, and the accumulated SOC is brought close to the actual SOC. As a result, a large error in the integrated SOC can be eliminated. By using the integrated SOC as the detected SOC, suitable SOC detection can be performed.
[0008]
Alternatively, the electromotive voltage V 0SOC corresponding to the integrated SOC may be obtained, and the integrated SOC may be corrected by β when the difference between the electromotive voltage V 0SOC and the electromotive voltage V 0 exceeds a predetermined value α.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention (hereinafter referred to as embodiments) will be described with reference to the drawings.
[0010]
FIG. 1 is a block diagram showing the configuration of a system in which the battery charge state detection device of the present invention is applied to a hybrid vehicle. The battery 10 includes a large number of battery cells. In this embodiment, this battery 10 is a nickel metal hydride battery, and 20 battery cells are grouped as one block, and 12 of these blocks are connected. Therefore, it has an output voltage of about 300V in which 240 battery cells are connected in series.
[0011]
The voltage of the battery 10 is measured by the voltage detector 12 and supplied to the battery ECU 14. The battery ECU 14 is also connected to a current sensor 16 that detects a battery current, and the battery current is supplied to the battery ECU 14.
[0012]
The battery ECU 14 detects the state of charge (SOC) of the battery 10 based on various supplied data, and supplies this to the HVECU 18.
[0013]
The HVECU 18 determines a torque command based on information such as the accelerator opening, the brake depression amount, the vehicle speed, and performs control so that the output of the motor generator 22 matches the torque command. That is, HVECU 18 controls switching in inverter 20 so that the output of motor generator 22 matches the torque command.
[0014]
Further, the HVECU 18 controls the output of the engine 24 to some extent according to the SOC supplied from the battery ECU 14, thereby controlling the SOC of the battery 10 to a target value (for example, 50%). For example, when the output of the engine 24 is larger than the output of the motor generator 22, electric power is output from the inverter 20 toward the battery 10 and the battery 10 is charged. On the other hand, when the output of engine 24 is smaller than motor generator 22, electric power is supplied from inverter 20 to motor generator 22, and battery 10 is discharged.
[0015]
Therefore, the SOC of the battery 10 can be controlled by controlling the output of the engine 24 in accordance with the charge request (or discharge request). However, this control does not control the output torque as in an engine-driven vehicle according to the torque command, but changes it within a predetermined range. The actual change in the output of the motor generator 22 is large, and discharging is performed even when a charging request is made, and charging is performed even when a discharging request is made.
[0016]
Next, SOC detection of the battery 10 in the battery ECU 14 will be described with reference to FIG.
[0017]
First, the battery ECU 12 integrates the charging / discharging current of the battery 10 that is the detection value of the current sensor 16, and detects the integrated SOC (S11). This integrated SOC is calculated by adding the current amount to the previous integrated SOC. For example, when the measured current is I and the time from the previous time to this time is t (usually the time of one cycle of the control loop),
Accumulated SOC ← Integrated SOC + I × t
Ask for.
[0018]
Here, the integrated SOC is reset by the IV determination when the SOC of the battery 10 reaches a predetermined value of 20% close to complete discharge or 80% close to full charge. That is, in a state close to full discharge or full charge, a considerable correlation appears between the battery current and the battery voltage, and SOC 20% or 80% can be determined from the relationship between the current voltage. Therefore, when the SOC can be detected by such IV determination, the SOC is replaced with the value and the integration is reset.
[0019]
Next, the electromotive voltage V 0 of the battery 10 is calculated from the current-voltage characteristics (S12). The electromotive voltage V 0 means a voltage obtained by subtracting the voltage drop caused by the internal resistance R in the battery 10 from the output voltage of the battery 10 and eliminating the influence of the battery current at that time. That is, as shown in FIG. 3, the battery voltage V decreases as the current increases. This increase / decrease is a voltage drop due to the internal resistance determined by the battery internal resistance R × current I, and the slope of the battery voltage V with respect to the current I is equal to the internal resistance value R. The battery voltage when the battery current is 0 is referred to as an electromotive voltage V 0 . Therefore, the electromotive voltage can be calculated by V 0 = V + RI. Since the internal resistance R varies depending on the temperature, the temperature of the battery 10 may be detected and corrected.
[0020]
Next, the corresponding electromotive voltage V 0SOC is calculated based on the integrated SOC obtained in S11 (S13). In the nickel metal hydride battery, the relationship between the SOC and the electromotive voltage is as shown in FIG. 4, and when the SOC is a value near the middle, the change in the electromotive voltage due to the change in the SOC is not so large. However, there is a temporary relationship, and the battery ECU 14 of the present embodiment has this relationship as a map. Therefore, V 0SOC corresponding to the integrated SOC is calculated based on this map.
[0021]
Next, a difference ΔV 0 = V 0 −V 0SOC between the electromotive voltages V 0 and V 0SOC obtained in S12 and S13 is calculated (S14). Then, it is determined whether this ΔV 0 is larger than a predetermined value α (S15). If it is larger, the predetermined value β is subtracted from the integrated SOC to correct the integrated SOC (S16). As a result, the integrated SOC is brought close to the SOC determined from the current-voltage characteristics by a predetermined value β.
[0022]
That is, as shown in FIG. 5, when the difference ΔV 0 between the electromotive voltage V OSOC corresponding to the integrated SOC and the electromotive voltage V 0 obtained from the current-voltage characteristics is larger than a predetermined value α, the integrated SOC is increased by a predetermined value β. Is brought close to the SOC (referred to as the actual SOC) obtained from the current-voltage characteristics.
[0023]
In the case of NO step S15, the difference [Delta] V 0 of the electromotive voltage V 0 is determined whether a predetermined value -α smaller (S17), the integration SOC by adding a predetermined value β from integration SOC when smaller Is corrected (S18). This also brings the integrated SOC closer to the SOC determined from the current-voltage characteristics by a predetermined value β. When the difference ΔV 0 is within the range of ± α, the integrated SOC is not corrected.
[0024]
If the integrated SOC is correct, and if the electromotive voltage obtained from the current-voltage characteristics at that time and the electromotive voltage obtained from the integrated SOC are also correct, they should be equal. Both of the obtained two electromotive voltages include errors, but if the difference between the two is too large, it is considered that either or both are wrong. Although the electromotive voltage obtained from the current-voltage characteristics has an error, the error is not accumulated. On the other hand, in the accumulated SOC, the error is accumulated, and the error may be large. Therefore, in this embodiment, when the difference between the two becomes very large, this is corrected.
[0025]
In the nickel metal hydride battery, there is a phenomenon called a memory effect in which the electromotive voltage of the battery decreases even when the SOC is the same while the battery is repeatedly charged and discharged. The battery voltage varies depending on the polarization in the electrode active material. That is, even with the same SOC, the electromotive voltage varies depending on whether it was discharged or charged before that time. For example, if the charging is continued, the electromotive voltage increases due to polarization, and the electromotive voltage decreases by leaving it to stand after that. On the contrary, if the discharge is continued, the electromotive voltage is lowered due to the polarization, and the electromotive voltage is increased by leaving it alone.
[0026]
Therefore, it is preferable to set the predetermined value α (for example, a value of about 10V with respect to 240V) larger than these sums in consideration of the voltage generated by the memory effect and polarization.
[0027]
Further, it is preferable that the correction value β for correcting the integrated SOC is smaller than the SOC difference corresponding to the voltage difference α as shown in FIG. 5 (for example, if it is shifted by 10%, it is shifted by 5%). This is because the nickel metal hydride battery is affected by the memory effect and polarization as described above, and the change in electromotive voltage with respect to the change in SOC is not so large as shown in FIG. This is because the electromotive voltage V 0 also has a considerable error.
[0028]
In the above example, the integrated SOC is corrected from the difference ΔV 0 in electromotive voltage. However, in the processing of the present embodiment, there is a one-to-one relationship between the electromotive voltage V 0 and the actual SOC, and there is a one-to-one relationship between the electromotive voltage V 0SOC and the integrated SOC. Therefore, even if the actual SOC is calculated based on the electromotive voltage V 0 calculated from the current-voltage characteristics and the difference between the actual SOC and the accumulated SOC exceeds a predetermined value, the accumulated SOC is substantially corrected. The same processing can be performed. This process is shown in FIG.
[0029]
Thus, after calculating the electromotive voltage V 0 from the current-voltage characteristics in S12, the actual SOC is calculated from the electromotive voltage V 0 (S23), and the difference in SOC is calculated by ΔSOC = integrated SOC−actual SOC ( S24). Then, it is determined whether or not the difference ΔSOC is larger than a predetermined value γ (the difference in SOC corresponding to the electromotive voltage difference α) (S25). If so, β is subtracted from the integrated SOC, and the integrated SOC is reduced by β. It approaches the actual SOC (S16).
[0030]
In S25, if NO, it is determined whether ΔSOC is smaller than −γ (S27). If it is smaller, β is added to the integrated SOC, and the integrated SOC is brought closer to the actual SOC by β (S18). If ΔSOC is within the range of ± γ, the integrated SOC is not corrected.
[0031]
【The invention's effect】
As described above, according to the present invention, more accurate SOC detection can be performed by correcting SOC detection by current integration based on the electromotive voltage.
[Brief description of the drawings]
FIG. 1 is a block diagram showing the configuration of a system in which a battery charge state detection device of the present invention is applied to a hybrid electric vehicle.
FIG. 2 is a flowchart showing an operation.
FIG. 3 is a diagram illustrating an electromotive voltage.
FIG. 4 is a diagram showing a relationship between SOC and electromotive voltage.
FIG. 5 is a diagram illustrating SOC correction.
FIG. 6 is a flowchart showing another operation.
[Explanation of symbols]
10 battery, 12 voltage detector, 14 battery ECU, 16 current sensor, 18 HVECU, 20 inverter, 22 motor generator, 24 engine.

Claims (2)

バッテリの充電状態(以下SOCという)を検出するバッテリ充電状態検出装置において、
バッテリの充放電電流の積算により積算SOCを求める積算SOC検出手段と、
バッテリの充放電電流とバッテリの電圧を検出しこれらに基づいてバッテリの起電圧 0 を求めると共に、求められた起電圧V 0 と予め記憶している起電圧−SOC特性に基づいてSOCを求めるSOC検出手段と、
求められた積算SOC及びSOCの差ΔSOCに基づいて積算SOCを補正することで、バッテリSOCを算出するSOC算出手段と、
を有し、
前記SOC算出手段は、積算SOC及び実SOCの差ΔSOCが所定値γを超えたときに、積算SOCを、予め決定されている量であって前記所定値γより小さな量βだけ実SOCに近づけることでバッテリのSOCを算出することを特徴とするバッテリ充電状態検出装置。
In a battery charge state detection device that detects a state of charge of a battery (hereinafter referred to as SOC),
Integrated SOC detection means for determining integrated SOC by integrating the charge / discharge current of the battery;
Detecting the discharge current and battery voltage of the battery together with obtaining the electromotive voltage V 0 which battery on the basis of these, the actual SOC based on the electromotive voltage -SOC characteristic stored in advance with the electromotive voltage V 0 obtained The actual SOC detection means to be obtained;
By correcting the integration SOC based on the obtained integration SOC and the actual SOC difference [Delta] SOC, and SOC calculating means for calculating the SOC of the battery,
I have a,
When the difference ΔSOC between the accumulated SOC and the actual SOC exceeds a predetermined value γ, the SOC calculating means brings the accumulated SOC closer to the actual SOC by a predetermined amount that is smaller than the predetermined value γ. The battery state of charge detection device characterized by calculating SOC of a battery by this.
バッテリの充電状態(以下SOCという)を検出するバッテリ充電状態検出装置において、
バッテリの充放電電流の積算により積算SOCを求める積算SOC検出手段と、
前記積算SOC検出手段によって検出された積算SOCと、予め記憶している起電圧−SOC特性に基づいて、積算SOCに対応する起電圧V 0SOC を算出する起電圧V 0SOC 算出手段と、
バッテリの充放電電流とバッテリの電圧を検出しこれらに基づいてバッテリの起電圧V 0 を求める起電圧V 0 検出手段と、
求められた起電圧V 0SOC 及びV 0 の差ΔV 0 に基づいて積算SOCを補正することで、バッテリのSOCを算出するSOC算出手段と、
を有し、
前記SOC算出手段は、起電圧V 0SOC 及び起電圧V 0 の差が所定値αを超えたときに、積算SOCを、予め決定されている量であって、前記所定値αに対応するSOCの差γより小さな量βだけ実SOCに近づけることでSOCを算出することを特徴とするバッテリ充電状態検出装置。
In a battery charge state detection device that detects a state of charge of a battery (hereinafter referred to as SOC),
Integrated SOC detection means for determining integrated SOC by integrating the charge / discharge current of the battery;
Wherein the integration SOC integration is detected by the detection means SOC, and stored in advance based on the electromotive voltage -SOC characteristics are, electromotive voltage V 0SOC calculating means for calculating the electromotive voltage V 0SOC corresponding to the integrated SOC,
An electromotive voltage V 0 detecting means for detecting a charge / discharge current of the battery and a voltage of the battery and obtaining an electromotive voltage V 0 of the battery based on the detected current ,
SOC calculating means for calculating the SOC of the battery by correcting the integrated SOC based on the difference ΔV 0 between the obtained electromotive voltages V 0SOC and V 0 ;
Have
When the difference between the electromotive voltage V 0SOC and the electromotive voltage V 0 exceeds a predetermined value α, the SOC calculating means calculates the integrated SOC by a predetermined amount, and the SOC of the SOC corresponding to the predetermined value α. A battery state-of-charge detection device characterized in that the SOC is calculated by approaching the actual SOC by an amount β smaller than the difference γ .
JP33474298A 1998-11-25 1998-11-25 Battery charge state detection device Expired - Lifetime JP3864590B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33474298A JP3864590B2 (en) 1998-11-25 1998-11-25 Battery charge state detection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33474298A JP3864590B2 (en) 1998-11-25 1998-11-25 Battery charge state detection device

Publications (2)

Publication Number Publication Date
JP2000166109A JP2000166109A (en) 2000-06-16
JP3864590B2 true JP3864590B2 (en) 2007-01-10

Family

ID=18280726

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33474298A Expired - Lifetime JP3864590B2 (en) 1998-11-25 1998-11-25 Battery charge state detection device

Country Status (1)

Country Link
JP (1) JP3864590B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010057224A (en) * 2008-08-26 2010-03-11 Honda Motor Co Ltd Electricity accumulation capacity controller
CN104169733A (en) * 2012-03-13 2014-11-26 日产自动车株式会社 Battery residual capacitance calculation device and battery residual capacitance calculation method

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4523738B2 (en) 2001-06-07 2010-08-11 パナソニック株式会社 Secondary battery remaining capacity control method and apparatus
US6845332B2 (en) * 2001-11-16 2005-01-18 Toyota Jidosha Kabushiki Kaisha State of charge calculation device and state of charge calculation method
JP4097182B2 (en) * 2001-12-27 2008-06-11 パナソニックEvエナジー株式会社 Secondary battery polarization voltage estimation method, secondary battery remaining capacity estimation method and apparatus, and battery pack system
JP4157317B2 (en) 2002-04-10 2008-10-01 株式会社日立製作所 Status detection device and various devices using the same
JP4075762B2 (en) 2003-10-10 2008-04-16 トヨタ自動車株式会社 Apparatus and method for calculating remaining capacity in secondary battery
JP4570918B2 (en) * 2004-07-22 2010-10-27 富士重工業株式会社 Remaining capacity calculation device for power storage device
JP4767558B2 (en) 2005-03-07 2011-09-07 日立ビークルエナジー株式会社 Power supply state detection device, power supply device, and initial characteristic extraction device used for power supply device
JP4571000B2 (en) * 2005-03-29 2010-10-27 富士重工業株式会社 Remaining capacity calculation device for power storage device
EP1933158B1 (en) 2005-09-16 2018-04-25 The Furukawa Electric Co., Ltd. Secondary cell degradation judgment method, secondary cell degradation judgment device, and power supply system
KR100669470B1 (en) * 2005-12-22 2007-01-16 삼성에스디아이 주식회사 SOO correction method of battery and battery management system using same
JP4874646B2 (en) * 2005-12-22 2012-02-15 プライムアースEvエナジー株式会社 Battery control device, electric vehicle, and secondary battery control method
JP4706648B2 (en) * 2007-03-06 2011-06-22 トヨタ自動車株式会社 Electric vehicle, charging state estimation method, and computer-readable recording medium recording a program for causing a computer to execute the charging state estimation method
KR100928727B1 (en) * 2007-12-18 2009-11-27 자동차부품연구원 How to calculate remaining capacity of ultra capacitor
KR100962856B1 (en) 2008-04-03 2010-06-09 현대자동차주식회사 How to estimate remaining battery capacity
JP4772137B2 (en) 2009-06-02 2011-09-14 トヨタ自動車株式会社 Control device for battery-powered equipment
JP2012143018A (en) * 2010-12-28 2012-07-26 Kawasaki Heavy Ind Ltd System stabilization apparatus and system stabilization method
FR2976364A1 (en) * 2011-06-07 2012-12-14 Peugeot Citroen Automobiles Sa Method for determining state of charge of electric battery of e.g. electric car, involves adjusting value of previous charge state of battery if verification of previous charge state calculation indicates error greater than preset threshold
JPWO2012169061A1 (en) * 2011-06-10 2015-02-23 日立ビークルエナジー株式会社 Battery control device, battery system
WO2012169061A1 (en) * 2011-06-10 2012-12-13 日立ビークルエナジー株式会社 Battery control device and battery system
JP5862478B2 (en) * 2012-06-25 2016-02-16 トヨタ自動車株式会社 Power storage system and control method
JP5936528B2 (en) * 2012-12-14 2016-06-22 三菱重工業株式会社 Charge / discharge control device and charge / discharge control method
US20150042267A1 (en) * 2013-08-12 2015-02-12 O2Micro Inc. System and Method for Controlling a Battery
US10101401B2 (en) 2015-03-05 2018-10-16 Gs Yuasa International Ltd. Energy storage device management apparatus, energy storage device management method, energy storage device module, energy storage device management program, and movable body
JP7271343B2 (en) * 2019-07-03 2023-05-11 株式会社デンソーテン Estimation device, battery system and estimation method
CN111505515B (en) * 2020-03-20 2022-11-22 福建时代星云科技有限公司 SOC precision detection method and system for electric vehicle
CN117712522B (en) * 2024-02-06 2024-05-14 双一力(宁波)电池有限公司 Battery power management method, electronic device and storage medium

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010057224A (en) * 2008-08-26 2010-03-11 Honda Motor Co Ltd Electricity accumulation capacity controller
US8390257B2 (en) 2008-08-26 2013-03-05 Honda Motor Co., Ltd. Battery capacity controller
CN104169733A (en) * 2012-03-13 2014-11-26 日产自动车株式会社 Battery residual capacitance calculation device and battery residual capacitance calculation method

Also Published As

Publication number Publication date
JP2000166109A (en) 2000-06-16

Similar Documents

Publication Publication Date Title
JP3864590B2 (en) Battery charge state detection device
JP4523738B2 (en) Secondary battery remaining capacity control method and apparatus
JP4597501B2 (en) Method and apparatus for estimating remaining capacity of secondary battery
CN100498365C (en) Calculation device calculating available capacity of secondary battery and method of calculating the same
JP3964635B2 (en) Memory effect detection method and solution
US8274291B2 (en) Charged state estimating device and charged state estimating method of secondary battery
US8000915B2 (en) Method for estimating state of charge of a rechargeable battery
CN105745116B (en) The accumulating system of electric car
EP1314992A2 (en) Method and device for controlling a capacity of a battery for vehicles
US8947051B2 (en) Storage capacity management system
JP2002243813A (en) Arithmetic unit for computing deterioration of capacity of secondary battery
JP2003303627A (en) Status detecting device and various devices using the same
JP2004031254A (en) Capacity control device and method for battery pack
JP4433535B2 (en) Battery control method for power generation type electric vehicle
US20070170892A1 (en) Method and apparatus for estimating remaining capacity of electric storage
JP4050914B2 (en) Secondary battery deterioration judgment method
JP2000306613A (en) Battery state monitoring device
JP2001086604A (en) Set-battery and remaining capacity detector
JP4012644B2 (en) Battery charge state detection device
JP4144116B2 (en) Battery charge state detection device
JP2003068370A (en) Battery state-of-charge detection device
JP2001147260A (en) Remaining capacity detecting device for accumulator battery
JP3738363B2 (en) Battery control method for power generation type electric vehicle
JP3628912B2 (en) Battery charge state detection device
JP4876340B2 (en) Battery control device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060613

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060811

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060811

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060912

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060925

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091013

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101013

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101013

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111013

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111013

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121013

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121013

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131013

Year of fee payment: 7

EXPY Cancellation because of completion of term