JP3860763B2 - Thick steel plate with excellent fatigue strength and its manufacturing method - Google Patents
Thick steel plate with excellent fatigue strength and its manufacturing method Download PDFInfo
- Publication number
- JP3860763B2 JP3860763B2 JP2002041389A JP2002041389A JP3860763B2 JP 3860763 B2 JP3860763 B2 JP 3860763B2 JP 2002041389 A JP2002041389 A JP 2002041389A JP 2002041389 A JP2002041389 A JP 2002041389A JP 3860763 B2 JP3860763 B2 JP 3860763B2
- Authority
- JP
- Japan
- Prior art keywords
- phase
- hard
- steel plate
- less
- hot rolling
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Heat Treatment Of Steel (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、疲労強度が必要とされる溶接構造部材に用いられる厚鋼板とその製造方法に関するものである。本発明鋼板は、例えば、海洋構造物、圧力容器、船舶、橋梁、建築物、ラインパイプなどの溶接鋼構造物一般に用いることができるが、特に疲労強度を必要とする海洋構造物、船舶、橋梁、建築構造物等の構造物用鋼板として有用である。また、その他、厚鋼板を素材とする、鋼管、あるいは形鋼にも適用可能である。
【0002】
【従来の技術】
溶接構造物の大型化と環境保全の要求の高まりに伴い、構造物部材に対して従来にも増した信頼性が要求されるようになってきている。現在の構造物は溶接構造が一般的であり、溶接構造物で想定される破壊形態としては、疲労破壊、脆性破壊、延性破壊などがあるが、これらの内、最も頻度が高い破壊形態は、初期欠陥からの脆性破壊あるいは疲労破壊、さらには疲労破壊の後に続く脆性破壊である。また、これらの破壊形態は、構造物の設計上の配慮だけでは防止が困難であり、また、突然の構造物の崩壊の原因となることが多く、構造物の安全確保の観点からはその防止が最も必要とされる破壊形態である。
【0003】
脆性破壊については、化学組成的にNiの添加や、変態組織の最適化等の改善手段があり、また、製造方法的にも制御圧延や加工熱処理による組織微細化により改善が可能である。一方、疲労特性の場合、平滑部材に関しては強度向上等により改善することは可能であるが、溶接構造では溶接部の止端部形状に疲労強度が支配されるために、強度向上や組織改善による冶金的手段での疲労強度(継手疲労強度)向上は不可能であると考えられていた。すなわち、疲労強度が問題となる構造物では、高張力鋼を用いても設計強度を高めることができず、高張力鋼使用の利点が得られなかった。従って、従来このような溶接構造物においては、応力集中部となっている溶接止端部の形状を改善するための、いわゆる止端処理によって継手疲労強度の改善が図られてきた。例えば、グラインダーによって止端を削って止端半径を大きくする方法、TIG溶接によって止端部を再溶融させて止端形状を滑らかにする方法(例えば、特公昭54−30386号公報)、ショットピーニングによって止端部に圧縮応力を発生される方法等である。
【0004】
しかし、これらの止端処理は非常に手間がかかるものであるため、コスト低減、生産性改善のために、止端処理によらない、鋼材自体の継手疲労強度改善手段が待たれていた。
【0005】
最近、このような要求に応えて、いくつかの継手疲労強度の良好な鋼材が提案されている。例えば、溶接熱影響部(HAZ)の組織をフェライト(α)とすることによってHAZの疲労強度を向上できる技術(特開平8−73983号公報)が示されている。しかし、本技術はHAZ組織をフェライト組織とする必要性から、製造できる鋼材の強度レベルに限界があり、引張強さが780MPaを超えるような高強度鋼材を製造することはできない。
【0006】
引張強度が590MPa以上の高強度鋼の継手疲労強度を改善する手段もいくつか提案されており、HAZのベイナイト組織の疲労き裂の発生・伝播特性改善に高Si化(特開平8−209295号公報)、高Nb化(特開平10−1743号公報)が有効との報告がある。しかし、Si、Nbとも多量に添加すると、靭性を大幅に劣化する元素であり、また、鋼片の割れを生じる等、製造上の問題を生じる懸念もある。
【0007】
加えて、上記従来技術はいずれもHAZ組織の疲労き裂の発生及びHAZ中の疲労き裂伝播を改善する手段であるが、HAZは止端部の応力集中の影響を大きく受けるため、止端形状によっては効果が生じなかったり、小さかったりする場合がある。
【0008】
止端形状によらずに継手疲労強度を改善するためには、止端部から発生した疲労き裂の母材での伝播を遅延させることが有効である。このような考え方に基づいて、平均フェライト粒径が20μm以下の細粒組織中に、粗大フェライトを分散させた母材組織とすることによって、母材の疲労き裂進展特性を向上させる技術(特開平7−90481号公報)が開示されている。しかし、この場合も、フェライト主体組織とする必要性から、引張強度で580MPa級程度の鋼材までしか製造できない。
【0009】
さらに、母材の疲労き裂伝播を抑制することによって疲労強度を高める技術として、フェライトと硬質第二相からなる組織において、フェライトの硬さと硬質第二相の硬さとの間に一定の関係を規定した上で、第二相の形態(アスペクト比、間隔)、あるいは/及び、集合組織を規定した技術が、特開平11−1742号公報に開示されている。本技術は現在示されている技術の中では、疲労き裂伝播抑制に最も優れた手段の一つであるが、組織形成、集合組織発達のために、二相域〜フェライト域での累積圧下率を大きくすることが必要であるため、生産性の劣化、鋼板形状の悪化等の課題を有している。
【0010】
【発明が解決しようとする課題】
本発明は、母材の耐疲労き裂伝播特性が優れた溶接構造物用厚鋼板を、特殊なあるいは高価な合金元素の多量添加や、生産性の劣る、あるいは複雑な製造方法によらずに、また、引張強度や鋼板板厚に大きな制限を受けずに提供することを課題とする。
【0011】
【課題を解決するための手段】
本発明者らは、母材の耐疲労き裂伝播特性を向上することにより、継手の止端形状に依存せずに継手疲労強度向上させるための手段を、疲労き裂の進展挙動と鋼材ミクロ組織との関係の詳細な実験結果から見いだした。すなわち、継手止端部の応力集中部から発生した疲労き裂は板厚方向に伝播するが、疲労き裂進展に対して、き裂前面の組織の種類、形態及び特性が大きな影響を及ぼす。
【0012】
先ず、組織の種類としては、光学顕微鏡オーダーで均一な組織よりも軟質相と硬質第二相との混合組織とすることが好ましい。これは、硬質第二相から軟質相へき裂が進展する際にき裂の鈍化が生じ、一方、軟質相から硬質第二相に進展する際にはき裂進展の遅延、き裂の迂回、分岐が生じるためである。このようなき裂進展挙動を生じるためには、組織は、軟質相としてはフェライト、硬質第二相としてはベイナイトあるいはマルテンサイト、あるいはさらに両方を含む必要がある。そして、本発明者らは、下記に示す詳細な実験に基づいて、フェライトと少なくともベイナイトあるいはマルテンサイト、あるいはさらに両方とを含む混合組織を有する鋼において、疲労き裂の伝播速度を効果的に抑制するためには、硬質第二相の硬さと分率に加えてその分布状態が重要であることを知見した。特に硬質相の分布については、疲労き裂の前面、すなわち、鋼板表面に平行な断面(以降、Z面と称する)での硬質第二相の分布を厳密に規定することが重要であることを初めて見いだした。
【0013】
実験は母材のき裂伝播特性だけを評価するために、図4に示す表面機械ノッチ付き試験片の3点曲げ試験により行った。疲労条件は、応力振幅378MPa、応力比0.1で行った。供試鋼には、化学組成を、C:0.05〜0.2%、Si:0.15〜0.3%、Mn:0.5〜2%、P≦0.01%、S:約0.005%、Al:0.01〜0.05%、Nb:0〜0.05%、Ti:0〜0.02%、Ni:0〜3%、の範囲で変化させ、且つ各々熱間圧延条件、熱処理条件(熱間圧延前の拡散熱処理を含む)を種々変化させて、ミクロ組織の内、主に硬質第二相の種類、分率、分布を変化させた小型真空溶製鋼(鋼板板厚:25mm)を用いた。疲労試験片は試験片長手方向が圧延方向に平行となるように採取した。ミクロ組織の調査、硬さ測定は板厚の1/4部分のZ面において行った。組織の定量は板厚の1/4における鋼板表面に平行な断面(Z面)の光学顕微鏡組織における、5〜10視野の組織写真を用い、画像解析装置を用いて行った。硬質第二相の硬さも同一断面において、荷重5〜10gのマイクロビッカース硬さを10点以上測定し、平均値で評価した。
【0014】
なお、図4に示す前記試験装置は凸状の試験片Aに疲労き裂の発生が容易なように表面に機械ノッチNを付与し、この両側部と中央部にロールを位置させ、このロールから矢印方向に力をかける3点曲げにより、交番応力を負荷したときの疲労寿命を測定して、疲労き裂伝播特性を評価できるように構成したものである。
【0015】
図1は硬質第二相(以降、単に第二相と示す場合もあり)を、ビッカース硬さを200〜250の範囲に調整したパーライトが主体の組織(パーライト主体相)と、ビッカース硬さを550〜600の範囲に調整したベイナイトあるいはマルテンサイト、あるいは両者の混合組織が主体の組織(ベイナイト〜マルテンサイト主体相)ごとに層別した場合の、第二相分率と疲労試験における破断寿命との関係を示している。なお、パーライト主体相ではパーライト以外の第二相は5%未満であり、一方、ベイナイト〜マルテンサイト主体相でもベイナイト、マルテンサイト以外のパーライト相の分率は5%未満である。少なくとも第二相にベイナイトあるいはマルテンサイト、あるいはさらに両者を含み、硬さが高い場合には、第二相がパーライト主体で硬さが低い場合に比べて明らかに疲労特性は良好である。
【0016】
また、第二相がパーライト主体相の場合は疲労特性はその分率に大きく依存しないのに対して、第二相がベイナイト〜マルテンサイト主体相の場合、高い疲労特性を確保するためにはその分率を限定する必要がある。特に、第二相の分率が20%未満と少ない場合は、第二相がベイナイト〜マルテンサイト主体相であっても疲労特性の大きな改善が望めない。また、硬質相が80%を超えて多くなっても疲労特性は劣化する傾向にある。これは硬質相が過大であるために、ミクロな脆性破壊が生じながら疲労き裂が伝播するためで、好ましくない。
【0017】
図1から、疲労特性向上のためには、第二相を硬さの高いベイナイト〜マルテンサイト主体相を組織中に20〜80%存在させることが必要であることが分かるが、しかしながら、その中で疲労特性は大きく変動しており、他にも疲労特性を強く支配する因子が存在することが示唆される。本発明者らは、疲労き裂の進展機構から、この疲労特性の変動が第二相の形態、分布の違いによるものとの推定に立って、さらに詳細な検討を行い、第二相の展伸度、例えば、板厚断面組織で観察される第二相の圧延方向長さと板厚方向長さとの比(アスペクト比)の影響は若干あるものの、それよりも、Z面での第二相の分布が重要であることを知見するに至った。すなわち、進展中の疲労き裂前面に存在する第二相が密に且つ均一に存在することが疲労き裂進展抑制に効果的であり、同じ第二相分率でもその分布が不均一で、場所によって第二相の存在しない場所があれば、疲労き裂はそこを優先的に進展するため、第二相による疲労き裂進展抑制効果が十分発揮されない。
【0018】
図2は上記の点を明らかにした結果で、図1の内、第二相が硬さの高いベイナイト〜マルテンサイト主体相でその分率が20〜80%の範囲にあるものについて、図3に示す定義に基づく、Z面で観察した第二相間の間隔を測定し、その最大値と疲労試験の破断寿命との関係を示している。なお、第二相間隔は疲労き裂前面に存在する第二相間隔に対応させるとの観点で、板厚の1/4位置のZ面で圧延方向に直角な方向で測定している。
【0019】
図2から、第二相の種類、硬さ、分率を一定範囲に限定した中では、Z面最大第二相間隔が小さいほど疲労特性が向上することが明らかである。特にZ面最大第二相間隔が500μmを超えると疲労特性の劣化が顕著になる。500μm以下では、第二相分布の不均一性の悪影響は僅少である。
【0020】
本発明は、上記の知見を含めた詳細な実験に基づいて、母材の耐疲労き裂伝播特性に好ましい組織形態を知見し、さらに該組織形態を達成するための工業的に最も好ましい手段も合わせて発明したものあって、その要旨とするところは以下の通りである。
【0021】
(1)質量%で、
C :0.04〜0.3%、
Si:0.01〜2%、
Mn:0.1〜3%、
Al:0.001〜0.1%、
N :0.001〜0.01%
を含有し、不純物として、
P:0.02%以下、
S :0.01%以下
を含有し、残部が鉄及び不可避不純物からなり、少なくともフェライトと硬質第二相とを含む組織を有し、且つ、表面に平行な断面組織において前記硬質第二相が下記(a)〜(d)の条件を全て満たしている厚鋼板において、前記硬質第二相の組織がベイナイト、マルテンサイトのいずれか又は両者の混合組織からなることを特徴とする疲労強度に優れた厚鋼板。
(a)硬質第二相の分率:20〜80%
(b)硬質第二相の平均ビッカース硬さ:250〜800
(c)硬質第二相の平均円相当径:10〜200μm
(d)硬質第二相間の最大間隔:500μm以下
【0022】
(2) さらに、質量%で、
Ni:0.01〜6%、
Cu:0.01〜1.5%、
Cr:0.01〜2%、
Mo:0.01〜2%、
W :0.01〜2%、
Ti:0.003〜0.1%、
V :0.005〜0.5%、
Nb:0.003〜0.2%、
Zr:0.003〜0.1%、
Ta:0.005〜0.2%、
B :0.0002〜0.005%
の1種又は2種以上を含有することを特徴とする前記(1)に記載の疲労強度に優れた厚鋼板。
【0023】
(3) さらに、質量%で、
Mg:0.0005〜0.01%、
Ca:0.0005〜0.01%、
REM:0.005〜0.1%
のうち1種又は2種以上を含有することを特徴とする前記(1)又は(2)のいずれかに記載の疲労強度に優れた厚鋼板。
【0024】
(4) 前記(1)〜(3)のいずれかに記載の成分を有し、鋳造厚みが100mm以下の鋼片を、AC3変態点〜1250℃に再加熱し、圧下比が2以上の熱間圧延を行い、熱間圧延後、フェライト分率が10%以上となる温度まで0.1〜2℃/sの冷却速度で冷却した後、さらに500℃以下まで5〜100℃/sで急冷し、少なくともフェライトと硬質第二相とを含む組織を有し、且つ、表面に平行な断面組織において前記硬質第二相が下記(a)〜(d)の条件を全て満たしていて、前記硬質第二相の組織をベイナイト、マルテンサイトのいずれか又は両者の混合組織とすることを特徴とする疲労強度に優れた厚鋼板の製造方法。
(a)硬質第二相の分率:20〜80%
(b)硬質第二相の平均ビッカース硬さ:250〜800
(c)硬質第二相の平均円相当径:10〜200μm
(d)硬質第二相間の最大間隔:500μm以下
【0025】
(5) 前記熱間圧延前において、鋼片に加熱温度が1150〜1300℃、保持時間が1〜100hの拡散熱処理を施すことを特徴とする、前記(4)に記載の疲労強度に優れた厚鋼板の製造方法。
【0026】
(6) 前記(1)〜(3)のいずれかに記載の成分を有し、鋳造厚みが100mm超の鋼片に対して、熱間圧延前に、加熱温度が1150〜1300℃、保持時間が1〜100hの拡散熱処理を施した後、AC3変態点〜1250℃に再加熱し、圧下比が2以上の熱間圧延を行い、熱間圧延後、フェライト分率が10%以上となる温度まで0.1〜2℃/sの冷却速度で冷却した後、さらに500℃以下まで5〜100℃/sで急冷し、少なくともフェライトと硬質第二相とを含む組織を有し、且つ、表面に平行な断面組織において前記硬質第二相が下記(a)〜(d)の条件を全て満たしていて、前記硬質第二相の組織をベイナイト、マルテンサイトのいずれか又は両者の混合組織とすることを特徴とする疲労強度に優れた厚鋼板の製造方法。
(a)硬質第二相の分率:20〜80%
(b)硬質第二相の平均ビッカース硬さ:250〜800
(c)硬質第二相の平均円相当径:10〜200μm
(d)硬質第二相間の最大間隔:500μm以下
【0027】
(7) 前記熱間圧延において、少なくとも開始温度が850℃以下、終了温度がAr3変態点以上で、累積圧下率が30%以上の圧延を含む熱間圧延を行うことを特徴とする前記(4)〜(6)のいずれかに記載の疲労強度に優れた厚鋼板の製造方法。
【0028】
(8) 前記熱間圧延において、少なくとも開始温度がAr3変態点以下、終了温度が600℃以上で、累積圧下率が10〜80%の圧延を含む熱間圧延を行うことを特徴とする前記(4)〜(7)のいずれかに記載の疲労強度に優れた厚鋼板の製造方法。
【0029】
(9) 前記500℃以下まで急冷した後、熱間圧延終了後、さらに(AC1変態点+30℃)〜(AC3変態点−50℃)に再加熱し、500℃以下まで5〜100℃/sで冷却する二相域熱処理を施すことを特徴とする前記(4)〜(8)のいずれかに記載の疲労強度に優れた厚鋼板の製造方法。
【0030】
(10) 前記500℃以下まで急冷した後、又は、二相域熱処理を施した後、250〜500℃で焼戻すことを特徴とする前記(4)〜(9)のいずれかに記載の疲労強度に優れた厚鋼板の製造方法。
【0031】
【発明の実施の形態】
本発明は、化学組成の適正化と、前述した新しい知見に基づいた組織要件の適正化が必須となるが、先ず、組織要件の限定理由を説明し、次いで化学組成の限定理由を述べ、最後に、本発明の厚鋼板を製造する方法について、本発明で提案する製造方法の実施の形態を説明する。
【0032】
疲労強度を高めるための組織要件は、「少なくともフェライトと、ベイナイト、マルテンサイトのいずれか又は両者の混合組織からなる硬質第二相とを含む組織を有し、鋼板表面に平行な断面組織において前記硬質第二相が、(a)硬質第二相の分率:20〜80%、(b)硬質第二相の平均ビッカース硬さ:250〜800、(c)硬質第二相の平均円相当径:10〜200μm、(d)硬質第二相間の最大間隔:500μm以下、の条件を全て満たしているること」であり、前述の詳細な実験結果を中心とした種々新知見に基づいて決定されたものである。
【0033】
先ず、組織として、フェライトと、ベイナイト、マルテンサイトのいずれか又は両者の混合組織からなる硬質第二相とを含む組織とする必要があるのは、軟質相と硬質相との混合組織とすることによって、硬質相から軟質相へき裂が進展する際にき裂の鈍化が生じ、一方、軟質相から硬質相に進展する際にはき裂進展の遅延、き裂の迂回、分岐が生じるために疲労き裂進展速度が顕著に抑制されるためである。このようなき裂進展挙動を生じるためには、組織は、軟質相としてはフェライト、硬質相としてはベイナイトあるいはマルテンサイト、あるいはさらに両方を含む必要がある。軟質相としてフェライトが好ましいのは、溶接構造用の低合金鋼において、十分柔らかい組織としてはフェライトが唯一であるためである。高合金鋼であれば、オーステナイト相を軟質相とすることも可能であるが、本発明が対象としている溶接構造用厚鋼板において、変態組織中に十分な分率でオーステナイト相を残存させることは非常に困難であり、採用し難い。フェライト相であれば、極端な加工や固溶強化によって該相が硬化しなければ疲労特性に特段の問題は生じない。目安として、フェライト相のビッカース硬さは220以下であることが好ましい。
【0034】
硬質第二相の種類として、ベイナイトあるいはマルテンサイト、あるいはさらに両方の混合組織が好ましいのは、パーライトに比べて組織が均一で、且つ硬さの割に靭性が良好であるためである。パーライトが好ましくないのは、ビッカース硬さを250以上にすることが容易でないことと、硬さを高められたとしても、パーライト自体がフェライトとセメンタイトとの層状組織であるために、疲労き裂がパーライト内の軟質なフェライトを選択的に進展することが可能で、疲労き裂進展抑制効果が小さいためである。また、硬質第二相としては、析出物や介在物も考えられるが、これらを疲労き裂進展抑制に有効な、20〜80%含有させることが容易でなく、該析出物、介在物はベイナイトやマルテンサイトに比べて非常に脆いため、このように多量に含有した場合には靭性の顕著な劣化が生じ、構造物用鋼としての実用に耐えられない。
【0035】
以上の理由により、硬質第二相としてはベイナイト、マルテンサイトのいずれか又は両者の混合組織とする必要があるが、さらに該硬質第二相の分率、硬さ、サイズ、分布状態を厳密に規定する必要がある。
【0036】
硬質第二相の分率は、図1から下限を20%とする。これは、前記の第二相分率が20%未満であると、その他の組織要件を適正化しても疲労特性の明確な向上が望めないためである。また、本発明では硬質第二相の上限は80%とする。これは、硬質第二相の分率を80%超とした上で、該硬質第二相の硬さを250以上とすることが化学組成上容易でないことと、硬質第二相の分率が80%超であると、フェライトに比べて硬質第二相の靭性が劣るために鋼材の靭性劣化が懸念されるためである。また、硬質第二相間に存在するフェライトの変形が拘束されることも靭性確保に不利となり、疲労き裂進展中に脆性破壊が生じて、疲労特性が劣化する場合もある。本発明における硬質第二相の分率はZ面での断面組織における面積分率を意味する。
【0037】
なお、ベイナイト、マルテンサイトのいずれか又は両者の混合組織からなる硬質第二相の分率が本発明を満足していれば、これら以外の硬質第二相を10%未満含んでいても疲労特性に実質的に悪影響を及ぼさないため、ベイナイト、マルテンサイト以外の第二相を10%未満含む場合も本発明範囲とする。また、本発明においては、セメンタイトや炭窒化物、非金属介在物は疲労特性に対する明確な効果を示さないため、硬質第二相には含めない。
【0038】
硬質第二相の硬さも疲労特性確保のために必須要件である。第二相の種類をベイナイト、マルテンサイトのいずれか又は両者の混合組織とし、且つ第二相分率を20〜80%とした上で、疲労特性を良好とするために必要な硬さは、ビッカース硬さの平均値で250〜800の範囲である。平均ビッカース硬さが250未満であると、軟質相であるフェライトとの硬さが小さいために、軟質相/硬質相界面近傍での疲労き裂の進展遅延、迂回、分岐が十分な頻度で生ぜず、疲労特性の向上が図られない。一方、硬質第二相の平均ビッカース硬さが800超であると、硬質第二相の脆化が著しくなり、該硬質第二相が疲労試験中においてさえ脆性破壊を生じるようになり、むしろ疲労き裂進展が加速されるようになり、疲労特性が劣化する。
【0039】
以上の理由から、ベイナイト、マルテンサイトのいずれか又は両者の混合組織からなる硬質第二相の分率と硬さを適正範囲に限定するが、一層の疲労特性向上を図るために、該硬質第二相のサイズと分布をさらに限定する必要がある。
【0040】
サイズの限定は、硬質第二相は硬くなれば硬くなるほど、脆化して鋼材の靭性劣化、疲労特性の劣化につながるために、第二相の硬質化によるき裂進展遅延効果の享受と、硬質第二相の靭性劣化抑制とを両立させる上で必要である。硬質第二相の靭性はその平均円相当径によって支配されており、200μm超であると靭性劣化が無視できなくなるため、本発明においては、硬質第二相の平均円相当径を200μm以下に限定する。靭性確保の観点からは、硬質第二相のサイズは微細なほど好ましいが、硬質第二相のサイズが過小であると、疲労き裂進展抑制効果が不十分となるため、本発明では疲労き裂進展抑制効果が確実に発揮できる硬質第二相のサイズとしてその下限を10μmとする。
【0041】
さらに硬質第二相の分布として、前述した図3に示す結果にあるように、Z面で観察される硬質第二相間の間隔を適正化する必要がある。本発明においては、図3の結果に基づいて、硬質第二相間隔の拡大による疲労特性の劣化が僅少である、Z面での最大第二相間隔500μmを上限として規定する。なお、Z面での第二相間の間隔とは、疲労き裂前面に存在する第二相間隔に対応させる方向での間隔であり、例えば、き裂面が圧延方向に直角に進展する場合にはZ面第二相間隔も圧延方向に直角な方向での値とする。
【0042】
なお、以上の組織の分率、硬さ、分布状態は全てZ面についてのものであるが、疲労き裂は溶接部から発生して表面から板厚方向に進展することから、表面から板厚中心部までの平均的な組織状態が本発明を満足すれば良い。板厚方向の組織変化がZ面内での組織変動に比べて小さければ板厚の1/4におけるZ面での測定値で評価しても構わない。板厚方向の組織変化が大きい場合は、板厚方向の数カ所、例えば鋼板表面1〜2mm、板厚の1/4、板厚中心部の平均値で評価しても良い。
【0043】
以上が本発明における組織要件の限定理由である。疲労特性の確保、構造物用鋼として必要な強度・靭性確保のためにはさらに下記に示すように化学組成についても適正化する必要がある。
【0044】
すなわち、Cは、硬質第二相の硬さを高めるのに有効な成分である。0.04%未満では、安定的にビッカース硬さが250以上の硬質第二相を20%以上存在させることが容易でないため、本発明ではCの下限を0.04%とする。ただし、0.3%を超える過剰の含有は母材及び溶接部の靭性や耐溶接割れ性を低下させるため、上限は0.3%とした。
【0045】
Siは、脱酸元素として、また、母材の強度確保に有効な元素であるが、0.01%未満の含有では脱酸が不十分となり、また強度確保に不利である。逆に2%を超える過剰の含有は粗大な酸化物を形成して延性や靭性の劣化を招く。そこで、Siの範囲は0.01〜2%とした。
【0046】
Mnは母材の強度、靭性の確保に必要な元素であり、最低限0.1%以上含有する必要があるが、過剰に含有すると、硬質相の生成や粒界脆化等により母材靭性や溶接部の靭性、さらに溶接割れ性など劣化させるため、材質上許容できる範囲で上限を3%とした。
【0047】
Alは脱酸、加熱オーステナイト粒径の細粒化等に有効な元素であるが、効果を発揮するためには0.001%以上含有する必要がある。一方、0.1%を超えて過剰に含有すると、粗大な酸化物を形成して延性を極端に劣化させるため、0.001%〜0.1%の範囲に限定する必要がある。
【0048】
NはAlやTiと結びついてオーステナイト粒微細化に有効に働くため、微量であれば機械的特性向上に有効である。また、工業的に鋼中のNを完全に除去することは不可能であり、必要以上に低減することは製造工程に過大な負荷をかけるため好ましくない。そのため、工業的に制御が可能で、製造工程への負荷が許容できる範囲として下限を0.001%とする。過剰に含有すると、固溶Nが増加し、延性や靭性に悪影響を及ぼす可能性があるため、許容できる範囲として上限を0.01%とする。
【0049】
Pは不純物元素であり、鋼の諸特性に対して有害であるため、極力低減する方が好ましいが、本発明においては、実用上悪影響が許容できる量として、上限を0.02%とする。
【0050】
Sも基本的には不純物元素であり、特に鋼の延性、靭性さらには疲労特性に悪影響が大きいため、低減が好ましい。実用上、悪影響が許容できる量として、上限を0.01%に限定する。ただし、Sは微量範囲では、微細硫化物を形成して溶接熱影響部(HAZ)靭性向上に寄与するため、HAZ靭性を考慮する場合は、0.0005〜0.005%の範囲で添加することは好ましい。
【0051】
以上が本発明の厚鋼板の基本成分の限定理由であるが、本発明においては、強度・靭性の調整のために、必要に応じて、Ni、Cu、Cr、Mo、W、Ti、V、Nb、Zr、Ta、Bの1種又は2種以上を含有することができる。
【0052】
Niは母材の強度と靭性を同時に向上でき、非常に有効な元素であるが、効果を発揮するためには0.01%以上の添加が必要である。Ni量が増加するほど母材の強度・靭性を向上させるが、6%を超えるような過剰な添加では、効果が飽和する一方で、HAZ靭性や溶接性の劣化を生じる懸念があり、また、高価な元素であるため、経済性も考慮して、本発明においてはNiの上限を6%とする。
【0053】
CuもNiとほぼ同様の効果を有する元素であるが、効果を発揮するためには0.01%以上の添加が必要であり、1.5%超の添加では熱間加工性やHAZ靭性に問題を生じるため、本発明においては、0.01〜1.5%の範囲に限定する。
【0054】
Crは固溶強化、析出強化により強度向上に有効な元素であり、効果を生じるためには0.01%以上必要であるが、Crは過剰に添加すると焼入硬さの増加、粗大析出物の形成等を通して、母材やHAZの靭性に悪影響を及ぼすため、許容できる範囲として、上限を2%に限定する。
【0055】
Mo、WもCrと同様に、固溶強化、析出強化によって強度を高めるに有効な元素であり、また、硬質第二相の硬さ確保にも有効な元素であるが、各々、効果を発揮でき、他特性に悪影響を及ぼさない範囲として、Mo、Wともに、0.01〜2%に限定する。
【0056】
Tiはオーステナイト中に安定なTiNを形成して母材だけでなくHAZの加熱オーステナイト粒径微細化に寄与するため、強度向上に加えて靭性向上にも有効な元素である。ただし、その効果を発揮するためには、0.003%以上含有させる必要がある一方、0.1%を超えて過剰に含有させると、粗大なTiNを形成して靭性を逆に劣化させるため、本発明においては、0.003〜0.1%の範囲に限定する。
【0057】
Vは析出強化により母材の強度向上に有効な元素であるが、効果を発揮するためには0.005%以上必要である。添加量が多くなるほど強化量も増加するが、それに伴って、母材靭性、HAZ靭性が劣化し、且つ、析出物が粗大化して強化の効果も飽和する傾向となるため、強化量に対して靭性劣化が小さい範囲として、上限を0.5%とする。
【0058】
Nbは析出強化及び変態強化により微量で高強度化に有効な元素であり、また、オーステナイトの加工・再結晶挙動に大きな影響を及ぼすため、母材靭性向上にも有効である。さらには、HAZの疲労特性向上にも有効である。効果を発揮するためには、0.003%以上は必要である。ただし、0.2%を超えて過剰に添加すると、靭性を極端に劣化させるため、本発明においては、0.003〜0.2%の範囲に限定する。
【0059】
Zrも主として析出強化により強度向上に有効な元素であるが、効果を発揮するためには0.003%以上必要である。一方、0.1%を超えて過剰に添加すると粗大な析出物を形成して靭性に悪影響を及ぼすため、上限を0.1%とする。
【0060】
TaもNbと同様の効果を有し、適正量の添加により強度、靭性の向上に寄与するが、0.005%未満では効果が明瞭には生ぜず、0.2%を超える過剰な添加では粗大な析出物に起因した靭性劣化が顕著となるため、範囲を0.005〜0.2%とする。
【0061】
Bは極微量で焼入性を高める元素であり、高強度化に有効な元素である。Bは固溶状態でオーステナイト粒界に偏析することによって焼入性を高めるため、極微量でも有効であるが、0.0002%未満では粒界への偏析量を十分に確保できないため、焼入性向上効果が不十分となったり、効果にばらつきが生じたりしやすくなるため好ましくない。一方、0.005%を超えて添加すると、鋼片製造時や再加熱段階で粗大な析出物を形成する場合が多いため、焼入性向上効果が不十分となったり、鋼片の割れや析出物に起因した靭性劣化を生じる危険性も増加する。そのため、本発明においては、Bの範囲を0.0002〜0.005%とする。
【0062】
さらに、本発明においては、延性の向上、継手靭性の向上のために、必要に応じて、Mg、Ca、REMの1種又は2種以上を含有することができる。
【0063】
Mg、Ca、REMはいずれも硫化物の熱間圧延中の展伸を抑制して延性特性向上に有効である。酸化物を微細化させて継手靭性の向上にも有効に働きく。その効果を発揮するための下限の含有量は、Mgは0.0005%、Caは0.0005%、REMは0.005%である。一方、過剰に含有すると、硫化物や酸化物の粗大化を生じ、延性、靭性、さらに疲労特性の劣化を招くため、上限を各々、Mg、Caは0.01%、REMは0.1%とする。
【0064】
以上が、本発明の基本要件である、ミクロ組織と化学組成の限定理由である。加えて、本発明においては、本発明の組織要件を満足させるための適切な製造方法についても、提示する。ただし、本発明のミクロ組織については、その達成手段を問わず効果を発揮するものであり、本発明の、請求項1〜3に記載の疲労強度に優れた厚鋼板の製造方法は、請求項4〜10に示した方法に限定されるものではない。
【0065】
第1の製造方法は、必要に応じて熱間圧延前に、鋼片に加熱温度が1150〜1300℃、保持時間が1〜100hの拡散熱処理を施した鋳造厚みが100mm以下の鋼片を、AC3変態点〜1250℃に再加熱し、圧下比が2以上の熱間圧延を行い、熱間圧延後、フェライト分率が10%以上となる温度まで0.1〜2℃/sの冷却速度で冷却した後、さらに500℃以下まで5〜100℃/sで急冷することを特徴とする。
【0066】
第2の製造方法は、鋳造厚みが100mm超である鋼片に対するもので、熱間圧延前に、鋼片に加熱温度が1150〜1300℃、保持時間が1〜100hの拡散熱処理を施した後、AC3変態点〜1250℃に再加熱し、圧下比が2以上の熱間圧延を行い、熱間圧延後、フェライト分率が10%以上となる温度まで0.1〜2℃/sの冷却速度で冷却した後、さらに500℃以下まで5〜100℃/sで急冷することを特徴とする。
【0067】
また、第1、第2の方法とも、必要に応じて、開始温度が850℃以下、終了温度がAr3変態点以上で、累積圧下率が30%以上の圧延を含むか、あるいは/及び、開始温度がAr3変態点以下、終了温度が600℃以上で、累積圧下率が10〜80%の圧延を含む熱間圧延を行うことができる。
【0068】
さらに、熱間圧延後の鋼板に対して、(AC1変態点+30℃)〜(AC3変態点−50℃)に再加熱し、500℃以下まで5〜100℃/sで冷却する二相域熱処理、あるいは/及び、加熱温度が250〜500℃の焼戻しを施すことができる。
【0069】
第二相のサイズ、分布は、凝固時に生じる、MnやC等のミクロ偏析部の分布と変態挙動によって大きく左右される。本発明の要件となっている硬質第二相の微細化及び間隔の低減のためにはミクロ偏析部を微細分散させることが有効であるが、そのためには、凝固前後の冷却速度を高めたり、熱間圧延によって2次デンドライトアーム間隔を低減することが有効である。また、拡散熱処理によって一旦生成したミクロ偏析の偏析程度自体を軽減する方法も有効である。
【0070】
鋳造厚みを100mm以下とするのは、凝固速度を大きくすることによって2次デンドライトアーム間隔を微細化して、最終組織においてZ面の硬質第二相サイズと間隔とを本発明範囲内とするためである。鋳造厚みが100mm超では、確実に硬質第二相の平均円相当径を200μm以下、また、硬質第二相間の最大間隔を500μm以下とすることが困難となる。
【0071】
鋳造厚みに関わらずに硬質第二相の微細分散を図る方法が、加熱温度が1150〜1300℃、保持時間が1〜100hの拡散熱処理である。Mnを主とする合金元素の有効な拡散のためには、1150℃で1h以上の保持が必要である。ただし、拡散熱処理温度が1300℃超では、加熱オーステナイトが極端に粗大となって鋼板の靭性に悪影響を及ぼし、また、鋼板の肌荒れを生じる恐れがあって好ましくない。保持時間は1h以上であれば長いほど好ましいが、拡散熱処理温度が1150℃以上であれば保持時間が100h以内で十分合金元素の均一化が達成されるため、本発明では上限を100hとする。なお、本拡散熱処理と鋳造厚みの低減とはその効果が加算的であるため、第一の方法において、必要に応じて鋳造厚みが100mm以下の鋼片に対しても本拡散熱処理を施すことは有効である。
【0072】
本発明においては、鋳造厚みが100mm以下の鋼片又は/及び加熱温度が1150〜1300℃、保持時間が1〜100hの拡散熱処理を施した鋼片を、AC3変態点〜1250℃に再加熱し、圧下比が2以上の熱間圧延を行い、熱間圧延後、フェライト分率が10%以上となる温度まで0.1〜2℃/sの冷却速度で冷却した後、さらに500℃以下まで5〜100℃/sで急冷して厚鋼板とすることを鋼板製造条件の基本とする。
【0073】
鋼片の再加熱温度をAC3変態点〜1250℃とするのは、再加熱温度がAC3変態点未満であると、加熱段階でオーステナイト単相とならず、また析出物の固溶が十分でないため、構造材料として必要な強度・靭性を得ることが困難となるためであり、一方、再加熱温度が1250℃超であると、加熱オーステナイト粒径が極端に粗大となって、その後の熱間圧延によっても十分微細化されず、そのため、靭性が劣化する恐れがあるためである。
【0074】
熱間圧延は圧下比(鋳造厚み/鋼板厚み)を2以上とする。これは、圧下比が2以上であれば、Z面での硬質第二相の微細分散に対しても有利であり、且つ、板厚方向での硬質第二相の間隔も低減することで、疲労特性の向上に寄与するためである。さらに、圧下比が2未満であると、鋳片中に存在する、凝固収縮ともなって生じるポロシティの圧着が困難であることも、圧下比を2以上とする理由となる。
【0075】
熱間圧延後、フェライト分率が10%以上となる温度まで0.1〜2℃/sの冷却速度で冷却した後、さらに500℃以下まで5〜100℃/sで急冷するのは、疲労特性向上に必要な平均ビッカース硬さが250〜800である硬質第二相の組織中の分率をを20〜80%確保するためである。本発明のようにC量が0.3%以下の低C鋼において、該硬質第二相を生成されるためには、変態温度域を急冷するとともに、変態前のオーステナイト相にCを濃化させる必要があり、そのためには急冷前にフェライト変態を生じさせる必要がある。急冷前のフェライト分率が10%未満では未変態オーステナイトへのCの濃化が不十分となる場合があるため、本発明では急冷前のフェライト分率を10%以上とする。該フェライトの生成はオーステナイトへのCの濃化が主要な目的であるため、フェライト変態温度は高めである方が好ましく、そのためにフェライト生成の際の冷却速度は2℃/s以下とする。該冷却速度が過大であると、フェライト変態温度が低下するため、また、Cの拡散速度が十分でなくなるため、オーステナイトへのCの濃化にとって好ましくない。オーステナイトへのCの濃化の観点からはフェライト生成過程での冷却速度は小さいほど好ましいが、0.1℃/s以上であれば十分であり、それ以上徐冷しても効果は飽和するため、本発明では下限の冷却速度を0.1℃/sとする。
【0076】
Cが十分濃化した未変態オーステナイトを5〜100℃/sで500℃以下まで急冷することによって低温で変態させ、硬質第二相を形成する。変態域前後の平均冷却速度が5℃/s未満であると、本発明の化学組成範囲内であっても、平均ビッカース硬さが250以上の硬質第二相を安定的に形成させることが困難となる。冷却速度が大きいほど硬質第二相形成には有利であるが、100℃/sを超えて大きくとも効果が飽和し、且つ、このような過大な冷却速度で冷却することは製造コストの上昇、鋼板形状の悪化にもつながる。以上の理由により、本発明においては、未変態オーステナイトから硬質第二相を形成させる際の急冷における冷却速度は5〜100℃/sの範囲とする。該冷却速度での急冷は変態がほぼ完了させるまで必要で、本発明の化学組成範囲では該急冷の停止温度を500℃以下とすれば、所望の硬質第二相を得ることができる。
【0077】
なお、インゴットあるいはスラブ等の鋼片に対して、鋼板となすためのの熱間圧延前に、形状調整等の目的のために分塊圧延を施しても本発明の効果を損なうものではない。また、本発明の拡散熱処理の条件を満足している限り、拡散熱処理と分塊圧延とを兼用すること、すなわち、鋼片を、本発明の拡散熱処理条件である、1150〜1300℃に1〜100h保持した後の冷却段階で分塊圧延を施すことも全く問題ない。
【0078】
以上が本発明における製造方法の基本要件限定理由であるが、本発明の製造方法においては、さらに、本発明の組織要件を得るため、及び、機械的性質の改善等を目的として、必要に応じて、本発明の製造方法の基本要件を満足した上で、付加的に下記の(a)〜(d)の処理を施すことができる。
(a) 開始温度が850℃以下、終了温度がAr3変態点以上で、累積圧下率が30%以上の熱間圧延を行う。
(b)開始温度がAr3変態点以下、終了温度が600℃以上で、累積圧下率が10〜80%の熱間圧延を行う。
(c)500℃以下までに急冷後、さらに(AC1変態点+30℃)〜(AC3変態点−50℃)に再加熱し、500℃以下まで5〜100℃/sで冷却する二相域熱処理を施す。
(d)500℃以下まで急冷後、又は二相域熱処理を施した後、250〜500℃で焼戻す。
【0079】
(a)は、変態前のオーステナイトを微細化あるいは/及び未再結晶オーステナイトへ歪を蓄積して変態組織を微細化するための工程である。変態組織を微細化する結果、硬質第二相が微細分散し、安定的に、硬質第二相の平均円相当径:10〜200μm、硬質第二相間の最大間隔:500μm以下、を満足させることができ、疲労特性が向上する。また、合わせて、フェライト粒径も微細化するため、本手段は疲労特性と同時に高靭性を達成するためには有効である。
【0080】
以上の効果を発揮するためには、累積圧下率が30%以上の熱間圧延を開始温度が850℃以下、終了温度がAr3変態点以上で行う必要がある。累積圧下率が30%未満であると、再結晶域圧延においては再結晶オーステナイト粒の微細化は十分でなく、また、未再結晶域圧延においてはオーステナイト粒への歪蓄積が十分でなく、圧延温度の如何によらず、変態組織の微細化が十分でない。一方、累積圧下率が30%以上であっても、圧延温度が適正範囲でないと、圧延の効果が有効に組織微細化に寄与しないため、好ましくない。すなわち、圧延開始温度が850℃超では、再結晶オーステナイト粒の微細化が不十分でなかったり、導入された転位の回復速度が大きく、歪が有効に蓄積されない。本発明においては、(a)の手段における圧延は組織微細化に全て寄与させる観点から、圧延開始温度の上限を850℃とする。圧延はオーステナイト域で終了する限りは組織微細化に有効であるため、(a)の付加的な処理における圧延終了温度はAr3変態点以上であれば良い。なお、圧延温度が850℃〜Ar3変態点の範囲であれば、圧延の効果はほぼ蓄積されるため、圧下率は累積圧下率で規定すればよく、各パスの圧下条件を規定する必要はない。
【0081】
(b)は、二相域圧延によってフェライト変態を促進させ、未変態オーステナイトへのC濃化を促進させて、硬質第二相の硬さを確保する上で有効な手段である。オーステナイトへCを濃化させるには、より高温でフェライトからオーステナイトへCを拡散させた方がオーステナイトへのCの濃化が確実で、オーステナイト中のC量が多くなり、変態後の硬質第二相の硬さが増す。
【0082】
二相域圧延を施すことで、フェライト変態が促進される。そのために、本発明の化学組成範囲においては、開始温度がAr3変態点以下、終了温度が600℃以上で、累積圧下率が10〜80%の熱間圧延を付加的に行うことが有効である。開始温度をAr3変態点以下としたのは、Ar3変態点超では、加工によって変態点が上昇した場合でも二相域での加工量が不十分となるためである。圧延の終了温度を600℃以上としたのは、600℃未満では加工中あるいは/及び加工後、急冷開始までの間にオーステナイトからの変態が生じて、急冷によって生成されるべき硬質第二相よりも硬さの低い、パーライト変態が生じてしまう恐れがあるためである。二相域圧延によるフェライト変態促進効果を確実にするためには、二相域圧延の累積圧下率は10%以上必要である。10%未満では、フェライト変態促進が十分でなく、二相域圧延を付加的に施す意味がない。二相域圧延の累積圧下率の上限は80%とする。これは80%を超えて過大な二相域圧延を施すと、未変態オーステナイトからの変態も促進されてしまい、所望の硬質第二相が形成されない恐れがあり、また、工業的にも、圧延終了温度の下限である600℃を確保することが困難となるためである。なお、本手段を付加的に用いることにより、集合組織が発達し、それによる疲労特性の向上、靭性の向上も補助的に期待できる。
【0083】
(c)は、二相域熱処理によって、より確実に硬質第二相の硬さ、分率を確保するものである。二相域に加熱すると、逆変態でのオーステナイト化は、成分の濃化したミクロ偏析部やパーライト部分から生じるため、熱処理前の熱間圧延条件が本発明の要件を満足していれば、分散状態に関しては本発明の範囲内となる。二相域熱処理の加熱条件に応じて、逆変態オーステナイトの分率と該オーステナイトへのCの濃化の程度が決定される。すなわち、オーステナイトから変態した後の硬質第二相の分率と硬さとが決定される。二相域熱処理における加熱温度が(AC1変態点+30℃)未満であると、逆変態オーステナイト分率、従って、結果としての硬質第二相分率が本発明に比べて過小となり、疲労特性が劣化する。一方、二相域熱処理における加熱温度が、(AC3変態点−50℃)超であるとオーステナイト分率は多くなるが、そのかわりに該オーステナイト中へのCの濃化が不十分で、硬質第二相の硬さが本発明を逸脱して低くなるため、やはり疲労特性が劣り、好ましくない。従って、本発明においては、二相域熱処理温度は(AC1変態点+30℃)〜(AC3変態点−50℃)に限定する。(AC1変態点+30℃)〜(AC3変態点−50℃)に再加熱した後、冷却は500℃以下まで5〜100℃/sで冷却するが、これは、前記した熱間圧延後の急冷と同様に、Cが十分濃化した未変態オーステナイトを低温で変態させ、本発明の組織要件を満足する硬質第二相を形成するためである。
【0084】
(d)は、500℃以下までに急冷後、又は二相域熱処理を施した後に行う焼戻し処理であり、必要に応じて、強度・靭性を調整するために行う。ただし、硬質第二相の硬さを過度に低下させないための配慮が必要である。すなわち、本発明においては、焼戻し温度の上限を500℃とする。これは、焼戻し温度が500℃超であると、化学組成によっては、熱間圧延や二相域熱処理段階では硬質相の平均ビッカース硬さが250以上であったものが、焼戻しを施すことによって250未満に低下してしまう懸念があるためである。また、本発明では焼戻し温度の下限を250℃と規定するが、これは、焼戻し温度が250℃未満では、焼戻しによる材質調整効果が明確でないためである。
【0085】
次に、本発明の効果を実施例によってさらに具体的に述べる。
【0086】
【実施例】
実施例に用いた供試鋼の化学組成を表1に示す。各供試鋼は造塊後、分塊圧延により、あるいは連続鋳造により鋼片となしたものである。表1の内、鋼片番号1〜10は本発明の化学組成範囲を満足しており、鋼片番号11〜15は本発明の化学組成範囲を満足していない。表1には合わせて加熱変態点(AC1、AC3)を示すが、これは、昇温速度が5℃/min.のときの実測値であるが、表2に示す、鋼板の鋼片加熱あるいは熱処理時における実際の昇温条件での変態点とほぼ合致している。
【0087】
表1の化学組成の鋼片を、表2(表2−1〜表2−3)に示す条件の拡散熱処理、熱間圧延、熱処理、焼戻しを施して、板厚25mm又は50mmの鋼板に製造し、室温の引張特性、2mmVノッチシャルピー衝撃特性、さらに溶接継手の疲労特性を調査した。 引張試験片及びシャルピー衝撃試験片は板厚中心部から圧延方向に直角(C方向)に採取した。引張特性は室温で測定し、シャルピー衝撃特性は50%破面遷移温度(vTrs)で評価した。疲労試験は、構造物の溶接止端部から疲労き裂が発生し、母材部を伝播する場合の疲労特性を評価するために、図5に示す廻し溶接継手について行った。試験片Sは、鋼板から鋼板長手方向長さ:300mm、幅方向長さ:80mm、板厚:25mm(25mm厚材については全厚、50mm厚材については表面から採取)、のサイズで試験板を採取し、幅:10mm、長さ:30mm、高さ:30mmのリブ板Bを炭酸ガス溶接(CO2溶接)により、試験板の中央に廻し溶接Cで溶接した。この際の炭酸ガス溶接は、化学組成が、C:0.06mass%、Si:0.5mass%、Mn:1.4Mass%、である1.4mm径の溶接ワイヤを用いて、電流:270A、電圧:30V、溶接速度:20cm/min.で行った。疲労試験は、荷重支点Fのスパンを、下スパン:70mm、上スパン:220mmとして、最大荷重(Pmax):5500kgfで応力比(R):0.1の繰り返し応力負荷を加え、疲労寿命を測定した。
【0088】
鋼板の硬質第二相の組織形態(種類、分率、ビッカース硬さ、平均円相当径、最大間隔)と機械的性質を表3に示す。なお、組織の定量は板厚の1/4における鋼板表面に平行な断面(Z面)の光学顕微鏡組織について実施した。5〜10視野の組織写真を用い、画像解析装置により定量した。硬質第二相の硬さも同一断面において、荷重5〜10gのマイクロビッカース硬さを10点以上測定し、平均値で評価した。
【0089】
表2、3の内の鋼板番号A1〜A13は、本発明の化学組成と組織に関する要件を全て満足している鋼板であり、いずれも構造用鋼として必要な強度、靭性(2mmVノッチシャルピー衝撃特性)を有しているだけでなく、極めて良好な継手疲労特性も有していることが明らかである。
【0090】
一方、鋼板番号B1〜B11は、本発明のいずれかの要件を満足していない、比較の鋼板であり、同程度の組成、強度レベルの本発明の鋼板に比べて、継手疲労特性や靭性が劣っていることが明白である。
【0091】
鋼板番号B1〜B5は、化学組成が本発明を満足していないために、本発明の組織要件を満足できないか、あるいは本発明の組織要件を満足しているにも関わらず、良好な特性を達成できなかった例である。
【0092】
すなわち、鋼板番号B1は、C量が過大であるため、靭性が劣るのは勿論、靭性が極端に劣るために、疲労試験においてさえも硬質相が脆性破壊する影響で、本発明に比べて、継手疲労特性が劣る。
【0093】
鋼板番号B2は、Mn量が過剰なため、C量が過大な場合と同様の理由により、靭性、疲労特性ともに、本発明よりも顕著に劣る。
【0094】
鋼板番号B3、B4は、各々P、N量が過剰で、鋼を脆化させるため、やはり靭性、疲労特性ともに、本発明よりも顕著に劣る。
【0095】
鋼板番号B5は、S量が過剰であるため、延性劣化を介して、疲労特性を大きく劣化させるため、本発明に比べて疲労特性が劣る。
【0096】
鋼板番号B6〜B11は、化学組成は本発明を満足しているものの、組織要件が本発明を満足していないために、継手疲労特性が劣っている例である。
【0097】
すなわち、鋼板番号B6及びB9は、硬質第二相の間隔が過大であるため、同一組成の本発明鋼に比べて疲労特性が劣っている例である。
【0098】
鋼板番号B7、B8及びB10、B11は、第二相が疲労特性に好ましくないパーライトであるため、第二相の分散状態は本発明を満足しているにも関わらず疲労特性が本発明に比べて大きく劣っている。
【0099】
以上の実施例から、本発明によれば、構造用鋼として十分高い靭性を確保しながら、優れた継手疲労特性を得ることが可能であることが明白である。
【0100】
【表1】
【0101】
【表2−1】
【表2−2】
【表2−3】
【0102】
【表3】
【0103】
【発明の効果】
本発明は疲労強度が必要とされる溶接構造部材に用いられる厚鋼板において、従来、溶接部では向上が困難とされてきた、継手疲労特性の向上を特殊な合金元素や複雑な製造プロセスに頼ることなく、また、引張強度や鋼板板厚に大きな制限を受けずに製造できる点で、産業上の有用性は極めて大きい。
【図面の簡単な説明】
【図1】表面機械ノッチ3点曲げ疲労試験での破断寿命と硬質第二相の種類、分率との関係を示す図である。
【図2】上記疲労試験での破断寿命と硬質第二相のZ面における最大間隔との関係を示す図である。
【図3】硬質第二相のZ面における最大間隔の定義を示した図である。
【図4】母材疲労き裂伝播特性を調べるための表面機械ノッチ3点曲げ試験片と試験装置の概要図である。
【図5】疲労亀裂が母材鋼板に伝播するときの疲労寿命を測定するための4点曲げ試験片と試験装置の概要図である。
【符号の説明】
A 試験片
N 機械ノッチ
S 試験片
B リブ板
C 廻し溶接
F 荷重支点[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a thick steel plate used for a welded structure member that requires fatigue strength and a method for manufacturing the same. The steel sheet of the present invention can be used in general for welded steel structures such as marine structures, pressure vessels, ships, bridges, buildings, line pipes, etc., but especially marine structures, ships, bridges that require fatigue strength. It is useful as a steel plate for structures such as building structures. In addition, the present invention can also be applied to steel pipes or shaped steels made of thick steel plates.
[0002]
[Prior art]
With the increase in the size of welded structures and the demand for environmental protection, there has been a demand for increased reliability of structural members. The current structure is generally a welded structure, and the failure modes assumed for welded structures include fatigue failure, brittle failure, ductile failure, etc. Of these, the most frequent failure modes are: Brittle fracture or fatigue fracture from initial defects, and further brittle fracture following fatigue fracture. In addition, these forms of destruction are difficult to prevent only by considering the design of the structure, and often cause sudden collapse of the structure. From the viewpoint of ensuring the safety of the structure, it is also possible to prevent it. Is the most required form of destruction.
[0003]
For brittle fracture, there are means for improving the chemical composition such as addition of Ni and optimization of the transformation structure, and the manufacturing method can be improved by refinement of the structure by controlled rolling or thermomechanical treatment. On the other hand, in the case of fatigue characteristics, it is possible to improve the smooth member by improving the strength, etc., but in the welded structure, the fatigue strength is governed by the shape of the toe of the welded part, so the strength is improved and the structure is improved. It was considered impossible to improve fatigue strength (joint fatigue strength) by metallurgical means. That is, in a structure where fatigue strength is a problem, the design strength cannot be increased even when high strength steel is used, and the advantage of using high strength steel cannot be obtained. Therefore, conventionally, in such a welded structure, joint fatigue strength has been improved by so-called toe treatment for improving the shape of the weld toe part that is a stress concentration part. For example, a method of cutting the toe by a grinder to increase the toe radius, a method of remelting the toe part by TIG welding to make the toe shape smooth (for example, Japanese Patent Publication No. 54-30386), shot peening In other words, a compressive stress is generated in the toe portion.
[0004]
However, since these toe treatments are very time-consuming, a means for improving the joint fatigue strength of the steel material itself has been awaited in order to reduce costs and improve productivity.
[0005]
Recently, several steel materials having good joint fatigue strength have been proposed in response to such demands. For example, a technique (Japanese Patent Laid-Open No. 8-73983) that can improve the fatigue strength of HAZ by setting the structure of the weld heat affected zone (HAZ) to ferrite (α) is shown. However, since the present technology requires that the HAZ structure be a ferrite structure, there is a limit to the strength level of the steel material that can be manufactured, and it is not possible to manufacture a high-strength steel material having a tensile strength exceeding 780 MPa.
[0006]
Several means for improving the joint fatigue strength of high-strength steel with a tensile strength of 590 MPa or more have been proposed. For improving the fatigue crack initiation and propagation characteristics of the HAZ bainite structure, high Si (Japanese Patent Laid-Open No. Hei 8-209295) is proposed. There is a report that high Nb (Japanese Patent Laid-Open No. 10-1743) is effective. However, when both Si and Nb are added in a large amount, it is an element that greatly deteriorates toughness, and there is also a concern that manufacturing problems such as cracking of a steel piece may occur.
[0007]
In addition, all of the above prior arts are means for improving the generation of fatigue cracks in HAZ structure and the propagation of fatigue cracks in HAZ. However, since HAZ is greatly affected by stress concentration at the toe, Depending on the shape, there may be no effect or it may be small.
[0008]
In order to improve the joint fatigue strength regardless of the shape of the toe, it is effective to delay the propagation of the fatigue crack generated from the toe at the base material. Based on this concept, a technology for improving the fatigue crack growth characteristics of a base material by forming a base material structure in which coarse ferrite is dispersed in a fine grain structure with an average ferrite grain size of 20 μm or less (special feature). (Kaihei 7-90481) is disclosed. However, in this case as well, only a steel material having a tensile strength of about 580 MPa class can be manufactured because of the necessity for a ferrite main structure.
[0009]
Furthermore, as a technique to increase fatigue strength by suppressing fatigue crack propagation in the base metal, in a structure consisting of ferrite and a hard second phase, there is a certain relationship between the hardness of the ferrite and the hardness of the hard second phase. Japanese Patent Application Laid-Open No. 11-1742 discloses a technique for defining the second phase form (aspect ratio, interval) or / and texture. This technology is one of the best methods for suppressing fatigue crack propagation among the currently shown technologies. However, the cumulative reduction in the two-phase region to the ferrite region is necessary for the formation of microstructure and texture. Since it is necessary to increase the rate, there are problems such as deterioration of productivity and deterioration of steel plate shape.
[0010]
[Problems to be solved by the invention]
The present invention provides a thick steel plate for welded structures with excellent fatigue crack propagation characteristics of the base material, regardless of whether a special or expensive alloy element is added in large amounts, productivity is inferior, or a complicated manufacturing method is used. It is another object of the present invention to provide the tensile strength and the steel plate thickness without being greatly limited.
[0011]
[Means for Solving the Problems]
The present inventors have improved the fatigue crack propagation characteristics of the base metal, thereby improving the fatigue strength of the joint without depending on the shape of the joint toe. It was found from the detailed experimental results of the relationship with the organization. That is, the fatigue crack generated from the stress concentration part of the joint toe part propagates in the thickness direction, but the type, form and characteristics of the structure on the front of the crack have a great influence on the fatigue crack growth.
[0012]
First, as the type of structure, it is preferable to use a mixed structure of a soft phase and a hard second phase rather than a uniform structure on the order of an optical microscope. This occurs when the crack progresses from the hard second phase to the soft phase, while the blunting of the crack occurs, while when the soft phase progresses to the hard second phase, the crack progress is delayed, This is because branching occurs. In order to generate such crack propagation behavior, the structure needs to contain ferrite as a soft phase and bainite or martensite as a hard second phase, or both. Based on detailed experiments shown below, the present inventors effectively suppress the propagation rate of fatigue cracks in steels having a mixed structure containing ferrite and at least bainite, martensite, or both. In order to do so, it was found that the distribution state is important in addition to the hardness and fraction of the hard second phase. In particular, regarding the distribution of the hard phase, it is important to strictly define the distribution of the hard second phase on the front surface of the fatigue crack, that is, the cross section parallel to the steel sheet surface (hereinafter referred to as the Z plane). I found it for the first time.
[0013]
The experiment was conducted by a three-point bending test of a test piece with a surface mechanical notch shown in FIG. 4 in order to evaluate only the crack propagation characteristics of the base material. The fatigue conditions were a stress amplitude of 378 MPa and a stress ratio of 0.1. The test steel has a chemical composition of C: 0.05 to 0.2%, Si: 0.15 to 0.3%, Mn: 0.5 to 2%, P ≦ 0.01%, S: About 0.005%, Al: 0.01 to 0.05%, Nb: 0 to 0.05%, Ti: 0 to 0.02%, Ni: 0 to 3%, and Compact vacuum steelmaking with various hot rolling conditions and heat treatment conditions (including diffusion heat treatment before hot rolling) to change the type, fraction and distribution of hard second phase in the microstructure. (Steel plate thickness: 25 mm) was used. The fatigue test specimen was collected so that the longitudinal direction of the specimen was parallel to the rolling direction. Microscopic investigation and hardness measurement were performed on the Z plane of a quarter of the plate thickness. The quantification of the structure was performed using an image analysis apparatus using a structure photograph of 5 to 10 visual fields in an optical microscope structure of a cross section (Z plane) parallel to the steel sheet surface at ¼ of the plate thickness. The hardness of the hard second phase was also measured by measuring 10 or more micro Vickers hardnesses having a load of 5 to 10 g in the same cross section and evaluating the average value.
[0014]
In the test apparatus shown in FIG. 4, a mechanical notch N is provided on the surface of the convex test piece A so that fatigue cracks are easily generated, and rolls are positioned on both sides and the center. The fatigue life when alternating stress is applied is measured by three-point bending in which a force is applied in the direction of the arrow, and the fatigue crack propagation characteristics can be evaluated.
[0015]
FIG. 1 shows the structure of pearlite (perlite main phase) in which the hard second phase (hereinafter sometimes simply referred to as the second phase) is adjusted to a Vickers hardness in the range of 200 to 250, and the Vickers hardness. The bainite or martensite adjusted to the range of 550 to 600, or the mixed phase of both layers stratified for each main structure (bainite to martensite main phase); Shows the relationship. In the pearlite main phase, the second phase other than pearlite is less than 5%. On the other hand, in the bainite to martensite main phase, the fraction of the pearlite phase other than bainite and martensite is less than 5%. When at least the second phase contains bainite, martensite, or both, and the hardness is high, the fatigue properties are clearly better than when the second phase is mainly pearlite and the hardness is low.
[0016]
In addition, when the second phase is a pearlite main phase, the fatigue characteristics do not greatly depend on the fraction, whereas when the second phase is a bainite-martensite main phase, in order to ensure high fatigue characteristics It is necessary to limit the fraction. In particular, when the fraction of the second phase is as small as less than 20%, no significant improvement in fatigue properties can be expected even if the second phase is a bainite-martensite main phase. Further, even if the hard phase exceeds 80%, the fatigue characteristics tend to deteriorate. This is not preferable because the hard phase is excessive and a fatigue crack propagates while micro brittle fracture occurs.
[0017]
FIG. 1 shows that in order to improve the fatigue characteristics, it is necessary to make the second phase have a high hardness bainite to martensite main phase in the structure of 20 to 80%, however, It is suggested that there are other factors that strongly control the fatigue characteristics. Based on the fatigue crack propagation mechanism, the present inventors have conducted a more detailed study on the assumption that the variation in fatigue characteristics is due to the difference in the morphology and distribution of the second phase. Although there is some influence of elongation, for example, the ratio (aspect ratio) between the length in the rolling direction of the second phase and the length in the thickness direction, which is observed in the thickness cross-sectional structure, the second phase in the Z plane is more than that. It came to know that distribution of is important. That is, it is effective for suppressing fatigue crack growth that the second phase existing on the front surface of the growing fatigue crack is dense and uniform, and the distribution is not uniform even in the same second phase fraction, If there is a place where the second phase does not exist depending on the place, the fatigue crack propagates preferentially there, so that the fatigue crack growth suppressing effect by the second phase is not sufficiently exhibited.
[0018]
FIG. 2 is a result of clarifying the above points, and in FIG. 1, the second phase is a bainite-martensite main phase having a high hardness and the fraction is in the range of 20-80%. The distance between the second phases observed on the Z-plane based on the definition shown in Fig. 2 is measured, and the relationship between the maximum value and the fracture life of the fatigue test is shown. The second phase interval is measured in a direction perpendicular to the rolling direction on the Z plane at a 1/4 position of the plate thickness from the viewpoint of corresponding to the second phase interval existing on the front surface of the fatigue crack.
[0019]
From FIG. 2, it is clear that the fatigue characteristics are improved as the Z-plane maximum second phase interval is smaller while the type, hardness, and fraction of the second phase are limited to a certain range. In particular, when the Z-plane maximum second phase interval exceeds 500 μm, the deterioration of fatigue characteristics becomes remarkable. Below 500 μm, the adverse effect of non-uniformity of the second phase distribution is negligible.
[0020]
The present invention is based on a detailed experiment including the above-mentioned knowledge, finds a preferred structure form for fatigue crack propagation characteristics of the base material, and further industrially most preferable means for achieving the structure form Invented together, the gist of the invention is as follows.
[0021]
(1) In mass%,
C: 0.04-0.3%
Si: 0.01-2%
Mn: 0.1 to 3%
Al: 0.001 to 0.1%,
N: 0.001 to 0.01%
As impurities,
P: 0.02% or less,
S: 0.01% or less
The balance is composed of iron and inevitable impurities, and has a structure including at least ferrite and a hard second phase, and the hard second phase in the cross-sectional structure parallel to the surface is(A)-(d)In the thick steel plate which satisfy | fills all the conditions, the structure of the said hard 2nd phase consists of either a bainite, a martensite, or a mixed structure of both, The thick steel plate excellent in fatigue strength characterized by the above-mentioned.
(A)Hard second phase fraction: 20-80%
(B)Average Vickers hardness of hard second phase: 250-800
(C)Average equivalent circle diameter of hard second phase: 10 to 200 μm
(D)Maximum distance between hard second phases: 500 μm or less
[0022]
(2) Furthermore, in mass%,
Ni: 0.01-6%,
Cu: 0.01 to 1.5%,
Cr: 0.01-2%
Mo: 0.01-2%
W: 0.01-2%
Ti: 0.003 to 0.1%,
V: 0.005-0.5%
Nb: 0.003 to 0.2%,
Zr: 0.003 to 0.1%,
Ta: 0.005 to 0.2%,
B: 0.0002 to 0.005%
The thick steel plate having excellent fatigue strength as described in (1) above, comprising one or more of the above.
[0023]
(3) Furthermore, in mass%,
Mg: 0.0005 to 0.01%,
Ca: 0.0005 to 0.01%,
REM: 0.005-0.1%
The thick steel plate excellent in fatigue strength according to any one of (1) and (2) above, comprising one or more of them.
[0024]
(4) A steel piece having the component according to any one of (1) to (3) and having a casting thickness of 100 mm or less,ThreeReheated to the transformation point to 1250 ° C., hot-rolled with a reduction ratio of 2 or more, and after hot rolling, at a cooling rate of 0.1 to 2 ° C./s to a temperature at which the ferrite fraction becomes 10% or more. After cooling, it is further quenched at 5-100 ° C./s to 500 ° C. or less.And having a structure containing at least ferrite and a hard second phase, and the hard second phase satisfies all the following conditions (a) to (d) in a cross-sectional structure parallel to the surface, and the hard The structure of the second phase is either bainite, martensite or a mixed structure of bothA method for producing a thick steel plate having excellent fatigue strength.
(A) Hard second phase fraction: 20-80%
(B) Average Vickers hardness of hard second phase: 250 to 800
(C) Average equivalent circular diameter of hard second phase: 10 to 200 μm
(D) Maximum distance between hard second phases: 500 μm or less
[0025]
(5) Before the hot rolling, the steel piece is subjected to diffusion heat treatment at a heating temperature of 1150 to 1300 ° C. and a holding time of 1 to 100 h, and has excellent fatigue strength according to (4) Manufacturing method of thick steel plate.
[0026]
(6) The heating temperature is 1150 to 1300 ° C. and the holding time before hot rolling on a steel piece having the component according to any one of (1) to (3) and having a casting thickness of more than 100 mm. After performing diffusion heat treatment for 1 to 100 hours, ACThreeReheated to the transformation point to 1250 ° C., hot-rolled with a reduction ratio of 2 or more, and after hot rolling, at a cooling rate of 0.1 to 2 ° C./s to a temperature at which the ferrite fraction becomes 10% or more. After cooling, it is further quenched at 5-100 ° C./s to 500 ° C. or less.And having a structure containing at least ferrite and a hard second phase, and the hard second phase satisfies all the following conditions (a) to (d) in a cross-sectional structure parallel to the surface, and the hard The structure of the second phase is either bainite, martensite or a mixed structure of bothA method for producing a thick steel plate having excellent fatigue strength.
(A) Hard second phase fraction: 20-80%
(B) Average Vickers hardness of hard second phase: 250 to 800
(C) Average equivalent circular diameter of hard second phase: 10 to 200 μm
(D) Maximum distance between hard second phases: 500 μm or less
[0027]
(7) In the hot rolling, at least the start temperature is 850 ° C. or less and the end temperature is ArThreeThe method for producing a thick steel plate having excellent fatigue strength according to any one of the above (4) to (6), wherein hot rolling including rolling at a transformation point or higher and a cumulative rolling reduction of 30% or higher is performed. .
[0028]
(8) In the hot rolling, at least the starting temperature is ArThreeFatigue strength according to any one of the above (4) to (7), wherein hot rolling is performed including rolling at a transformation point or lower, an end temperature of 600 ° C. or higher, and a cumulative rolling reduction of 10 to 80%. A method for producing thick steel plates with excellent resistance.
[0029]
(9) After quenching to 500 ° C. or lower, after completion of hot rolling, further (AC1Transformation point + 30 ° C) to (ACThreeThe fatigue as described in any one of (4) to (8) above, which is reheated to a transformation point of −50 ° C. and subjected to a two-phase heat treatment that is cooled to 5 ° C./s to 500 ° C. or less. A method for producing thick steel plates with excellent strength.
[0030]
(10) The fatigue according to any one of (4) to (9), wherein the fatigue is tempered at 250 to 500 ° C. after quenching to 500 ° C. or less or after performing a two-phase region heat treatment. A method for producing thick steel plates with excellent strength.
[0031]
DETAILED DESCRIPTION OF THE INVENTION
In the present invention, optimization of the chemical composition and optimization of the organization requirements based on the above-described new knowledge are essential. First, the reason for limiting the organization requirement will be explained, and then the reason for limitation of the chemical composition will be described. Next, an embodiment of the manufacturing method proposed in the present invention will be described with respect to the method for manufacturing the thick steel plate of the present invention.
[0032]
The structural requirement for increasing the fatigue strength is “having a structure containing at least ferrite and a hard second phase composed of a mixed structure of either bainite, martensite or both, and in the cross-sectional structure parallel to the steel sheet surface, Hard second phase,(A)Hard second phase fraction: 20-80%,(B)Average Vickers hardness of the hard second phase: 250 to 800,(C)Average equivalent circular diameter of hard second phase: 10 to 200 μm,(D)The maximum spacing between the hard second phases: satisfying all conditions of 500 μm or less ”, which was determined based on various new findings centered on the detailed experimental results described above.
[0033]
First, as a structure, it is necessary to use a structure containing ferrite and a hard second phase composed of a mixed structure of either bainite or martensite, or a mixture structure of a soft phase and a hard phase. As a result, cracking occurs when the crack propagates from the hard phase to the soft phase, whereas when the crack propagates from the soft phase to the hard phase, the crack growth is delayed, the crack is bypassed, and branching occurs. This is because the fatigue crack growth rate is significantly suppressed. In order to generate such crack propagation behavior, the structure needs to contain ferrite as a soft phase and bainite or martensite as a hard phase, or both. The reason why ferrite is preferable as the soft phase is that ferrite is the only sufficiently soft structure in the low alloy steel for welded structures. If it is a high alloy steel, it is possible to make the austenite phase a soft phase. It is very difficult and difficult to adopt. If it is a ferrite phase, a special problem will not arise in a fatigue characteristic, if this phase does not harden | cure by extreme processing or solid solution strengthening. As a guide, the ferrite phase preferably has a Vickers hardness of 220 or less.
[0034]
The reason why the hard second phase is preferably bainite, martensite, or a mixed structure of both is that the structure is more uniform than pearlite and the toughness is good for the hardness. Pearlite is not preferred because it is not easy to increase the Vickers hardness to 250 or more, and even if the hardness is increased, the pearlite itself is a layered structure of ferrite and cementite, so fatigue cracks are not generated. This is because the soft ferrite in the pearlite can be selectively propagated and the fatigue crack growth inhibiting effect is small. Further, as the hard second phase, precipitates and inclusions may be considered, but it is not easy to contain 20 to 80%, which is effective for suppressing fatigue crack growth, and the precipitates and inclusions are bainite. Since it is very brittle compared to martensite, if it is contained in such a large amount, the toughness is markedly deteriorated and cannot be practically used as a structural steel.
[0035]
For the above reasons, the hard second phase needs to be either bainite, martensite or a mixed structure of both, but the fraction, hardness, size, and distribution of the hard second phase are strictly limited. It is necessary to specify.
[0036]
The lower limit of the hard second phase fraction is 20% from FIG. This is because if the second phase fraction is less than 20%, it is not possible to clearly improve the fatigue characteristics even if other structural requirements are optimized. In the present invention, the upper limit of the hard second phase is 80%. This is because it is not easy in terms of chemical composition to make the hardness of the hard second phase over 250% and the hardness of the hard second phase to be 250 or more, and the fraction of the hard second phase is This is because if it exceeds 80%, the toughness of the steel material may be deteriorated because the toughness of the hard second phase is inferior to that of ferrite. In addition, restraining deformation of the ferrite existing between the hard second phases is disadvantageous for securing toughness, and brittle fracture may occur during fatigue crack growth, which may deteriorate fatigue characteristics. The fraction of the hard second phase in the present invention means the area fraction in the cross-sectional structure on the Z plane.
[0037]
In addition, if the fraction of the hard second phase consisting of either bainite, martensite or a mixed structure of both satisfies the present invention, even if the hard second phase other than these contains less than 10%, fatigue characteristics. Therefore, the present invention also includes the case where the second phase other than bainite and martensite is contained in an amount of less than 10%. In the present invention, cementite, carbonitride, and non-metallic inclusions do not show a clear effect on fatigue characteristics, and are therefore not included in the hard second phase.
[0038]
The hardness of the hard second phase is also an essential requirement for ensuring fatigue characteristics. The hardness necessary for making the fatigue characteristics good after setting the type of the second phase to be bainite, martensite or a mixed structure of both and setting the second phase fraction to 20 to 80%, The average value of Vickers hardness is in the range of 250 to 800. If the average Vickers hardness is less than 250, the hardness of the soft phase ferrite is small, so fatigue crack propagation delay, detour, and branching occur near the soft phase / hard phase interface with sufficient frequency. Therefore, the fatigue characteristics cannot be improved. On the other hand, if the average Vickers hardness of the hard second phase is more than 800, the hard second phase becomes brittle, and the hard second phase becomes brittle fracture even during the fatigue test. Crack growth is accelerated and fatigue properties are degraded.
[0039]
For the above reasons, the fraction and hardness of the hard second phase consisting of either bainite, martensite, or a mixed structure of both are limited to an appropriate range. There is a need to further limit the size and distribution of the two phases.
[0040]
The limitation of size is that the harder the second phase, the harder it becomes, the more brittle it will lead to the deterioration of the toughness and fatigue properties of the steel. Necessary for achieving both toughness deterioration suppression of the second phase. The toughness of the hard second phase is governed by the average equivalent circle diameter, and if it exceeds 200 μm, the toughness deterioration cannot be ignored. Therefore, in the present invention, the average equivalent circle diameter of the hard second phase is limited to 200 μm or less. To do. From the viewpoint of securing toughness, the finer the size of the hard second phase, the better. However, if the size of the hard second phase is too small, the effect of suppressing fatigue crack growth becomes insufficient. The lower limit is set to 10 μm as the size of the hard second phase capable of reliably exhibiting the effect of suppressing crack propagation.
[0041]
Further, as the distribution of the hard second phase, as shown in the result shown in FIG. 3 described above, it is necessary to optimize the interval between the hard second phases observed on the Z plane. In the present invention, based on the result of FIG. 3, the maximum second phase interval on the Z plane, 500 μm, in which the fatigue characteristics are hardly deteriorated due to the expansion of the hard second phase interval, is defined as the upper limit. In addition, the space | interval between the 2nd phases in a Z surface is a space | interval in the direction corresponding to the 2nd phase space | interval which exists in a fatigue crack front surface, for example, when a crack surface progresses at right angles to a rolling direction. Is the value in the direction perpendicular to the rolling direction of the Z-plane second phase interval.
[0042]
The above-mentioned structure fraction, hardness, and distribution are all about the Z plane, but fatigue cracks are generated from the weld and propagate in the thickness direction from the surface. It is sufficient that the average tissue state up to the center satisfies the present invention. If the structure change in the plate thickness direction is small compared to the structure variation in the Z plane, evaluation may be made with the measured value on the Z plane at 1/4 of the plate thickness. When the structural change in the plate thickness direction is large, evaluation may be made at several locations in the plate thickness direction, for example, the steel plate surface of 1 to 2 mm, 1/4 of the plate thickness, and the average value of the plate thickness center.
[0043]
The above is the reason for limiting the organizational requirements in the present invention. In order to ensure the fatigue characteristics and the strength and toughness required for structural steel, it is necessary to optimize the chemical composition as shown below.
[0044]
That is, C is an effective component for increasing the hardness of the hard second phase. If it is less than 0.04%, it is not easy for 20% or more of the hard second phase having a Vickers hardness of 250 or more to be present stably, so the lower limit of C is set to 0.04% in the present invention. However, excessive content exceeding 0.3% lowers the toughness and weld crack resistance of the base metal and the welded portion, so the upper limit was made 0.3%.
[0045]
Si is an element effective as a deoxidizing element and for securing the strength of the base material. However, if it is less than 0.01%, deoxidation is insufficient and it is disadvantageous for securing the strength. On the other hand, an excessive content exceeding 2% forms a coarse oxide and causes deterioration of ductility and toughness. Therefore, the range of Si is set to 0.01 to 2%.
[0046]
Mn is an element necessary for ensuring the strength and toughness of the base material, and it is necessary to contain at least 0.1% or more. However, if it is excessively contained, the toughness of the base material is generated due to formation of a hard phase or embrittlement at grain boundaries. In order to deteriorate the toughness of welds and weld cracks, the upper limit was made 3% within the allowable range of the material.
[0047]
Al is an element effective for deoxidation, refinement of the heated austenite grain size, etc., but in order to exert the effect, it is necessary to contain 0.001% or more. On the other hand, if it exceeds 0.1% and excessively contained, a coarse oxide is formed and the ductility is extremely deteriorated. Therefore, it is necessary to limit it to the range of 0.001% to 0.1%.
[0048]
N is effective in refining austenite grains in combination with Al and Ti, so that it is effective for improving mechanical properties if it is in a very small amount. Further, it is impossible to remove N in steel completely industrially, and reducing it more than necessary is not preferable because it places an excessive load on the manufacturing process. Therefore, the lower limit is set to 0.001% as a range that can be industrially controlled and the load on the manufacturing process is allowable. If excessively contained, solid solution N increases, which may adversely affect ductility and toughness, so the upper limit is made 0.01% as an acceptable range.
[0049]
P is an impurity element and is harmful to various properties of steel, so it is preferable to reduce it as much as possible. However, in the present invention, the upper limit is set to 0.02% as an amount that can be practically adversely affected.
[0050]
S is basically an impurity element, and is particularly preferably reduced because it has a significant adverse effect on the ductility, toughness and fatigue properties of steel. In practice, the upper limit is limited to 0.01% as an amount that can tolerate adverse effects. However, in the trace amount range, S forms fine sulfides and contributes to improvement of the weld heat affected zone (HAZ) toughness. Therefore, when considering HAZ toughness, S is added in a range of 0.0005 to 0.005%. It is preferable.
[0051]
The above is the reason for limiting the basic components of the thick steel plate of the present invention. In the present invention, for the adjustment of strength and toughness, Ni, Cu, Cr, Mo, W, Ti, V, One or more of Nb, Zr, Ta and B can be contained.
[0052]
Ni is a very effective element that can simultaneously improve the strength and toughness of the base material, but it needs to be added in an amount of 0.01% or more in order to exert its effect. As the amount of Ni increases, the strength and toughness of the base material are improved. However, when the addition exceeds 6%, the effect is saturated, but there is a concern that the HAZ toughness and weldability may be deteriorated. Since it is an expensive element, the upper limit of Ni is set to 6% in the present invention in consideration of economy.
[0053]
Cu is an element having almost the same effect as Ni. However, in order to exert the effect, addition of 0.01% or more is necessary. Addition of more than 1.5% improves hot workability and HAZ toughness. In order to raise a problem, in this invention, it limits to 0.01 to 1.5% of range.
[0054]
Cr is an element effective for improving the strength by solid solution strengthening and precipitation strengthening, and 0.01% or more is necessary to produce the effect. However, when Cr is added excessively, the quenching hardness increases and coarse precipitates. Since the base material and the toughness of the HAZ are adversely affected through the formation of the metal, etc., the upper limit is limited to 2% as an acceptable range.
[0055]
Like Cr, Mo and W are effective elements for increasing the strength by solid solution strengthening and precipitation strengthening, and are also effective elements for securing the hardness of the hard second phase. As a range that does not adversely affect other characteristics, both Mo and W are limited to 0.01 to 2%.
[0056]
Since Ti forms stable TiN in austenite and contributes not only to the base material but also to the refinement of the heated austenite grain size of HAZ, it is an element effective for improving toughness in addition to improving strength. However, in order to exert its effect, it is necessary to contain 0.003% or more, but when it is contained excessively exceeding 0.1%, coarse TiN is formed and the toughness is deteriorated conversely. In the present invention, the content is limited to a range of 0.003 to 0.1%.
[0057]
V is an element effective for improving the strength of the base material by precipitation strengthening, but it needs to be 0.005% or more in order to exert the effect. As the added amount increases, the strengthening amount also increases, and accordingly, the base material toughness and HAZ toughness deteriorate, and the precipitates become coarse and the strengthening effect tends to be saturated. The upper limit is 0.5% in a range where the toughness deterioration is small.
[0058]
Nb is an element effective for increasing the strength in a small amount by precipitation strengthening and transformation strengthening, and also has a large effect on the processing and recrystallization behavior of austenite, and is therefore effective in improving the base material toughness. Furthermore, it is effective for improving the fatigue characteristics of HAZ. In order to exert the effect, 0.003% or more is necessary. However, if it is added excessively exceeding 0.2%, the toughness is extremely deteriorated. Therefore, in the present invention, it is limited to the range of 0.003 to 0.2%.
[0059]
Zr is also an element effective for improving the strength mainly by precipitation strengthening, but 0.003% or more is necessary to exert the effect. On the other hand, if it is added excessively exceeding 0.1%, coarse precipitates are formed and the toughness is adversely affected, so the upper limit is made 0.1%.
[0060]
Ta has the same effect as Nb, and contributes to the improvement of strength and toughness by adding an appropriate amount. However, if it is less than 0.005%, the effect is not clearly produced, and if it exceeds 0.2%, excessive addition is not possible. Since toughness deterioration due to coarse precipitates becomes significant, the range is made 0.005 to 0.2%.
[0061]
B is an element that enhances hardenability in a very small amount and is effective for increasing the strength. Since B is segregated at the austenite grain boundary in a solid solution state to enhance the hardenability, it is effective even with a very small amount. However, if it is less than 0.0002%, the segregation amount at the grain boundary cannot be secured sufficiently, so quenching is effective. This is not preferable because the effect of improving the property is insufficient or the effect tends to vary. On the other hand, if added over 0.005%, coarse precipitates are often formed at the time of steel slab production or at the reheating stage, so the effect of improving hardenability becomes insufficient, There is also an increased risk of toughness degradation due to precipitates. Therefore, in the present invention, the range of B is set to 0.0002 to 0.005%.
[0062]
Furthermore, in this invention, 1 type, or 2 or more types of Mg, Ca, and REM can be contained as needed for the improvement of ductility and the improvement of joint toughness.
[0063]
Mg, Ca, and REM are all effective in improving ductility by suppressing extension during the hot rolling of sulfides. Effectively improves the toughness of the joint by refining the oxide. The lower limit content for exhibiting the effect is 0.0005% for Mg, 0.0005% for Ca, and 0.005% for REM. On the other hand, excessive content causes coarsening of sulfides and oxides, leading to deterioration of ductility, toughness, and fatigue properties. Therefore, the upper limit is 0.01% for Mg and Ca, and 0.1% for REM, respectively. And
[0064]
The above is the reason for limiting the microstructure and chemical composition, which are the basic requirements of the present invention. In addition, in the present invention, an appropriate manufacturing method for satisfying the organizational requirements of the present invention is also presented. However, for the microstructure of the present invention, the effect is exhibited regardless of the means for achieving it, and the method for producing a thick steel sheet having excellent fatigue strength according to claims 1 to 3 of the present invention is described in the claims. It is not limited to the method shown to 4-10.
[0065]
In the first production method, a steel piece having a casting thickness of 100 mm or less, which is subjected to diffusion heat treatment with a heating temperature of 1150 to 1300 ° C. and a holding time of 1 to 100 h, as necessary, before hot rolling. ACThreeReheated to the transformation point to 1250 ° C., hot-rolled with a reduction ratio of 2 or more, and after hot rolling, at a cooling rate of 0.1 to 2 ° C./s to a temperature at which the ferrite fraction becomes 10% or more. After cooling, it is further cooled rapidly at 5 to 100 ° C./s to 500 ° C. or less.
[0066]
The second manufacturing method is for steel slabs having a casting thickness of more than 100 mm. After hot rolling, the steel slabs are subjected to diffusion heat treatment at a heating temperature of 1150 to 1300 ° C. and a holding time of 1 to 100 h. , ACThreeReheated to the transformation point to 1250 ° C., hot-rolled with a reduction ratio of 2 or more, and after hot rolling, at a cooling rate of 0.1 to 2 ° C./s to a temperature at which the ferrite fraction becomes 10% or more. After cooling, it is further cooled rapidly at 5 to 100 ° C./s to 500 ° C. or less.
[0067]
In both the first and second methods, the start temperature is 850 ° C. or lower and the end temperature is Ar as necessary.ThreeIt includes rolling at a transformation point or higher and a cumulative rolling reduction of 30% or higher, and / or a starting temperature of ArThreeBelow the transformation point, hot rolling including rolling with an end temperature of 600 ° C. or higher and a cumulative rolling reduction of 10 to 80% can be performed.
[0068]
Furthermore, (AC1Transformation point + 30 ° C) to (ACThreeA two-phase region heat treatment that is reheated to a transformation point of −50 ° C. and cooled to 500 ° C. or less at 5 to 100 ° C./s, and / or tempering at a heating temperature of 250 to 500 ° C. can be performed.
[0069]
The size and distribution of the second phase are greatly influenced by the distribution and transformation behavior of microsegregated portions such as Mn and C that occur during solidification. It is effective to finely disperse the microsegregation part for the refinement of the hard second phase, which is a requirement of the present invention, and the reduction of the interval, but for that purpose, the cooling rate before and after solidification can be increased, It is effective to reduce the secondary dendrite arm spacing by hot rolling. A method of reducing the degree of segregation of microsegregation once generated by diffusion heat treatment is also effective.
[0070]
The reason why the casting thickness is 100 mm or less is that the secondary dendrite arm interval is refined by increasing the solidification rate, and the hard second phase size and interval of the Z plane in the final structure are within the scope of the present invention. is there. When the casting thickness exceeds 100 mm, it is difficult to ensure that the average equivalent circle diameter of the hard second phase is 200 μm or less and that the maximum distance between the hard second phases is 500 μm or less.
[0071]
A method for finely dispersing the hard second phase irrespective of the casting thickness is a diffusion heat treatment in which the heating temperature is 1150 to 1300 ° C. and the holding time is 1 to 100 h. In order to effectively diffuse an alloy element mainly composed of Mn, it is necessary to maintain at 1150 ° C. for 1 hour or longer. However, if the diffusion heat treatment temperature exceeds 1300 ° C., the heated austenite becomes extremely coarse and adversely affects the toughness of the steel sheet, and the steel sheet may be roughened. The holding time is preferably as long as 1 h or longer. However, if the diffusion heat treatment temperature is 1150 ° C. or higher, the holding time is within 100 h, and sufficient homogenization of the alloy elements is achieved. Therefore, in the present invention, the upper limit is set to 100 h. In addition, since the effect of the main diffusion heat treatment and the reduction of the casting thickness is additive, in the first method, if necessary, the main diffusion heat treatment is also applied to a steel piece having a casting thickness of 100 mm or less. It is valid.
[0072]
In the present invention, a steel slab having a casting thickness of 100 mm or less and / or a steel slab subjected to a diffusion heat treatment with a heating temperature of 1150 to 1300 ° C. and a holding time of 1 to 100 h,ThreeReheated to the transformation point to 1250 ° C., hot-rolled with a reduction ratio of 2 or more, and after hot rolling, at a cooling rate of 0.1 to 2 ° C./s to a temperature at which the ferrite fraction becomes 10% or more. After cooling, it is further assumed that the steel plate manufacturing condition is to rapidly cool to 500 ° C. or lower at 5 to 100 ° C./s to obtain a thick steel plate.
[0073]
The reheating temperature of the billet is ACThreeThe transformation point to 1250 ° C is that the reheating temperature is ACThreeIf it is less than the transformation point, it does not become an austenite single phase in the heating stage, and the solid solution of precipitates is not sufficient, so that it becomes difficult to obtain the strength and toughness required as a structural material. When the heating temperature is higher than 1250 ° C., the heated austenite grain size becomes extremely coarse and is not sufficiently refined even by the subsequent hot rolling, so that the toughness may be deteriorated.
[0074]
In hot rolling, the reduction ratio (casting thickness / steel plate thickness) is set to 2 or more. This is advantageous for fine dispersion of the hard second phase in the Z plane if the rolling ratio is 2 or more, and also reduces the interval of the hard second phase in the plate thickness direction, This is to contribute to improvement of fatigue characteristics. Furthermore, if the rolling reduction ratio is less than 2, it is difficult to press the porosity that occurs in the slab due to solidification shrinkage, which is why the rolling reduction ratio is 2 or more.
[0075]
After hot rolling, after cooling at a cooling rate of 0.1 to 2 ° C./s to a temperature at which the ferrite fraction becomes 10% or more, further quenching at 5 to 100 ° C./s to 500 ° C. or less is fatigue. This is to ensure 20 to 80% of the fraction in the hard second phase structure having an average Vickers hardness of 250 to 800 necessary for improving the characteristics. In order to produce the hard second phase in the low C steel having a C content of 0.3% or less as in the present invention, the transformation temperature range is quenched and C is concentrated in the austenite phase before transformation. For this purpose, it is necessary to cause ferrite transformation before quenching. If the ferrite fraction before quenching is less than 10%, the concentration of C into untransformed austenite may be insufficient. Therefore, in the present invention, the ferrite fraction before quenching is set to 10% or more. Since the main purpose of the ferrite formation is to enrich C in austenite, the ferrite transformation temperature is preferably high. For this reason, the cooling rate during the ferrite formation is 2 ° C./s or less. If the cooling rate is excessive, the ferrite transformation temperature decreases, and the diffusion rate of C becomes insufficient, which is not preferable for the concentration of C into austenite. From the viewpoint of concentrating C in austenite, the cooling rate in the ferrite formation process is preferably as low as possible. However, 0.1 ° C./s or more is sufficient, and the effect is saturated even if it is gradually cooled further. In the present invention, the lower limit cooling rate is 0.1 ° C./s.
[0076]
Untransformed austenite in which C is sufficiently concentrated is transformed at a low temperature by quenching at 5 to 100 ° C./s to 500 ° C. or less to form a hard second phase. When the average cooling rate before and after the transformation region is less than 5 ° C./s, it is difficult to stably form a hard second phase having an average Vickers hardness of 250 or more even within the chemical composition range of the present invention. It becomes. The larger the cooling rate is, the more advantageous for the formation of the hard second phase, but the effect is saturated even if it exceeds 100 ° C./s, and cooling at such an excessive cooling rate increases the production cost. It also leads to deterioration of the steel plate shape. For the above reasons, in the present invention, the cooling rate in the rapid cooling when the hard second phase is formed from untransformed austenite is in the range of 5 to 100 ° C./s. Rapid cooling at the cooling rate is necessary until the transformation is almost completed. In the chemical composition range of the present invention, if the quenching stop temperature is 500 ° C. or less, a desired hard second phase can be obtained.
[0077]
It should be noted that the effect of the present invention is not impaired even if a piece of steel such as an ingot or a slab is subjected to partial rolling for the purpose of shape adjustment before hot rolling for forming a steel plate. Moreover, as long as the conditions of the diffusion heat treatment of the present invention are satisfied, the diffusion heat treatment and the ingot rolling are combined, that is, the steel slab is 1 to 1150 to 1300 ° C., which is the diffusion heat treatment condition of the present invention. There is no problem with carrying out the partial rolling in the cooling stage after holding for 100 hours.
[0078]
The above is the reason for limiting the basic requirements of the production method in the present invention. However, in the production method of the present invention, it is necessary to obtain the structural requirements of the present invention and to improve the mechanical properties as necessary. Then, after satisfying the basic requirements of the production method of the present invention, the following treatments (a) to (d) can be additionally performed.
(A) Start temperature is 850 ° C. or lower, and end temperature is ArThreeHot rolling is performed at a transformation point or higher and a cumulative rolling reduction of 30% or higher.
(B) Start temperature is ArThreeHot rolling is performed at a transformation point or lower, an end temperature of 600 ° C. or higher, and a cumulative rolling reduction of 10 to 80%.
(C) After rapid cooling to below 500 ° C, further (AC1Transformation point + 30 ° C) to (ACThreeA two-phase region heat treatment is performed by reheating to a transformation point of −50 ° C. and cooling to 500 ° C. or less at 5 to 100 ° C./s.
(D) After quenching to 500 ° C. or lower, or after performing a two-phase region heat treatment, temper at 250 to 500 ° C.
[0079]
(A) is a process for refining austenite before transformation and / or accumulating strain in unrecrystallized austenite to refine the transformation structure. As a result of refining the transformation structure, the hard second phase is finely dispersed and stably satisfies the average equivalent circular diameter of the hard second phase: 10 to 200 μm, and the maximum interval between the hard second phases: 500 μm or less. Can improve fatigue characteristics. In addition, since the ferrite grain size is also refined, this means is effective in achieving high toughness as well as fatigue characteristics.
[0080]
In order to exert the above effects, hot rolling with a cumulative rolling reduction of 30% or more is started at a temperature of 850 ° C. or lower and the end temperature is Ar.ThreeMust be done above the transformation point. If the cumulative rolling reduction is less than 30%, recrystallization austenite grains are not sufficiently refined in recrystallization zone rolling, and strain accumulation in austenite grains is not sufficient in non-recrystallization zone rolling. The transformation structure is not sufficiently refined regardless of the temperature. On the other hand, even if the cumulative rolling reduction is 30% or more, if the rolling temperature is not in an appropriate range, the rolling effect does not contribute to the refinement of the structure effectively, which is not preferable. That is, when the rolling start temperature exceeds 850 ° C., the recrystallized austenite grains are not sufficiently refined, the recovery rate of the introduced dislocations is large, and the strain is not accumulated effectively. In the present invention, the upper limit of the rolling start temperature is set to 850 ° C. from the viewpoint of all the rolling in the means (a) contributing to the refinement of the structure. As long as the rolling is finished in the austenite region, it is effective for refining the structure. Therefore, the rolling finishing temperature in the additional treatment (a) is Ar.ThreeIt only needs to be above the transformation point. The rolling temperature is 850 ° C. to ArThreeSince the rolling effect is almost accumulated within the range of the transformation point, the rolling reduction may be defined by the cumulative rolling reduction, and it is not necessary to define the rolling conditions for each pass.
[0081]
(B) is an effective means for ensuring the hardness of the hard second phase by accelerating ferrite transformation by two-phase rolling and promoting C concentration into untransformed austenite. In order to concentrate C to austenite, it is more reliable that C is diffused from ferrite to austenite at a higher temperature, the concentration of C in austenite increases, the amount of C in the austenite increases, and the hard second after transformation Increases the hardness of the phase.
[0082]
Ferrite transformation is promoted by applying two-phase rolling. Therefore, in the chemical composition range of the present invention, the starting temperature is Ar.ThreeIt is effective to additionally perform hot rolling at a transformation point or lower, an end temperature of 600 ° C. or higher, and a cumulative rolling reduction of 10 to 80%. Start temperature as ArThreeBelow the transformation point is ArThreeIf the transformation point is exceeded, the amount of machining in the two-phase region becomes insufficient even when the transformation point is raised by machining. The rolling end temperature is set to 600 ° C. or more because if it is less than 600 ° C., transformation from austenite occurs during or after processing and before the start of quenching, which is caused by the hard second phase to be generated by quenching. This is because the pearlite transformation with low hardness may occur. In order to ensure the effect of promoting the ferrite transformation by the two-phase region rolling, the cumulative reduction ratio of the two-phase region rolling needs to be 10% or more. If it is less than 10%, the ferrite transformation is not sufficiently promoted, and there is no point in additionally performing two-phase rolling. The upper limit of the cumulative rolling reduction of the two-phase zone rolling is 80%. This is because if excessive two-phase rolling exceeding 80% is applied, transformation from untransformed austenite is also promoted, and the desired hard second phase may not be formed. This is because it becomes difficult to secure 600 ° C., which is the lower limit of the end temperature. In addition, by using this means additionally, a texture develops, and it can be expected to improve fatigue characteristics and toughness as a result.
[0083]
(C) is to ensure the hardness and fraction of the hard second phase more reliably by the two-phase region heat treatment. When heated in the two-phase region, austenitization in the reverse transformation occurs from the micro-segregated portion and pearlite portion where the components are concentrated, so if the hot rolling conditions before heat treatment satisfy the requirements of the present invention, the dispersion The state is within the scope of the present invention. Depending on the heating conditions of the two-phase region heat treatment, the fraction of reverse transformed austenite and the degree of concentration of C in the austenite are determined. That is, the fraction and hardness of the hard second phase after transformation from austenite are determined. The heating temperature in the two-phase region heat treatment is (AC1If it is less than the transformation point + 30 ° C., the reverse transformed austenite fraction, and thus the resulting hard second phase fraction, is too small compared to the present invention, and the fatigue characteristics deteriorate. On the other hand, the heating temperature in the two-phase region heat treatment is (ACThreeIf the transformation point exceeds -50 ° C), the austenite fraction increases, but instead, the concentration of C in the austenite is insufficient, and the hardness of the hard second phase deviates from the present invention. Therefore, the fatigue characteristics are also inferior, which is not preferable. Therefore, in the present invention, the two-phase region heat treatment temperature is (AC1Transformation point + 30 ° C) to (ACThreeTransformation point-50 ° C). (AC1Transformation point + 30 ° C) to (ACThreeAfter reheating to a transformation point of −50 ° C., cooling is performed at 5 to 100 ° C./s to 500 ° C. or less. This is similar to the rapid cooling after hot rolling described above, and C is sufficiently concentrated. This is because untransformed austenite is transformed at a low temperature to form a hard second phase that satisfies the structural requirements of the present invention.
[0084]
(D) is a tempering treatment performed after rapid cooling to 500 ° C. or less or after performing a two-phase region heat treatment, and is performed to adjust strength and toughness as necessary. However, it is necessary to consider not to excessively reduce the hardness of the hard second phase. That is, in the present invention, the upper limit of the tempering temperature is set to 500 ° C. If the tempering temperature exceeds 500 ° C., depending on the chemical composition, the average Vickers hardness of the hard phase was 250 or more in the hot rolling or the two-phase region heat treatment stage. This is because there is a concern that it will decrease to less than. In the present invention, the lower limit of the tempering temperature is defined as 250 ° C. This is because when the tempering temperature is less than 250 ° C., the material adjustment effect by tempering is not clear.
[0085]
Next, the effects of the present invention will be described more specifically with reference to examples.
[0086]
【Example】
Table 1 shows the chemical composition of the test steel used in the examples. Each test steel is made into a steel slab by ingot rolling, by ingot rolling, or by continuous casting. In Table 1, steel slab numbers 1 to 10 satisfy the chemical composition range of the present invention, and steel slab numbers 11 to 15 do not satisfy the chemical composition range of the present invention. Table 1 also shows the heating transformation point (AC1, ACThreeThis indicates that the rate of temperature rise is 5 ° C./min. Although it is an actual measurement value at this time, it almost coincides with the transformation point shown in Table 2 under the actual temperature rise condition during billet heating or heat treatment of the steel sheet.
[0087]
Steel slabs with the chemical composition of Table 1 are shown in Table 2.(Table 2-1 to Table 2-3)Were subjected to diffusion heat treatment, hot rolling, heat treatment, and tempering under the conditions shown in (2) above, to produce a steel plate having a thickness of 25 mm or 50 mm, and the tensile properties at room temperature, 2 mm V notch Charpy impact properties, and fatigue properties of welded joints were investigated. Tensile test pieces and Charpy impact test pieces were sampled perpendicularly to the rolling direction (C direction) from the center of the plate thickness. Tensile properties were measured at room temperature, and Charpy impact properties were evaluated at 50% fracture surface transition temperature (vTrs). The fatigue test was performed on the turn welded joint shown in FIG. 5 in order to evaluate the fatigue characteristics when a fatigue crack is generated from the weld toe of the structure and propagates through the base metal. The test piece S is a test plate having a size from steel plate to steel plate longitudinal direction length: 300 mm, width direction length: 80 mm, plate thickness: 25 mm (total thickness for 25 mm thick material, sampled from the surface for 50 mm thick material). The rib plate B having a width of 10 mm, a length of 30 mm, and a height of 30 mm was welded with carbon dioxide gas (CO2Welding), the test plate was turned to the center and welded by welding C. In this case, carbon dioxide gas welding uses a 1.4 mm diameter welding wire having a chemical composition of C: 0.06 mass%, Si: 0.5 mass%, Mn: 1.4 Mass%, current: 270A, Voltage: 30 V, welding speed: 20 cm / min. I went there. In the fatigue test, the span of the load fulcrum F is set to the lower span: 70 mm, the upper span: 220 mm, the maximum load (Pmax): 5500 kgf, the stress ratio (R): 0.1, and the fatigue life is measured. did.
[0088]
Table 3 shows the structure of the hard second phase of the steel sheet (type, fraction, Vickers hardness, average equivalent circle diameter, maximum interval) and mechanical properties. The structure was quantified with respect to an optical microscope structure having a cross section (Z plane) parallel to the steel plate surface at ¼ of the plate thickness. Using a tissue photograph of 5 to 10 fields of view, it was quantified by an image analyzer. The hardness of the hard second phase was also measured by measuring 10 or more micro Vickers hardnesses having a load of 5 to 10 g in the same cross section and evaluating the average value.
[0089]
Steel plates Nos. A1 to A13 in Tables 2 and 3 are steel plates that satisfy all the requirements regarding the chemical composition and structure of the present invention, and all of them have the strength and toughness (2 mm V notch Charpy impact properties required as structural steels). It is clear that it also has very good joint fatigue properties.
[0090]
On the other hand, steel plate numbers B1 to B11 are comparative steel plates that do not satisfy any of the requirements of the present invention, and have joint fatigue properties and toughness as compared with the steel plates of the present invention having the same composition and strength level. It is clear that it is inferior.
[0091]
Steel plate numbers B1 to B5 have good characteristics even though they cannot satisfy the structural requirements of the present invention because the chemical composition does not satisfy the present invention, or satisfy the structural requirements of the present invention. This is an example that could not be achieved.
[0092]
That is, the steel plate number B1, because the C amount is excessive, the toughness is inferior, as well as the toughness is extremely inferior, and the hard phase is brittle fracture even in the fatigue test, compared to the present invention, Joint fatigue properties are inferior.
[0093]
Steel plate number B2 is significantly inferior to the present invention in both toughness and fatigue properties for the same reason as in the case where the amount of C is excessive because the amount of Mn is excessive.
[0094]
Steel plate numbers B3 and B4 are excessively inferior to the present invention in both toughness and fatigue properties because the P and N contents are excessive and cause the steel to become brittle.
[0095]
Steel plate number B5 is inferior in fatigue characteristics as compared with the present invention because the amount of S is excessive and the fatigue characteristics are greatly degraded through ductility degradation.
[0096]
Steel plate numbers B6 to B11 are examples in which the joint fatigue characteristics are inferior because the chemical composition satisfies the present invention but the structural requirements do not satisfy the present invention.
[0097]
That is, steel plate numbers B6 and B9 are examples in which the fatigue characteristics are inferior compared to the steel of the present invention having the same composition because the interval between the hard second phases is excessive.
[0098]
Steel plate numbers B7, B8 and B10, B11 are pearlite in which the second phase is not preferred for fatigue properties, so the fatigue properties of the second phase compared to the present invention although the dispersed state satisfies the present invention. Is greatly inferior.
[0099]
From the above examples, it is apparent that according to the present invention, it is possible to obtain excellent joint fatigue characteristics while ensuring sufficiently high toughness as structural steel.
[0100]
[Table 1]
[0101]
[Table 2-1]
[Table 2-2]
[Table 2-3]
[0102]
[Table 3]
[0103]
【The invention's effect】
The present invention relies on special alloying elements and complex manufacturing processes to improve joint fatigue characteristics, which have been difficult to improve in welded parts, in thick steel plates used for welded structural members that require fatigue strength. In addition, the industrial utility is extremely large in that it can be manufactured without being greatly restricted in the tensile strength and the steel plate thickness.
[Brief description of the drawings]
FIG. 1 is a diagram showing the relationship between the fracture life in a surface mechanical notch three-point bending fatigue test, the type and fraction of a hard second phase.
FIG. 2 is a diagram showing the relationship between the fracture life in the fatigue test and the maximum spacing on the Z plane of the hard second phase.
FIG. 3 is a diagram showing a definition of a maximum interval on the Z plane of a hard second phase.
FIG. 4 is a schematic diagram of a surface machine notch three-point bending test piece and a test apparatus for examining base metal fatigue crack propagation characteristics.
FIG. 5 is a schematic diagram of a four-point bending test piece and a test apparatus for measuring a fatigue life when a fatigue crack propagates to a base steel plate.
[Explanation of symbols]
A Test piece
N Mechanical notch
S specimen
B Rib plate
C Turning welding
F Load fulcrum
Claims (10)
C :0.04〜0.3%、
Si:0.01〜2%、
Mn:0.1〜3%、
Al:0.001〜0.1%、
N :0.001〜0.01%
を含有し、不純物として、
P:0.02%以下、
S :0.01%以下
を含有し、残部が鉄及び不可避不純物からなり、少なくともフェライトと硬質第二相とを含む組織を有し、且つ、表面に平行な断面組織において前記硬質第二相が下記(a)〜(d)の条件を全て満たしている厚鋼板において、前記硬質第二相の組織がベイナイト、マルテンサイトのいずれか又は両者の混合組織からなることを特徴とする疲労強度に優れた厚鋼板。
(a)硬質第二相の分率:20〜80%
(b)硬質第二相の平均ビッカース硬さ:250〜800
(c)硬質第二相の平均円相当径:10〜200μm
(d)硬質第二相間の最大間隔:500μm以下% By mass
C: 0.04-0.3%
Si: 0.01-2%
Mn: 0.1 to 3%
Al: 0.001 to 0.1%,
N: 0.001 to 0.01%
As impurities,
P: 0.02% or less,
S: 0.01% or less, the balance being iron and inevitable impurities, having a structure containing at least ferrite and a hard second phase, and in the cross-sectional structure parallel to the surface, the hard second phase is In the thick steel plate that satisfies all the following conditions (a) to (d) , the hard second phase structure is composed of either bainite, martensite, or a mixed structure of both, and is excellent in fatigue strength. Thick steel plate.
(A) Hard second phase fraction: 20-80%
(B) Average Vickers hardness of hard second phase: 250 to 800
(C) Average equivalent circular diameter of hard second phase: 10 to 200 μm
(D) Maximum distance between hard second phases: 500 μm or less
Ni:0.01〜6%、
Cu:0.01〜1.5%、
Cr:0.01〜2%、
Mo:0.01〜2%、
W :0.01〜2%、
Ti:0.003〜0.1%、
V :0.005〜0.5%、
Nb:0.003〜0.2%、
Zr:0.003〜0.1%、
Ta:0.005〜0.2%、
B :0.0002〜0.005%
の1種又は2種以上を含有することを特徴とする請求項1に記載の疲労強度に優れた厚鋼板。Furthermore, in mass%,
Ni: 0.01-6%,
Cu: 0.01 to 1.5%,
Cr: 0.01~2%,
Mo: 0.01-2%
W: 0.01-2%
Ti: 0.003 to 0.1%,
V: 0.005-0.5%
Nb: 0.003 to 0.2%,
Zr: 0.003 to 0.1%,
Ta: 0.005 to 0.2%,
B: 0.0002 to 0.005%
The thick steel plate excellent in fatigue strength according to claim 1, comprising one or more of the following.
Mg:0.0005〜0.01%、
Ca:0.0005〜0.01%、
REM:0.005〜0.1%
のうち1種又は2種以上を含有することを特徴とする請求項1又は2のいずれかに記載の疲労強度に優れた厚鋼板。Furthermore, in mass%,
Mg: 0.0005 to 0.01%,
Ca: 0.0005 to 0.01%,
REM: 0.005-0.1%
The steel plate having excellent fatigue strength according to any one of claims 1 and 2, wherein one or more of them are contained.
(a)硬質第二相の分率:20〜80%
(b)硬質第二相の平均ビッカース硬さ:250〜800
(c)硬質第二相の平均円相当径:10〜200μm
(d)硬質第二相間の最大間隔:500μm以下 A steel slab having the component according to any one of claims 1 to 3 and having a casting thickness of 100 mm or less is reheated to an AC 3 transformation point to 1250 ° C, and hot rolling with a reduction ratio of 2 or more is performed. After hot rolling, after cooling at a cooling rate of 0.1 to 2 ° C./s to a temperature at which the ferrite fraction becomes 10% or more, further quenching at 5 to 100 ° C./s to 500 ° C. or less , at least ferrite And the hard second phase satisfies all the following conditions (a) to (d) in a cross-sectional structure parallel to the surface, and the hard second phase The manufacturing method of the thick steel plate excellent in the fatigue strength characterized by making a structure | tissue into either a bainite, a martensite, or a mixed structure of both .
(A) Hard second phase fraction: 20-80%
(B) Average Vickers hardness of hard second phase: 250 to 800
(C) Average equivalent circular diameter of hard second phase: 10 to 200 μm
(D) Maximum distance between hard second phases: 500 μm or less
(a)硬質第二相の分率:20〜80%
(b)硬質第二相の平均ビッカース硬さ:250〜800
(c)硬質第二相の平均円相当径:10〜200μm
(d)硬質第二相間の最大間隔:500μm以下 Diffusion with a heating temperature of 1150 to 1300 ° C. and a holding time of 1 to 100 h before hot rolling on a steel slab having the component according to claim 1 and having a casting thickness of more than 100 mm After heat treatment, reheat to AC 3 transformation point to 1250 ° C., perform hot rolling with a reduction ratio of 2 or more, and after hot rolling, 0.1 to a temperature at which the ferrite fraction becomes 10% or more. After cooling at a cooling rate of 2 ° C./s, it is further quenched at 5-100 ° C./s to 500 ° C. or less , and has a structure containing at least ferrite and a hard second phase, and is a cross-sectional structure parallel to the surface The hard second phase satisfies all the following conditions (a) to (d), and the hard second phase structure is either bainite, martensite, or a mixed structure of both. A method for producing thick steel plates with excellent fatigue strength.
(A) Hard second phase fraction: 20-80%
(B) Average Vickers hardness of hard second phase: 250 to 800
(C) Average equivalent circular diameter of hard second phase: 10 to 200 μm
(D) Maximum distance between hard second phases: 500 μm or less
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002041389A JP3860763B2 (en) | 2002-02-19 | 2002-02-19 | Thick steel plate with excellent fatigue strength and its manufacturing method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002041389A JP3860763B2 (en) | 2002-02-19 | 2002-02-19 | Thick steel plate with excellent fatigue strength and its manufacturing method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2003239036A JP2003239036A (en) | 2003-08-27 |
JP3860763B2 true JP3860763B2 (en) | 2006-12-20 |
Family
ID=27781826
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002041389A Expired - Fee Related JP3860763B2 (en) | 2002-02-19 | 2002-02-19 | Thick steel plate with excellent fatigue strength and its manufacturing method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3860763B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106544581A (en) * | 2016-09-30 | 2017-03-29 | 秦皇岛首秦金属材料有限公司 | A kind of high-strength container steel of normalizing state nickel-vanadium alloy and its production method |
Families Citing this family (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4670371B2 (en) * | 2004-01-30 | 2011-04-13 | Jfeスチール株式会社 | Manufacturing method of steel with excellent strength uniformity in the thickness direction and fatigue crack propagation characteristics |
JP4687122B2 (en) * | 2004-01-30 | 2011-05-25 | Jfeスチール株式会社 | Manufacturing method of steel with excellent strength uniformity in the thickness direction and fatigue crack propagation characteristics |
US20070193665A1 (en) * | 2004-03-11 | 2007-08-23 | Hitoshi Furuya | Steel plate excellent in machineability and in toughness and weldability and method of production of the same |
JP5217092B2 (en) * | 2006-01-31 | 2013-06-19 | Jfeスチール株式会社 | Manufacturing method of steel material with excellent fatigue crack propagation resistance |
JP4058097B2 (en) | 2006-04-13 | 2008-03-05 | 新日本製鐵株式会社 | High strength steel plate with excellent arrestability |
JP4721956B2 (en) * | 2006-06-06 | 2011-07-13 | 株式会社神戸製鋼所 | Thick steel plate with excellent base metal toughness and fatigue crack growth characteristics |
JP2007314819A (en) * | 2006-05-23 | 2007-12-06 | Kobe Steel Ltd | Steel sheet having excellent fatigue crack propagation resistance |
JP5070744B2 (en) * | 2006-06-13 | 2012-11-14 | Jfeスチール株式会社 | Manufacturing method of steel material with excellent fatigue crack propagation resistance |
JP4923968B2 (en) * | 2006-11-15 | 2012-04-25 | Jfeスチール株式会社 | Steel material with excellent fatigue crack propagation resistance |
JP5064150B2 (en) * | 2006-12-14 | 2012-10-31 | 新日本製鐵株式会社 | High strength steel plate with excellent brittle crack propagation stopping performance |
JP4924047B2 (en) * | 2007-01-16 | 2012-04-25 | Jfeスチール株式会社 | Manufacturing method of steel material having excellent fatigue crack propagation characteristics with absolute value of surface residual stress of 150 N / mm 2 or less |
JP5029748B2 (en) * | 2010-09-17 | 2012-09-19 | Jfeスチール株式会社 | High strength hot rolled steel sheet with excellent toughness and method for producing the same |
JP5360185B2 (en) * | 2011-11-29 | 2013-12-04 | Jfeスチール株式会社 | Manufacturing method of steel material with excellent fatigue crack propagation resistance |
JP5397460B2 (en) * | 2011-12-27 | 2014-01-22 | Jfeスチール株式会社 | Manufacturing method of steel material with excellent fatigue crack propagation resistance |
RU2495148C1 (en) * | 2012-03-27 | 2013-10-10 | Открытое акционерное общество "Магнитогорский металлургический комбинат" | Low-carbon low-alloy steel for production of large hot-rolled standard and profiled stock |
JP6228491B2 (en) * | 2013-08-26 | 2017-11-08 | 株式会社神戸製鋼所 | Thick steel plate with excellent fatigue characteristics and method for producing the same |
JP6400516B2 (en) * | 2014-04-09 | 2018-10-03 | Jfeスチール株式会社 | High strength steel material with excellent fatigue crack propagation resistance and method for producing the same |
CN104711479B (en) * | 2015-03-23 | 2017-01-25 | 山东钢铁股份有限公司 | Alloy steel plate for pressure vessel and manufacturing method of alloy steel plate |
CN104674112B (en) * | 2015-03-25 | 2017-02-22 | 山东钢铁股份有限公司 | High-strength alloy steel plate for pressure vessel and preparation method thereof |
JP6086134B1 (en) * | 2015-08-24 | 2017-03-01 | Jfeスチール株式会社 | Structural steel with excellent ethanol pitting resistance |
WO2018034071A1 (en) * | 2016-08-19 | 2018-02-22 | 株式会社神戸製鋼所 | Thick steel plate and production method therefor |
JP2018031069A (en) * | 2016-08-19 | 2018-03-01 | 株式会社神戸製鋼所 | Thick steel plate and production method therefor |
KR20210066884A (en) * | 2018-12-07 | 2021-06-07 | 제이에프이 스틸 가부시키가이샤 | Steel plate and its manufacturing method |
CN110592462B (en) * | 2019-09-19 | 2021-04-06 | 舞阳钢铁有限责任公司 | Steel plate for low-temperature equipment and production method thereof |
RU2758602C1 (en) * | 2020-08-05 | 2021-11-01 | Акционерное общество «ЕВРАЗ Нижнетагильский металлургический комбинат» (АО «ЕВРАЗ НТМК») | COLUMN I-BEAM WITH A SHELF THICKNESS OF UP TO 40 mm |
WO2023276516A1 (en) * | 2021-07-02 | 2023-01-05 | Jfeスチール株式会社 | High-strength steel sheet and method for producing same |
JP7173423B1 (en) * | 2021-07-02 | 2022-11-16 | Jfeスチール株式会社 | High-strength steel plate and its manufacturing method |
-
2002
- 2002-02-19 JP JP2002041389A patent/JP3860763B2/en not_active Expired - Fee Related
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106544581A (en) * | 2016-09-30 | 2017-03-29 | 秦皇岛首秦金属材料有限公司 | A kind of high-strength container steel of normalizing state nickel-vanadium alloy and its production method |
Also Published As
Publication number | Publication date |
---|---|
JP2003239036A (en) | 2003-08-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3860763B2 (en) | Thick steel plate with excellent fatigue strength and its manufacturing method | |
JP4445161B2 (en) | Manufacturing method of thick steel plate with excellent fatigue strength | |
JP5509923B2 (en) | Method for producing high-tensile steel sheet having a tensile strength of 1100 MPa or more for laser welding or laser-arc hybrid welding | |
JP6048436B2 (en) | Tempered high tensile steel plate and method for producing the same | |
KR20060130779A (en) | Steel plate with excellent fatigue crack propagation characteristics and its manufacturing method | |
JP5045074B2 (en) | High tensile thin-walled steel sheet having low yield ratio and manufacturing method thereof | |
JP3785392B2 (en) | Thick steel with excellent fatigue crack propagation characteristics and its manufacturing method | |
JP2024500851A (en) | Extra-thick steel material with excellent low-temperature impact toughness and its manufacturing method | |
JPH10168542A (en) | High-strength steel excellent in low-temperature toughness and fatigue strength and method for producing the same | |
JP2000129392A (en) | High-strength steel excellent in fatigue crack propagation resistance and method of manufacturing the same | |
JP5477089B2 (en) | Manufacturing method of high strength and high toughness steel | |
JPH10306316A (en) | Method for producing low yield ratio high strength steel with excellent low temperature toughness | |
JP2005298877A (en) | Steel plate with excellent fatigue crack propagation characteristics and method for producing the same | |
JP4000049B2 (en) | Manufacturing method of steel plate with excellent fatigue crack propagation resistance | |
JP2008208406A (en) | Steel material having small material anisotropy and excellent fatigue crack propagation properties, and producing method therefor | |
JP7104370B2 (en) | Thick steel plate and its manufacturing method | |
JP7070814B1 (en) | Thick steel plate and its manufacturing method | |
JP2541070B2 (en) | Method for producing high nickel alloy clad steel sheet with excellent brittle fracture propagation stopping properties of base material | |
JP4824142B2 (en) | Steel for line pipe with good strength and ductility and method for producing the same | |
JP5589335B2 (en) | Manufacturing method of high toughness steel | |
JP6673320B2 (en) | Thick steel plate and method for manufacturing thick steel plate | |
CA3152893A1 (en) | Hot-rolled steel sheet for electric resistance welded steel pipe and method for manufacturing the same, electric resistance welded steel pipe and method for manufacturing the same, line pipe, and building structure | |
JP6327186B2 (en) | Non-tempered low-yield ratio high-tensile steel plate and method for producing the same | |
JP4660363B2 (en) | Manufacturing method of thick steel plate with excellent toughness | |
JP7472826B2 (en) | Electric resistance welded steel pipe and its manufacturing method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20040902 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20060209 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060228 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060316 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20060912 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20060922 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 3860763 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100929 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100929 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110929 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120929 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120929 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130929 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130929 Year of fee payment: 7 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130929 Year of fee payment: 7 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130929 Year of fee payment: 7 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |