JP3860616B2 - Phthalocyanine compounds - Google Patents
Phthalocyanine compounds Download PDFInfo
- Publication number
- JP3860616B2 JP3860616B2 JP10449794A JP10449794A JP3860616B2 JP 3860616 B2 JP3860616 B2 JP 3860616B2 JP 10449794 A JP10449794 A JP 10449794A JP 10449794 A JP10449794 A JP 10449794A JP 3860616 B2 JP3860616 B2 JP 3860616B2
- Authority
- JP
- Japan
- Prior art keywords
- phthalocyanine
- compound
- group
- metal
- reaction
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- YQNLLKBSGTVMMN-UHFFFAOYSA-N CC=CCS(C(N)=CC)C1=SC1C(NC)=C Chemical compound CC=CCS(C(N)=CC)C1=SC1C(NC)=C YQNLLKBSGTVMMN-UHFFFAOYSA-N 0.000 description 1
- 0 CCCCC1=C(*)CN=C(CC)C1*C*(C)=* Chemical compound CCCCC1=C(*)CN=C(CC)C1*C*(C)=* 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09B—ORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
- C09B47/00—Porphines; Azaporphines
- C09B47/04—Phthalocyanines abbreviation: Pc
- C09B47/06—Preparation from carboxylic acids or derivatives thereof, e.g. anhydrides, amides, mononitriles, phthalimide, o-cyanobenzamide
- C09B47/067—Preparation from carboxylic acids or derivatives thereof, e.g. anhydrides, amides, mononitriles, phthalimide, o-cyanobenzamide from phthalodinitriles naphthalenedinitriles, aromatic dinitriles prepared in situ, hydrogenated phthalodinitrile
- C09B47/0676—Preparation from carboxylic acids or derivatives thereof, e.g. anhydrides, amides, mononitriles, phthalimide, o-cyanobenzamide from phthalodinitriles naphthalenedinitriles, aromatic dinitriles prepared in situ, hydrogenated phthalodinitrile having nitrogen atom(s) linked directly to the skeleton
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Optical Record Carriers And Manufacture Thereof (AREA)
- Thermal Transfer Or Thermal Recording In General (AREA)
Description
【0001】
【産業上の利用分野】
本発明は、光記録用色素、カラーフィルター用色素、光電変換素子、電子写真感光体、有機半導体素子、触媒及びガスセンサー、カラーフィルター等に利用可能な新規なフタロシアニン化合物に関する。
【0002】
【従来の技術】
フタロシアニン化合物は従来から使用されてきた顔料としての用途の他に、光記録用色素、カラーフィルター用色素、光電変換素子、電子写真感光体、有機半導体素子、触媒及びガスセンサー等の材料として注目を集めている。しかしながら、無置換のフタロシアニン化合物は、ほとんどの溶剤に対して難溶若しくは不溶であり、著しく加工性に劣る。例えば、前述の用途に用いるためフタロシアニンを薄膜化する場合には、真空蒸着法か超微粒子分散法が用いられるが、いずれの場合も生産性が低く、これらの媒体や素子等を量産する場合に大きな障害になっている。特に、フタロシアニン化合物の真空蒸着膜を光ディスク用記録膜として用いる場合、蒸着膜を記録特性に合う結晶型に結晶転移することが必要となる。この結晶転移は蒸着した記録膜を熱又は有機溶媒の蒸気に長時間曝す処理によって行なわれ、生産性を著しく損なうため、この方法による光ディスクの生産は実用化されていない。
【0003】
また、光ディスクなかでもコンパクトディスク(CD)に関しては、近年特に追記型CDの開発が盛んであり、これまで追記型CDの材料となる有機色素としては、主としてシアニン色素が用いられてきた。この種の色素は、吸光係数が大きいという点では優れているが、耐光性が悪いという欠点があり、これを改善するため一重項酸素クエンチャーなどの光安定剤を添加する方法がとられることもあった。しかし、その効果はまだ十分なものではない。これに対しフタロシアニン色素は高い安定性を有するが、前述のように有機溶剤への溶解度が低いという問題を有していた。
【0004】
上記の問題を解決するために、フタロシアニンに置換基を導入して有機溶媒に溶解し得るフタロシアニン化合物となした後、これを塗布することも行なわれている。特開平1−180865号、特開平2−265788号、特開平3−215466号各公報等に開示されているフタロシアニン化合物は、フタロシアニンのベンゼン環に長鎖のアルキル基又はアルコキシ基を導入して炭化水素系有機溶剤に対する溶解性を得たものである。これら以外にも、エステル基、ポリエーテル基、チオエーテル基等の官能基を介して長鎖のアルキル基を導入することが数多く行なわれている。
【0005】
【発明が解決しようとする課題】
ところが、これらのフタロシアニン化合物は、シアニン色素に比べて吸光係数が低く、特に成膜した場合はフタロシアニン分子間の会合のため長波長部の吸光係数が低下し、光吸収層として必要な屈折率を達成できないという難点があった。
【0006】
従って、本発明は、置換基により各種の有機溶媒に対する溶解性を向上させたフタロシアニン化合物において、光記録用色素等の用途においても高い性能を持つ化合物を提供することを、その目的とする。
【0007】
【課題を解決するための手段】
本発明によれば、下記の一般式(I)で示されるフタロシアニン化合物が提供される。
【化1】
(式中、1〜16は周辺炭素原子位置を示すものであり、Mは2個の水素原子、2価の金属原子、金属酸化物又は金属塩化物を示す。また、Xはベンゾイミダゾリル基、5,6−ジメチルベンゾイミダゾリル基、ベンゾトリアゾリル基のいずれかを示す。なお、Xはそれぞれ2又は3、6又は7、10又は11、14又は15のいずれかの炭素原子に結合しているか、或いは1又は4、5又は8、9又は12、13又は16のいずれかの炭素原子に結合しているものとする。)
【0008】
本発明の新規なフタロシアニン化合物は、前記の一般式(I)で示される構造を有することから、各種の有機溶媒に対し優れた溶解性を有し、しかも光記録用色素等の用途においても高い性能を持つものとなる。
【0009】
前記一般式(I)の化合物において、Xの好ましい具体例としては、ベンゾイミダゾリル基、5,6−ジメチルベンゾイミダゾリル基、ベンゾトリアゾリル基などが挙げられる。また、Mの好ましい具体例としては、VO、TiO、Mn、Fe、Co、Ni、Cu、Zn、Pd、Cd、Mg、H2などが挙げられるが、光ディスク材料として用いる場合には、窒素原子との相互作用によって分子会合を防ぎ膜の吸光係数を高める機能を持つd5〜d7、d10、d0の2価金属イオンが好ましく、特に好ましいのはMn、Fe、Co、Zn、Cdである。また、フタロシアニン骨格上の置換基Xの位置については、α位置換体の方が分子会合を防ぐ効果が大きく、膜の吸光係数を高める点で好ましい。
【0010】
前記一般式(I)のフタロシアニン化合物は、対応するフタロニトリルを(必要により金属塩とともに)強有機塩基である1,8−ジアザビシクロ[5,4,0]−7−ウンデセン等の存在下、アルコール系溶媒中で反応させることにより合成することができる。
【0011】
本発明のフタロシアニン化合物は、種々のアルコール系極性溶剤や炭化水素系溶剤、或いはそれらの混合物などに容易に溶解して青色ないし緑色を呈する。例えば、そのエチルセロソルブ溶液を用いてポリカーボネート基板にスピンコートすると、均質な薄膜を形成することができる。
【0012】
このようにして得られた薄膜の吸収スペクトルは、通常のフタロシアニン誘導体を用いた薄膜で見られるような可視部における吸光係数の低下が見られず、可視部において高い吸光係数を持つので、光記録媒体等の用途に用いるのにも適している。吸収スペクトルにおけるこのような好ましい特性は、本発明のフタロシアニン化合物が電子供与性の置換基を持ち、これが中心金属に配位結合することによって、フタロシアニン骨格の分子会合を防ぐためと考えられる。
【0013】
【実施例】
以下、本発明を実施例により更に具体的に説明する。
実施例1
テトラβ−(1−ベンズイミダゾリル)フタロシアニンの合成;
1)フタロニトリル誘導体の合成
ベンズイミダゾール4.2g、4−ニトロフタロニトリル5.2g、無水炭酸カリウム8.3g、ジメチルスルホキシド25mlを仕込み、70℃で4時間反応させた。反応物に水200mlを加え、析出した結晶を凝集、乾燥して、7.0gの4−(1−ベンズイミダゾリル)フタロニトリルを得た。このフタロニトリル誘導体の分析データは、下記の通りである。
IRスペクトル(KBr):2320cm-1(νCN)
マススペクトル :244(M+)
融点 :220℃
【0014】
2)環化反応
上記で得たフタロニトリル誘導体3.4gに、塩化亜鉛0.64gとDBU(1,8−ジアザビシクロ〔5,4,0〕−7−ウンデンセン)3.6g、1−ペンタノール20mlを加えて、窒素雰囲気下、100℃で10時間反応させた。反応物を濾過した後、メタノールで洗浄し、2.5gの粗製品を得た。この粗製品をカラムクロマトグラフィーを用いて精製し、0.8gの精製テトラβ−(1−ベンズイミダゾリル)亜鉛フタロシアニン(化合物1)を得た。このフタロシアニン誘導体の元素分析値は、次のようであった。
【0015】
実施例2
実施例1の1)の反応において、4−ニトロフタロニトリルに代えて3−ニトロフタロニトリルを原料として用いたこと以外は、実施例1と同様にしてテトラα−(ベンズイミダゾリル)亜鉛フタロシアニン(化合物2)を得た。
【0016】
実施例3
実施例1の1)の反応において、ベンズイミダゾールに代えて1,2,3−ベンゾトリアゾールを用いたこと以外は、実施例1と同様にしてテトラβ−(ベンゾトリアゾリル)亜鉛フタロシアニン(化合物3)を得た。
【0017】
実施例4
実施例3の1)の反応において、4−ニトロフタロニトリルに代えて3−ニトロフタロニトリルを原料として用いたこと以外は、実施例3と同様にしてテトラα−(ベンゾトリアゾリル)亜鉛フタロシアニン(化合物4)を得た。
【0018】
実施例5
実施例1の2)の環化反応において、塩化亜鉛に代えて塩化第一銅を用いたこと以外は、実施例1と同様にしてβ−テトラ(1−ベンズイミダゾリル)銅フタロシアニン(化合物5)を得た。
【0019】
参考例1〜3
実施例2の1)の反応において、ベンズイミダゾールに代えて表1に示した置換基Xに対応した原料XHを用い、また2)の反応においては、表1に示した金属Mの塩化物を用いたこと以外は、実施例2と同様にしてそれぞれ表1に示すα置換金属フタロシアニン(化合物6〜8)を得た。
【0020】
実施例6〜8及び参考例4〜5
実施例1の1)の反応において、ベンズイミダゾールに代えて表1に示した置換基Xに対応した原料XHを用い、また2)の反応において、塩化亜鉛に代えて表1に示した金属Mの塩化物を用いたこと以外は、実施例1と同様にしてそれぞれ表1に示すβ置換金属フタロシアニン(化合物9〜13)を得た。
【0021】
実施例9
実施例1の2)の反応において、塩化亜鉛を用いなかったこと以外は、実施例1と同様にして無金属のβ−テトラ(ベンズイミダゾリル)フタロシアニン(化合物14)を得た。
【0022】
以上の各実施例及び各参考例で得られたフタロシアニン化合物の置換基Xと置換位置、Mの種類及びクロロホルム溶液における吸収スペクトルの極大波長λmaxを、それぞれ表1に示す。このうち化合物12の1H−NMRスペクトル(DMF−d7)は、下記の通りである。
δ(ppm from TMS):2.5(12H,m),6.6(4H,m),8.0(4H,s),8.4(4H,m),8.7(8H,m),9.1(4H,m)
【0023】
【表1】
【0024】
表1に記載されたフタロシアニン化合物の一部にについて、有機溶剤への溶解度を調べた。その結果を表2に示す。
【0025】
【表2】
【0026】
応用例
前記No.1の化合物をクロロホルムに溶解して塗布液とし、直径120mm、厚さ1.2mmのガラス基板にスピンコーティングすることにより色素層を設けた。この色素層の光吸収スペクトルは、図1で示される。図1において、分子会合に起因すると考えられるピーク(短波長側)よりもメインピーク(長波長側)が高くなっていた。
【0027】
応用比較例
応用例において、前記No.1の化合物の代わりにβ−tertブチルZnフタロシアニンを用いたこと以外は、応用例と同様にして色素層を設けた。この色素層の光吸収スペクトルは、図2で示される。図2においては、吸収帯の短波長側ピークが長波長ピークよりも高くなった。
【0028】
【発明の効果】
本発明のフタロシアニン化合物は、前記一般式(I)で示される構造を有することから、種々の有機溶媒に室温で容易に溶解する。そのため、該化合物は膜形成などの加工性に優れたものとして利用が期待でき、特に光記録用材料に優れた特性を与えることができる。
【図面の簡単な説明】
【図1】応用例で得られたフタロシアニン系化合物膜の光吸収スペクトルの概略図である。
【図2】応用比較例で得られたフタロシアニン系化合物膜の光吸収スペクトルの概略図である。[0001]
[Industrial application fields]
The present invention relates to a novel phthalocyanine compound that can be used for optical recording dyes, color filter dyes, photoelectric conversion elements, electrophotographic photosensitive members, organic semiconductor elements, catalysts and gas sensors, color filters, and the like.
[0002]
[Prior art]
Phthalocyanine compounds are attracting attention as materials for pigments for optical recording, dyes for color filters, photoelectric conversion elements, electrophotographic photoreceptors, organic semiconductor elements, catalysts, gas sensors, etc., in addition to their conventional use as pigments. Collecting. However, unsubstituted phthalocyanine compounds are hardly soluble or insoluble in most solvents and are extremely inferior in processability. For example, when thinning phthalocyanine for use in the above-mentioned applications, vacuum deposition or ultrafine particle dispersion is used, but in either case, productivity is low, and these media and devices are mass-produced. It is a big obstacle. In particular, when a vacuum-deposited film of a phthalocyanine compound is used as a recording film for an optical disc, it is necessary to crystal-transform the deposited film into a crystal type that matches the recording characteristics. This crystal transition is performed by a process in which the deposited recording film is exposed to heat or vapor of an organic solvent for a long time, and the productivity is remarkably impaired. Therefore, production of an optical disk by this method has not been put to practical use.
[0003]
In addition, with regard to compact discs (CDs) among optical discs, write-once CDs have been especially developed in recent years, and cyanine dyes have been mainly used as organic dyes as materials for write-once CDs. This type of dye is superior in that it has a large extinction coefficient, but has the disadvantage of poor light resistance, and a method of adding a light stabilizer such as a singlet oxygen quencher is taken to improve this. There was also. However, the effect is not enough. On the other hand, phthalocyanine dyes have high stability, but have the problem of low solubility in organic solvents as described above.
[0004]
In order to solve the above problem, a phthalocyanine compound that can be dissolved in an organic solvent by introducing a substituent into phthalocyanine is then applied. The phthalocyanine compounds disclosed in JP-A-1-180865, JP-A-2-265788, JP-A-3-215466, etc. are carbonized by introducing a long-chain alkyl group or alkoxy group into the benzene ring of phthalocyanine. It has obtained solubility in a hydrogen-based organic solvent. In addition to these, many long-chain alkyl groups have been introduced through functional groups such as ester groups, polyether groups, and thioether groups.
[0005]
[Problems to be solved by the invention]
However, these phthalocyanine compounds have a lower extinction coefficient than cyanine dyes, and in particular when formed into a film, the extinction coefficient in the long wavelength portion is lowered due to the association between phthalocyanine molecules, and the refractive index necessary for the light absorption layer is reduced. There was a difficulty that could not be achieved.
[0006]
Accordingly, an object of the present invention is to provide a phthalocyanine compound whose solubility in various organic solvents is improved by a substituent, and a compound having high performance in applications such as optical recording dyes.
[0007]
[Means for Solving the Problems]
According to the present invention, a phthalocyanine compound represented by the following general formula (I) is provided.
[Chemical 1]
(In the formula, 1 to 16 represent the positions of the surrounding carbon atoms, M represents two hydrogen atoms, a divalent metal atom, a metal oxide or a metal chloride. X represents a benzimidazolyl group, 5 , 6-dimethylbenzimidazolyl group or benzotriazolyl group, wherein X is bonded to any one of 2 or 3, 6 or 7, 10 or 11, 14 or 15 carbon atoms, Alternatively, it is bonded to any carbon atom of 1 or 4, 5 or 8, 9 or 12, 13 or 16.)
[0008]
Since the novel phthalocyanine compound of the present invention has the structure represented by the general formula (I), it has excellent solubility in various organic solvents and is also high in applications such as optical recording dyes. It will have performance.
[0009]
In the compounds of general formula (I), the preferred embodiment of X, base Nzoimidazoriru group, 5,6-dimethyl benzimidazolyl group, and the like Benzotori azolyl group. Preferable specific examples of M include VO, TiO, Mn, Fe, Co, Ni, Cu, Zn, Pd, Cd, Mg, H 2 and the like. Divalent metal ions d5 to d7, d10, and d0 having a function of preventing molecular association by the interaction with and increasing the absorption coefficient of the film are preferable, and Mn, Fe, Co, Zn, and Cd are particularly preferable. As for the position of the substituent X on the phthalocyanine skeleton, the α-position substitution product is more effective in preventing molecular association and is preferable in terms of increasing the absorption coefficient of the film.
[0010]
In the presence of 1,8-diazabicyclo [5,4,0] -7-undecene, which is a strong organic base, the corresponding phthalonitrile (along with a metal salt if necessary) It can be synthesized by reacting in a system solvent.
[0011]
The phthalocyanine compound of the present invention readily dissolves in various alcohol polar solvents, hydrocarbon solvents, or mixtures thereof, and exhibits a blue or green color. For example, when the ethyl cellosolve solution is used to spin coat a polycarbonate substrate, a homogeneous thin film can be formed.
[0012]
The absorption spectrum of the thin film thus obtained does not show a decrease in the extinction coefficient in the visible part as seen in a thin film using ordinary phthalocyanine derivatives, and has a high extinction coefficient in the visible part. It is also suitable for use as a medium. Such a preferable characteristic in the absorption spectrum is considered to prevent molecular association of the phthalocyanine skeleton by the phthalocyanine compound of the present invention having an electron-donating substituent, which is coordinated to the central metal.
[0013]
【Example】
Hereinafter, the present invention will be described more specifically with reference to examples.
Example 1
Synthesis of tetra β- (1-benzimidazolyl) phthalocyanine;
1) Synthesis of phthalonitrile derivative 4.2 g of benzimidazole, 5.2 g of 4-nitrophthalonitrile, 8.3 g of anhydrous potassium carbonate, and 25 ml of dimethyl sulfoxide were charged and reacted at 70 ° C. for 4 hours. 200 ml of water was added to the reaction product, and the precipitated crystals were aggregated and dried to obtain 7.0 g of 4- (1-benzimidazolyl) phthalonitrile. Analysis data of this phthalonitrile derivative is as follows.
IR spectrum (KBr): 2320 cm −1 (νCN)
Mass spectrum: 244 (M +)
Melting point: 220 ° C
[0014]
2) Cyclization reaction To 3.4 g of the phthalonitrile derivative obtained above, 0.64 g of zinc chloride, 3.6 g of DBU (1,8-diazabicyclo [5,4,0] -7-undencene), 1-pentanol 20 ml was added and reacted at 100 ° C. for 10 hours under a nitrogen atmosphere. The reaction product was filtered and washed with methanol to obtain 2.5 g of a crude product. This crude product was purified using column chromatography to obtain 0.8 g of purified tetra β- (1-benzimidazolyl) zinc phthalocyanine (Compound 1). The elemental analysis values of this phthalocyanine derivative were as follows.
[0015]
Example 2
In the reaction of Example 1 1), tetra-α- (benzimidazolyl) zinc phthalocyanine (compound) was used in the same manner as in Example 1 except that 3-nitrophthalonitrile was used as a raw material instead of 4-nitrophthalonitrile. 2) was obtained.
[0016]
Example 3
Tetra β- (benzotriazolyl) zinc phthalocyanine (compound) in the same manner as in Example 1, except that 1,2,3-benzotriazole was used in place of benzimidazole in the reaction of Example 1) 3) was obtained.
[0017]
Example 4
Tetra α- (benzotriazolyl) zinc phthalocyanine was used in the same manner as in Example 3 except that 3-nitrophthalonitrile was used as a raw material in place of 4-nitrophthalonitrile in the reaction of Example 3 1). (Compound 4) was obtained.
[0018]
Example 5
In the cyclization reaction of Example 1 2), β-tetra (1-benzimidazolyl) copper phthalocyanine (Compound 5) was carried out in the same manner as in Example 1 except that cuprous chloride was used instead of zinc chloride. Got.
[0019]
Reference Examples 1-3
In the reaction of 1) of Example 2, the starting material XH corresponding to the substituent X shown in Table 1 was used instead of benzimidazole, and in the reaction of 2), the chloride of the metal M shown in Table 1 was used. Except having used, it carried out similarly to Example 2, and obtained the alpha substituted metal phthalocyanine (compounds 6-8) shown in Table 1, respectively.
[0020]
Examples 6-8 and Reference Examples 4-5
In the reaction 1) of Example 1, the starting material XH corresponding to the substituent X shown in Table 1 was used instead of benzimidazole, and in the reaction 2), the metal M shown in Table 1 instead of zinc chloride was used. A β-substituted metal phthalocyanine (compounds 9 to 13) shown in Table 1 was obtained in the same manner as in Example 1 except that the above chloride was used.
[0021]
Example 9
In the reaction of Example 1 2), metal-free β-tetra (benzimidazolyl) phthalocyanine (Compound 14) was obtained in the same manner as in Example 1 except that zinc chloride was not used.
[0022]
Table 1 shows the substituent X and substitution position of the phthalocyanine compound obtained in each of the above Examples and Reference Examples, the type of M, and the maximum wavelength λmax of the absorption spectrum in a chloroform solution. Among these, the 1 H-NMR spectrum (DMF-d7) of Compound 12 is as follows.
δ (ppm from TMS): 2.5 (12H, m), 6.6 (4H, m), 8.0 (4H, s), 8.4 (4H, m), 8.7 (8H, m ), 9.1 (4H, m)
[0023]
[Table 1]
[0024]
A part of the phthalocyanine compounds described in Table 1 was examined for solubility in organic solvents. The results are shown in Table 2.
[0025]
[Table 2]
[0026]
Application example The compound 1 was dissolved in chloroform to give a coating solution, and a dye layer was provided by spin coating on a glass substrate having a diameter of 120 mm and a thickness of 1.2 mm. The light absorption spectrum of this dye layer is shown in FIG. In FIG. 1, the main peak (long wavelength side) was higher than the peak (short wavelength side) considered to be due to molecular association.
[0027]
Application Comparative Example In the application example, the above-mentioned No. A dye layer was provided in the same manner as in the application example except that β-tertbutyl Zn phthalocyanine was used in place of compound 1. The light absorption spectrum of this dye layer is shown in FIG. In FIG. 2, the short wavelength peak of the absorption band is higher than the long wavelength peak.
[0028]
【The invention's effect】
Since the phthalocyanine compound of the present invention has the structure represented by the general formula (I), it is easily dissolved in various organic solvents at room temperature. For this reason, the compound can be expected to be used as a material having excellent processability such as film formation, and can give particularly excellent characteristics to an optical recording material.
[Brief description of the drawings]
FIG. 1 is a schematic diagram of a light absorption spectrum of a phthalocyanine compound film obtained in an application example.
FIG. 2 is a schematic diagram of a light absorption spectrum of a phthalocyanine-based compound film obtained in an application comparative example.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10449794A JP3860616B2 (en) | 1994-04-20 | 1994-04-20 | Phthalocyanine compounds |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10449794A JP3860616B2 (en) | 1994-04-20 | 1994-04-20 | Phthalocyanine compounds |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH07286107A JPH07286107A (en) | 1995-10-31 |
JP3860616B2 true JP3860616B2 (en) | 2006-12-20 |
Family
ID=14382167
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10449794A Expired - Fee Related JP3860616B2 (en) | 1994-04-20 | 1994-04-20 | Phthalocyanine compounds |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3860616B2 (en) |
Families Citing this family (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6506244B1 (en) | 1999-08-03 | 2003-01-14 | Ciba Specialty Chemicals Corporation | Stable polymorphic copper-free phthalocyanine pigment |
JP4576498B2 (en) * | 2004-08-12 | 2010-11-10 | 山田化学工業株式会社 | Phthalocyanine compounds |
JP5066417B2 (en) * | 2006-09-27 | 2012-11-07 | 株式会社日本触媒 | Phthalocyanine compound and method for producing the same |
EP1975702B1 (en) | 2007-03-29 | 2013-07-24 | FUJIFILM Corporation | Colored photocurable composition for solid state image pick-up device, color filter and method for production thereof, and solid state image pick-up device |
EP2207062B1 (en) | 2007-07-17 | 2012-09-12 | FUJIFILM Corporation | Photosensitive compositions, curable compositions, novel compounds, photopolymerizable compositions, color filters, and planographic printing plate precursors |
EP2055746B1 (en) | 2007-10-31 | 2011-09-28 | FUJIFILM Corporation | Colored curable composition, color filter, method of producing the same, and solid state image pickup device. |
CN101842444B (en) | 2007-11-01 | 2013-06-05 | 富士胶片株式会社 | Pigment dispersion composition, curable color composition, color filter and method for producing the same |
JP5448352B2 (en) | 2008-03-10 | 2014-03-19 | 富士フイルム株式会社 | Colored curable composition, color filter, and solid-state imaging device |
JP5305704B2 (en) | 2008-03-24 | 2013-10-02 | 富士フイルム株式会社 | Novel compound, photopolymerizable composition, photopolymerizable composition for color filter, color filter and method for producing the same, solid-state imaging device, and lithographic printing plate precursor |
JP5171506B2 (en) | 2008-06-30 | 2013-03-27 | 富士フイルム株式会社 | NOVEL COMPOUND, POLYMERIZABLE COMPOSITION, COLOR FILTER, PROCESS FOR PRODUCING THE SAME, SOLID-STATE IMAGING ELEMENT, AND lithographic printing plate |
WO2010119924A1 (en) | 2009-04-16 | 2010-10-21 | 富士フイルム株式会社 | Polymerizable composition for color filter, color filter, and solid imaging element |
US20120068123A1 (en) * | 2009-05-26 | 2012-03-22 | Basf Se | Use of phthalocyanine compounds with aryl or hetaryl substituents in organic solar cells |
EP2472330B1 (en) | 2010-12-28 | 2017-01-25 | Fujifilm Corporation | Black radiation-sensitive composition, black cured film, solid-state imaging element, and method of producing black cured film |
CN104823085B (en) | 2012-12-03 | 2017-10-27 | 富士胶片株式会社 | Infrared ray cut off filter and its manufacture method, solid-state image sensor, the forming method of photomask |
WO2014087900A1 (en) | 2012-12-03 | 2014-06-12 | 富士フイルム株式会社 | Solid-state image capture element retaining substrate and fabrication method therefor, and solid-state image capture device |
KR102412146B1 (en) | 2015-02-11 | 2022-06-22 | 주식회사 아이엔테라퓨틱스 | Sodium channel blockers |
WO2021001441A1 (en) * | 2019-07-01 | 2021-01-07 | Chemical Intelligence Limited | Antimicrobial dyes for facemasks |
-
1994
- 1994-04-20 JP JP10449794A patent/JP3860616B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH07286107A (en) | 1995-10-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3860616B2 (en) | Phthalocyanine compounds | |
US20020099204A1 (en) | Metallocenyl-phthalocyanines | |
EP0896033B1 (en) | Phthalocyanine compounds | |
JP3836192B2 (en) | Phthalocyanine compounds | |
KR20000048837A (en) | Substituted phthalocyanines and their use | |
JPH02664A (en) | Naphthalocyanine derivative, its production, optical recording medium produced by using same and production of the same medium | |
US5646273A (en) | Phthalocyanine compound and optical recording medium containing it | |
EP0464959B1 (en) | Naphthalocyanine derivatives and production processes thereof, as well as optical information recording media using the derivatives and production processes thereof | |
JP3863195B2 (en) | Phthalocyanine compounds | |
JPH02283768A (en) | Naphthalocyanine derivative, preparation thereof, optical recording medium prepared therefrom, and preparation of the same optical recording medium | |
KR100957474B1 (en) | Phthalocyanine compound, preparation method thereof, and optical recording medium containing same | |
JP2698067B2 (en) | Phthalocyanine compound and method for producing the same | |
US5219706A (en) | Naphthalocyanine derivative and production process thereof, as well as optical information recording media using the derivatives and production process thereof | |
JPH0745509B2 (en) | Nickel complex | |
JPH07286110A (en) | Phthalocyanine compound | |
JPH06172361A (en) | Phthalocyanine compound | |
JP3663528B2 (en) | Pyridophenoxazine metal chelate compound | |
JP3016649B2 (en) | α-Alkoxyphthalocyanine compound and optical recording medium using the same | |
JPS63312364A (en) | Phthalocyanine compound | |
KR100191064B1 (en) | Phthalocyanine compound and optical recording medium comprising the same | |
JPH07286108A (en) | Phthalocyanine compound | |
JPH01178494A (en) | Optical recording medium | |
JP4203239B2 (en) | Phthalocyanine compound and optical recording medium using the same | |
JPH0776307B2 (en) | Naphthalocyanine derivative, method for producing the same, optical information recording medium using the same, and method for producing the optical information recording medium | |
JPH0372481A (en) | Naphthalocyanine derivative and its production |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD01 | Notification of change of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7421 Effective date: 20040122 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20040305 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20041013 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20041213 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20060919 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20060922 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20041213 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090929 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100929 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110929 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120929 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120929 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120929 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120929 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130929 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130929 Year of fee payment: 7 |
|
LAPS | Cancellation because of no payment of annual fees |