JP3858462B2 - 半導体装置の製造方法 - Google Patents
半導体装置の製造方法 Download PDFInfo
- Publication number
- JP3858462B2 JP3858462B2 JP21511998A JP21511998A JP3858462B2 JP 3858462 B2 JP3858462 B2 JP 3858462B2 JP 21511998 A JP21511998 A JP 21511998A JP 21511998 A JP21511998 A JP 21511998A JP 3858462 B2 JP3858462 B2 JP 3858462B2
- Authority
- JP
- Japan
- Prior art keywords
- grindstone
- semiconductor device
- abrasive grains
- manufacturing
- processing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B24—GRINDING; POLISHING
- B24B—MACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
- B24B37/00—Lapping machines or devices; Accessories
- B24B37/11—Lapping tools
- B24B37/20—Lapping pads for working plane surfaces
- B24B37/24—Lapping pads for working plane surfaces characterised by the composition or properties of the pad materials
- B24B37/245—Pads with fixed abrasives
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B24—GRINDING; POLISHING
- B24D—TOOLS FOR GRINDING, BUFFING OR SHARPENING
- B24D3/00—Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents
- B24D3/02—Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents the constituent being used as bonding agent
- B24D3/20—Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents the constituent being used as bonding agent and being essentially organic
- B24D3/28—Resins or natural or synthetic macromolecular compounds
- B24D3/32—Resins or natural or synthetic macromolecular compounds for porous or cellular structure
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/31—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
- H01L21/3105—After-treatment
- H01L21/31051—Planarisation of the insulating layers
- H01L21/31053—Planarisation of the insulating layers involving a dielectric removal step
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/31—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
- H01L21/3205—Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
- H01L21/321—After treatment
- H01L21/32115—Planarisation
- H01L21/3212—Planarisation by chemical mechanical polishing [CMP]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/71—Manufacture of specific parts of devices defined in group H01L21/70
- H01L21/768—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
- H01L21/76801—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
- H01L21/76819—Smoothing of the dielectric
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/71—Manufacture of specific parts of devices defined in group H01L21/70
- H01L21/768—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
- H01L21/76838—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
- H01L21/7684—Smoothing; Planarisation
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Mechanical Engineering (AREA)
- Mechanical Treatment Of Semiconductor (AREA)
- Grinding Of Cylindrical And Plane Surfaces (AREA)
Description
【発明の属する技術分野】
本発明は、基板表面を平坦化する研削技術に係り、特に半導体基板上に形成された薄膜が研削される半導体集積回路の製造方法に関する。
【0002】
【従来の技術】
半導体集積回路装置は、年々高集積化されている。これに伴い、半導体集積回路装置を構成する個々の素子は微細化されてきている。これらの素子はリソグラフィ技術によりパターニングされているが、光を用いた場合、微細なパターンを描くためには光の短波長化や開口数の拡大が必要になる。しかしながら、これにより焦点深度が小さくなるという問題が生じる。半導体製造工程は多くのパターン形成プロセスからなるが、一例として、配線工程を取り上げ図2を用いて説明する。
【0003】
図2(a)は一層目の配線が形成されているシリコンからなる半導体ウエハの断面図を示している。トランジスタが形成されているウエハ基板1の表面には絶縁膜2が形成されており、その上にアルミニウムからなる第1の配線層3が設けられている。トランジスタとの電気的な接続をとるために設けられた絶縁膜2のホール部分3’において、配線層に窪みが生じる。次に、第1の配線層3の上にシリコン酸化膜を主体とする層間絶縁膜4及び第2の配線層となるアルミニウム層5を形成する。その後、このアルミニウム層5を配線パターン化するために露光用ホトレジスト層6を塗布する(図2(b))。次に図2(c)に示すようにホトマスクと縮小投影レンズを備えたステッパ7を用いてホトマスク上に描かれた回路パターンを上記ホトレジスト6上に露光転写する。この際、ステッパ7の焦点深度が小さいとホトレジスト層6の表面の凹部と凸部8では同時に焦点が合わず、解像不良が生じる。通常、トランジスタが形成された基板1の表面には凹凸があるため、より焦点深度の大きいことが求められる。
【0004】
上記の不具合を解消するため、層間絶縁膜4の表面の平坦化処理が行われる。すなわち、図2(a)に示したように第1の配線層3を形成した後、図2(d)に示すように層間絶縁膜4を形成する。次に、層間絶縁膜4の凹部よりも低い図中9のレベルまで平坦となるように、化学機械研磨法によって平坦化処理を行う(図2(e))。その後第2の配線層となるアルミニウム層5とホトレジスト層6を形成し,ステッパ7で露光する(図2(f))。この状態ではレジスト層6表面が平坦であるので、ステッパ7の焦点深度が小さい場合でも前記解像不良の問題は生じない。
【0005】
上記化学機械研磨法は、例えば米国特許US4,944,836や特公平5−30052号に開示されている。図3にCMP(化学機械研磨)法と呼ばれている加工方法の概念図を示す。円形状の研磨パッド11が定盤12上に貼り付けられている。この定盤12は、例えば反時計方向に回転させておく。研磨パッド11は、例えば発砲ウレタン樹脂を薄いシート状にスライスして形成したものであり,被加工物の種類や仕上げたい表面粗さの程度によってその材質や微細な表面構造を種々選択して使い分ける。他方,加工すべきウエハ1は弾性のあるバッキングパッド13を介してウエハホルダ14に固定される。このウエハホルダ14を定盤12と同じ方向に回転させながら研磨パッド11表面に押しつけ荷重をかけるとともに研磨パッド11の上に研磨粉を含むスラリ15を供給することによりウエハ表面が研磨され、平坦化される。
【0006】
二酸化珪素等の絶縁膜を研磨する場合、研磨粉としては高純度なシリカ(フュームドシリカ)粒子が用いられる。その直径は30〜150nm程度である。研磨用のスラリ15はシリカ粒子を水酸化カリウムやアンモニア等のアルカリ水溶液に懸濁させたものであり、加工ダメージの少ない平滑面が得られる。
【0007】
また上記研磨用スラリを用いる方法の他、砥粒を含む砥石を用いた平坦化技術がある。基本的な装置の構成はCMPの技術と同様であるが、研磨パッドの代わりに砥石が定盤に取り付けられる。また研磨液として砥粒を含むスラリの代わりに、砥粒を含まない純水を用いる。上記技術は国際公開第WO97/10613号や特開平8−216023号に記載されている。
【0008】
通常、マクロな平坦化の能力を定量的に測る指標の一つとしてはパターン寸法依存性が用いられる。これは大きなサイズのパターンと小さなサイズのパターンを含むウエハを研磨すると、小さなサイズのパターンの方がより速く研磨されることに着目したもので、平坦化能力に劣る加工の場合にはこの大小パターン間の研磨量差がより激しくなる。具体的には図8に示すように高さが0.8μm程度、幅が0.1μmから5mm程度の幾つかの孤立したライン&スペースパターンを同時に含むテストウエハを研磨し、その研磨量の差を測定することで求められる。
【0009】
標準的な化学機械研磨(以下CMP)に用いられる研磨パッドとスラリを使用した場合,1mm幅未満のサイズのパターンが完全に平坦化された段階でも3mm幅以上のサイズのパターンにはまだ0.38μm以上の段差が残存する。その後、さらに研磨を続けてもこの段差を完全に取り去ることはできない。
【0010】
このように従来のCMPでは数mm幅以上のパターンによる段差を完全に平坦化することは困難である。しかし実際の半導体ウエハには、例えば64MDRAMのメモリマット部のように8mm角から時には10mm角程度の大きさのパターンによる段差が0.8μm程度存在している。
【0011】
大きなパターンを含めての平坦化能力に優れた技術としては,前記の砥石を用いた平坦化技術がある。砥石を用いた平坦化技術の特徴は,その著しい平坦化能力の高さである。例えば、図8に示されているように3mm幅のパターンの場合CMPでは残段差が0.38μm(380nm)であるのに対し、砥石では18nmとなっており、桁違いに平坦化されることがわかる。
【0012】
このように砥石による平坦化技術は、砥粒が固定されていること、砥石の弾性率が高いことから、CMP技術では不可能であった数mm以上の大きなサイズのパターンも平坦化が可能である。また砥石はほとんど変形しないため、被加工物表面の凸部のみを選択的に除去される。被研磨物表面の凹凸に応じて研磨パットが変形するCMP技術とは異なり、被研磨物表面の凹凸パターンの谷間である凹部を削り込むことが無い。このため,平坦化に必要な研磨量として凹部における削り込みの分を考慮しなくて良く、研磨加工前の初期膜厚を薄くすることができる。さらに砥石を用いた平坦化技術の場合には,研磨加工に必要な砥粒があらかじめ砥石内に含まれているために砥粒を分散させたスラリが不要であり、維持や保守のための費用が大幅に削減される。
【0013】
【発明が解決しようとする課題】
砥石を用いた加工は,上記のように平坦化性能に優れている反面,被加工面上にスクラッチ(引っ掻き傷)を生じ易いという課題のあることが本発明者の検討により判明した。スクラッチには絶縁層を貫通し、長さが5μm〜数mmの大スクラッチと、貫通はせず深さが100nm以下で長さが10μm以下の溝を絶縁層に形成するμスクラッチの2種類に大別できる。これらスクラッチが層間絶縁膜に生じると、後述するダマシン配線工程の平坦化後に図10に示すようにスクラッチ内のメタルが除去されずに残り、μスクラッチの場合は隣接配線間のショートの原因になる、さらに、大スクラッチの場合は露出された下層配線と接続された状態になり、各層間の配線間のショートが発生するという問題が生じる。
【0014】
また,浅溝素子分離(STI:Shallow Trench Isolation)の平坦加工時にゲートが形成されるアクティブな領域にスクラッチが発生すると、シリコン結晶に欠陥を生じてトランジスタ特性を劣化させるという不具合を生じる。
【0015】
本発明の目的は、砥石を用いた平坦化技術において、大スクラッチ発生を低減あるいは防止する加工方法を提供することにある。
【0016】
本発明の他の目的は、μスクラッチ発生を低減あるいは防止する加工方法を提供することにある。
【0017】
本発明の他の目的は、低コストな半導体装置の製造方法を提供することにある。
【0018】
本発明の他の目的は、配線間ショートの無い半導体装置の製造方法を提供することにある。
【0019】
本発明の他の目的は、信頼性の高い素子を備えた半導体装置の製造方法を提供することにある。
【0020】
【課題を解決するための手段】
上記目的は、被加工物よりも硬い不純物の濃度が10ppm以下の砥石を用いて加工することにより達成される。特に、砥粒が酸化セリウムの場合にはランタン(La)の濃度を10ppm以下とすることにより、より効果的に達成される。図4に純度の異なる砥粒の不純物分析結果を示す。岩石等の自然資源から精製して製造される酸化セリウムは、硬質のランタン酸化物の含有が避けられない。スクラッチを低減するには、ランタンの除去が効果的となる。酸化セリウムの純度を上げ、特にランタンの含有量を低減させることにより,実効的に硬質の異物の混入が避けられ、スクラッチの発生に対するマージンを拡大することができる。不純物としてランタン濃度が異なる(1300ppmと9ppm)砥石を用いて絶縁膜を加工したときのスクラッチ特性を図5に示す。図5からわかるように不純物を低減すると大スクラッチ発生頻度が1/10以下に低減することがわかる。なお、硬さは各物質のモース硬度を用いることができる。例えば、酸化シリコン(SiO2)のモース硬度は6.75であり、酸化セリウム(CeO2)は6、アルミナ(Al2O3)は9、酸化鉄(Fe2O3)は6.75である。
【0021】
また本発明の目的は、砥粒の形状を、長径と短径とを有する針状(又は米粒状)とすることにより、効果的に達成される。図5から砥粒の形状を針状にすることにより、大スクラッチが低減することがわかる。特に、短径に対する長径の比を3以上とすれば効果的である。また、μスクラッチの低減にも効果がある。なお、針状の砥粒が10wt%以上含まれていれば実用上使用することができるが、50wt%以上が望ましい。
【0022】
また、本発明の目的は、平均気孔径が0.2μm以下の砥石を用いることにより達成される。針状の砥粒を用いることにより、凝集が少なく、気孔径分布の均一な砥石がえられる。一般に、砥石の製造方法は(1)砥粒と樹脂粒子の混練、(2)型入れ、(3)加熱、圧縮成形、及び(4)型出しの工程からなっている。砥石には気孔19が含まれているが、この気孔率は(3)の工程の圧縮量で制御でき、通常約50%である。しかしながら、気孔径については制御されていない状況であった。そのため、例えば従来の砥石では図7に示すように、平均気孔径は約0.3μmであり、分布も広がりが大きなものになっている。一方、針状砥粒では、形状に起因して凝集性が小さいため、平均気孔径が0.1μm程度で均一に揃うという効果がある。分布の広がりも小さくできる。特に最大気孔径を0.5μm以下にすると大スクラッチ低減に大幅な効果がある。また、μスクラッチの低減にも効果がある。なお、0.5μm以上の気孔径の気孔は含まれないことが望ましいが、その含有量が10vol%以下なら実用上使用することができる。本気孔径分布は水銀ポロシメータにより測定した。
【0023】
また、上記目的は、かさ密度が1g/cm3以下の砥粒を用いることにより達成される。かさ密度とは,砥粒を一定量採取した際の、重量/容積を意味する。つまり、気孔が多ければかさ密度は低下し、気孔が少なく密に詰まっていれば増加する。従来の多面体型砥粒と本発明の針状砥粒のかさ密度はそれぞれ、2g/cm3と0.5g/cm3であるので、針状の砥粒は、かさ密度が小さく、気孔率制御性が高くなる。針状砥粒は従来の多面体砥粒に比べ、短径に対する長径の比が3以上になっていることがわかる。この形状がかさ密度に効いている。
【0024】
また、上記目的は、最大粒径を実質的に1μm以下とすることにより達成される。粒径を微細にすることで、被加工面への応力集中が低減され、μスクラッチの発生数削減に効果がある。図6に示すように粒径にほぼリニアにμスクラッチ発生数が比例する。微細化のレベルは理想的には小さければ小さいほど効果があるが、実用上はサブミクロンまで微細にすると粒子間の凝集が避けられなくなり、見かけ上の粒径が拡大する。平均粒径が0.5μm以下であれば実質的にμスクラッチの発生を防止できる。最大粒径が1μm以下とすることにより、より効果的にμスクラッチを低減できる。なお、1μm以上の粒径の砥粒は含まれないことが望ましいが、その割合が1wt%以下なら実用上使用することができる。この粒径分布の測定はレーザ散乱光を検出する粒径分布測定装置(例えばHORIBA社製PARTICLE SIZE ANALYZER、島津社製SALD−2000A)用いることができる。砥粒の拡大写真の実測による分析法もあるがサンプル数を増やすことが困難であり、正確なデータとならないことがある。測定に際しては、測定条件を十分に検討して粒子の凝集性と測定対象サンプル攪拌方法等の最適条件出しを行った後に少なくとも3回以上の測定を行い再現性の確認を行うことが重要である。
【0025】
上記少なくとも1つを絶縁膜やメタルの加工に用いることにより、被加工物への大スクラッチやμスクラッチの発生を低減あるいは防止できるので信頼性のある半導体集積回路装置の製造方法を提供することができる。なお、上記砥石は多層構造とすることもできる。この場合、被研磨物と接触する表面側の層が上記要件を満たせばよい。
【0026】
【発明の実施の形態】
以下、本発明の実施例を説明する。
【0027】
(実施例1)
図1に第一の実施例で用いた装置の基本的構成を示す。装置は、研磨加工を行う研磨定盤12、研磨定盤上に取り付けられた砥石16、ガラスあるいは半導体からなる基板1とこれを保持するウエハホルダ14、加工時に加工液15を供給する液供給ユニット20からなる。研磨定盤12の大きさはウエハの大きさによって変わり、ウエハ径が8インチの場合には研磨定盤の直径は700mm程度である(ウエハ径の2倍以上)。
【0028】
加工は、ウエハホルダ14に保持したウエハ1を回転する砥石16に押しつけることにより行われる。このとき、加工液供給ユニット20からは毎分100〜1000ml程度の加工液が供給される。加工液としては純水を用いたが、その他に各種化学薬品含有の水溶液を用いることができる。純水は主に絶縁膜の加工に適している。アルカリ性加工液を用いることにより加工速度を高めることができるが廃液の中和処理が必要となる。過酸化水素や硝酸など酸性の水溶液は主にメタルの加工に適している。なお、研磨液として砥粒を含むスラリーを用いることにより研磨速度を高めることができるが、砥粒の凝集を防止する機能を備えた供給設備が必要となる。ウエハホルダ14を研磨加工具に押しつける力(荷重)は、200g/cm2とした。典型的には200〜500g/cm2で用いられており、研磨レート(1分間あたりの研磨量)はこの力にほぼ比例する。最大荷重は砥石を含めた装置の強度で決まる。ウエハホルダ14と研磨定盤12は同一方向に回転する。均一な研磨を行うためには両者の回転数はほぼ同一であることが望ましい。回転数の値は30rpmとした。典型的には20から100rpmの間で用いられており、回転数が大きいほど研磨レートは高くなるが、大きすぎると砥石とウエハとの間に加工液が入り込み(ハイドロプレーン現象)研磨レートが飽和あるいは低下する。
【0029】
次に砥石16について、さらに詳細に説明する。
【0030】
直接ウエハ1に接触する砥石16は、微細な酸化セリウム砥粒を樹脂によって結合したものであり、その構造は詳細に見れば図1に示すように気孔を含んだ形となっている。なお、メタルを加工する場合には砥粒としてアルミナ(Al2O3)やシリコンカーバイト(SiC)、チタニア(TiO2)を用いた方が好ましい。砥粒を結合する樹脂としては、フェノール樹脂やポリビニルアルコール、シリコン樹脂、ポリエステル等を用いることができる。ここで用いた酸化セリウム砥粒は、平均粒径が0.5μm以下であり、最大粒径が1μm以下である。このような砥粒を用いることによりμスクラッチの発生を大幅に低減することができる。なお、最大粒径が1μm以上の砥粒は含まれないことが望ましいが、砥粒中に1wt%以下なら実用上用いることができる。また、酸化セリウムの純度を99.9%以上とし、特に不純物として希土類のランタン(La)の濃度を10ppm以下とすることにより大スクラッチの発生を防止することができた。
【0031】
さらに、砥粒の形状を針状つまり、長径と短径を有する米粒状にすることにより、凝集の少ないしかも、気孔径分布の均一な砥石を提供できる。短径に対する長径の比が3以上となる割合が50wt%以上となる砥粒を用い、平均気孔径が0.1μm、最大気孔径が0.2μmの砥石を用いた結果、大クラッチ、μスクラッチとも低減することができた。なお、平均気孔径を0.2μm以下にすることにより、スクラッチ発生を実用上問題の無いレベルまで低減できる。さらに、最大気孔径を0.5μm以下にすることにより大スクラッチ低減に効果がある。
【0032】
(実施例2)
プラズマを用いてシリコン基板上に形成されたテトラエトキシシラン(p−TEOS)膜を加工した例を説明する。なお、用いた装置は実施例1と同様である。
【0033】
p−TEOS膜(SiO2膜)は、表面にパターンが形成されていない平坦な基板上に均一に堆積されている。加工液として純水を使用した。加工前に砥石16の表面を図示しないドレッサを用いて砥石16表面のコンディショニングを行なう。これは砥石面の平坦化と加工に寄与する砥粒の頭出しが目的である。これにより加工の均一性が向上し、また加工レートを維持することができる。この際、砥石16表面を凹凸が少ない、平滑な状態にコンディショニングするとスクラッチ発生を抑制することができる。
【0034】
具体的には、ダイヤモンド粒子を電着したカップドレッサ(カップ形をしたドレッサ)を高速スピンドルに装着し回転させ、砥石16表面を深さ1μm程度で極表面層のみを除去するように絶対高さ位置制御をかけながら砥石16面上を走査すればよい。
【0035】
コンディショニング終了後、p−TEOS膜が500nmの厚さ堆積された基板1をウェハホルダ14にチャックし、砥石16に押し付けて加工する。この時の加工液は純水、各部回転数は30rpm、荷重は200g/cm2とした。加工中に砥石16表面に図示しないブラシ(材質:ナイロン)をかけて砥石から砥粒を遊離させ、遊離砥粒を増加させると加工レートが増加するという効果が得られる。ブラシの他、図12に示すように超音波加振器25で加振しても加工レートに関して同様の効果が得られた。超音波の周波数としては20〜50kHz、出力100Wを用いた。砥石面と超音波加振器との間の距離は、遊離砥粒の最も増加する位置を選んで固定した。なお、超音波の場合、ブラシと異なり摩耗がなく、異物の混入が少ないというメリットがある。加工終了後にウェハ1をアンロードして洗浄、乾燥の後にスクラッチ評価を行なった。その結果、図5と図6に示したようにスクラッチの発生が低減され、良好な加工品質を実現できた。また、砥石を用いており、平坦化性能も良好であった。被加工膜として有機SOG膜であってもよい。なお、被加工膜の残膜厚さ分布は光の多重反射特性を利用して評価できる
(実施例3)
本実施例では、基板表面に凹凸が形成された基板上に形成されたp−TEOS膜の加工について説明する。例えば、図2(a)に示すように厚さ500nmの配線層3が形成された半導体基板1を準備する。次に当該基板上にp−TEOS膜を700nmの厚さ堆積する(例えば、図2(d))。その後、実施例2と同様の装置を用いてp−TEOS膜を600nm程度研磨加工する。その結果、実施例2と同様スクラッチの発生を低減できた。これにより、その上に第2層配線を形成しても、配線間ショートは生じなかった。また、p−TEOS膜の加工面の平坦性も良好であった。CMP法では凹部まで研磨されるため平坦化のために被加工膜は約1000nmの厚さが必要であったが、砥石を用いることにより凹部の削れが無く、被加工膜の厚さを700nmと薄くすることができる。これにより、加工時間が短縮され、スループットが向上する。なお、被加工膜として化学気相成長法(CVD法)で形成されたシリコン酸化膜を用いても良好な結果が得られた。
【0036】
(実施例4)
上記の例では酸化膜の加工であったが、被加工物がポリシリコンや金属であっても同様の効果が得られる。例えば、アルミニウム、銅、タングステンなどであってもよい。本実施例では、銅の加工について説明する。
【0037】
図11はダマシン法により配線を形成する工程を示す要部断面図である。
【0038】
まず、下層(図示せず)とのコンタクトをとるためのタングステン(W)からなるプラグ101を形成する(図11(a))。このプラグ101の形成に本発明に係る砥石を用いた加工法を適用してもよい。次に、酸化シリコンからなる絶縁膜102を0.9μmの厚さ形成する(図11(b))。次に、絶縁膜102の表面を実施例1で示した酸化セリウム砥粒を含む砥石を用いて平坦化、配線層となる領域が溝となるようにパターニングする(図11(c))。次に、バリアメタルとなる窒化チタン(TiN)膜及びシード層となる銅膜をスパッタによりそれぞれ50nmの厚さ形成し、その上にメッキ法により銅膜を1μmの厚さ形成する(図11(d))。その後、本発明に係る加工法を用いて銅膜の表面を平坦化加工する(図11(e))。なお、同膜の表面を平坦化加工した後の平面図を図13に示す。ここで用いた砥石は、アルミナ粒子を砥粒として含む。加工液としては酸性の過酸化水素水を用いた。その結果、図10に示すようなスクラッチに起因する同層間配線ショート及び異層間配線ショートのない信頼性の高い半導体装置を製造することができた。なお、本実施例では砥粒としてはアルミナ粒子を用いたが、実用上チタニア、セリア、シリカ又はマンガニアを用いることができる。また、加工液として純水を用いることもできる。これにより、加工速度は低下するが廃液処理を容易に行える。
(実施例5)
本実施例では、半導体装置の素子分離領域の形成に本発明に係る加工方法を適用した例について図9を用いて説明する。
【0039】
図9は浅溝素子分離層であるSTI層の形成工程を示す溝部の要部断面図である。STI層はトランジスタ素子間の絶縁層を形成する工程であり、半導体装置の製造においては初期の工程に位置づけられる。図9(a)は平坦化加工前の断面構造を示している。シリコン基板1の表面には浅溝22が形成されており、凸部表面(アクティブフィールド面)には窒化珪素薄膜21が形成されている。この凸部には後の工程においてトランジスタ素子が形成される。それらの上面は酸化膜4によりが覆われているが、窒化珪素薄膜21の上部領域は凸部となり、浅溝部22の上部では凹部となる3次元構造となっている。この凸部の酸化膜4を削り図9(b)に示すように平坦化加工を行う工程をSTI層の平坦化加工という。
【0040】
この平坦化加工工程に砥石を用いた加工方法を詳細に説明する。用いた加工装置は実施例1と同様である。図9(a)までの工程を経たシリコン基板1をウェハホルダ14に固定する。一方、砥粒として酸化セリウム粒子を含む砥石16表面のコンディショニングを行い砥石表面の状態を整える。その後、シリコン基板1を砥石16表面に押し付けて摺動させると共に、ブラシにより砥石16表面をスクラブしながら1〜2分加工した。加工時間はダミーウェハを加工して最適な時間を予め決定しておいた。加工後、基板1は洗浄工程及び乾燥工程を経て平坦化加工を終了する。この基板1の加工品質を評価した結果、窒化珪素薄膜21への大スクラッチの発生が無く、シリコン基板1への結晶欠陥の発生を防止することができた。これにより、その後形成したトランジスタ素子は接合リーク電流が小さく、良好な特性を示した。また、溝部22上の酸化膜4は中央部が窪むディッシングや角部の面だれ等が無く、良好な平坦性がえられた。これにより、本発明に係る平坦化加工方法は半導体装置製造方法に適用できることが実証できた。
【0041】
なお、本発明は砥石を用いる方法について説明してきたが、砥石の代りに1000kg/cm2以上の硬さを有する硬質パットと被加工物よりも硬い不純物が10ppm以下の砥粒を含むスラリーを用いてもグローバル平坦化と大スクラッチの実質的な解消とを両立することができる。また、針状の砥粒を含むスラリーを用いることによりマイクロスクラッチを低減することができる。
【0042】
【発明の効果】
本発明に係る平坦化加工方法を用いれば、従来のCMP技術では得られない高い平坦化加工性能とスクラッチのない完全スクラッチフリーかつ、スラリーレスという効果が得られる。
【0043】
本発明の平坦化加工方法を適用した半導体装置の製造方法により、接合リーク電流が少なく、また配線間ショートの無い良好な半導体装置をえることができる。
【図面の簡単な説明】
【図1】本発明に係る製造装置の概略図である。
【図2】ウエハ表面の平坦化工程を示す半導体要部断面図である。
【図3】化学機械研磨装置の概略断面図である。
【図4】砥石に含有される不純物分析結果である。
【図5】大スクラッチ評価結果である。
【図6】μスクラッチ評価結果である。
【図7】従来及び本発明に係る砥石の気孔径分布を示す図である。
【図8】平坦化の評価結果を示す図である。
【図9】本発明を摘要した浅溝素子分離層の構造断面図である。
【図10】ダマシン加工時に生じるスクラッチに起因するショート不良を説明するための配線の要部平面図である。
【図11】ダマシンプロセスを説明するための配線要部断面図である。
【図12】超音波加振器を備えた加工装置の概略図である。
【図13】ダマシンプロセスで形成した配線層の平面図である。
【符号の説明】
1…ウエハ基板、2、4…絶縁膜、3…配線層、5…金属アルミ層、6…ホトレジスト層、7…ステッパ、8…レジスト層の凸部、9…平坦化の目標レベル、11…研磨パッド又は砥石、12…定盤、13…バッキングパッド、14…ウエハホルダ、15…加工液、16…砥石、20…加工液供給ユニット、21…窒化膜、22…素子分離用浅溝、101…プラグ、102…酸化シリコン膜。
Claims (13)
- シリコン酸化膜が形成された半導体基板を準備する工程と、
前記半導体基板を、アルカリ性もしくは純水である加工液を供給しながら酸化セリウム砥粒を含む砥石に押しつけて相対運動させることにより前記シリコン酸化膜を加工する工程と、その後前記半導体基板を洗浄及び乾燥する工程とを有する半導体装置の製造方法であって、
前記砥石は、前記シリコン酸化膜の材料よりも硬い物質の含有量が10ppm以下であり、かつ前記砥粒は、短径に対する長径の比が3以上であり、前記砥粒のかさ密度は、1g/cm3以下であり、前記砥石の平均気孔径は0.2μm以下であることを特徴とする半導体装置の製造方法。 - 前記半導体基板を前記砥石に押しつける力は、200−500g/cm2の範囲であることを特徴とする請求項1記載の半導体装置の製造方法。
- 前記相対運動は回転であり、回転数は20−100rpmの範囲であることを特徴とする請求項1記載の半導体装置の製造方法。
- 前記砥粒おける、短径に対する長径の比が3以上のものの割合は10wt%以上であることを特徴とする請求項1記載の半導体装置の製造方法。
- 前記砥石中に含まれる最大気孔径は0.5μm以下であることを特徴とする請求項1記載の半導体装置の製造方法。
- 前記砥石中に含まれる0.5μm以上の気孔径を有する気孔の割合は10vol%以下であることを特徴とする請求項5記載の半導体装置の製造方法。
- 前記砥粒の平均粒径は0.5μm以下であることを特徴とする請求項1記載の半導体装置の製造方法。
- 前記砥粒の最大粒径は1μm以下であることを特徴とする請求項1記載の半導体装置の製造方法。
- 前記砥石は、砥粒の結合材として樹脂を含むことを特徴とする請求項1記載の半導体装置の製造方法。
- 前記シリコン酸化膜を加工する工程は、前記砥石表面にブラシをかける処理を含むことを特徴とする請求項1記載の半導体装置の製造方法。
- 前記加工は、前記砥石表面のコンディショニングの後に行うことを特徴とする請求項1記載の半導体装置の製造方法。
- 前記シリコン酸化膜を加工する工程は、前記砥石表面に超音波を印加する処理を含むことを特徴とする請求項1記載の半導体装置の製造方法。
- 前記半導体基板表面には凹凸が形成されていることを特徴とする請求項1記載の半導体装置の製造方法。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21511998A JP3858462B2 (ja) | 1998-07-30 | 1998-07-30 | 半導体装置の製造方法 |
US09/359,760 US6524961B1 (en) | 1998-07-30 | 1999-07-22 | Semiconductor device fabricating method |
US10/308,088 US6723144B2 (en) | 1998-07-30 | 2002-12-03 | Semiconductor device fabricating method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21511998A JP3858462B2 (ja) | 1998-07-30 | 1998-07-30 | 半導体装置の製造方法 |
Publications (3)
Publication Number | Publication Date |
---|---|
JP2000049122A JP2000049122A (ja) | 2000-02-18 |
JP2000049122A5 JP2000049122A5 (ja) | 2004-10-14 |
JP3858462B2 true JP3858462B2 (ja) | 2006-12-13 |
Family
ID=16667063
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP21511998A Expired - Fee Related JP3858462B2 (ja) | 1998-07-30 | 1998-07-30 | 半導体装置の製造方法 |
Country Status (2)
Country | Link |
---|---|
US (2) | US6524961B1 (ja) |
JP (1) | JP3858462B2 (ja) |
Families Citing this family (29)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3858462B2 (ja) * | 1998-07-30 | 2006-12-13 | 株式会社日立製作所 | 半導体装置の製造方法 |
US20030199238A1 (en) * | 2000-01-18 | 2003-10-23 | Shigeo Moriyama | Polishing apparatus and method for producing semiconductors using the apparatus |
JP3649393B2 (ja) * | 2000-09-28 | 2005-05-18 | シャープ株式会社 | シリコンウエハの加工方法、シリコンウエハおよびシリコンブロック |
JP2002324772A (ja) | 2001-04-25 | 2002-11-08 | Hitachi Ltd | 半導体装置の製造方法及び製造装置 |
JP3934388B2 (ja) * | 2001-10-18 | 2007-06-20 | 株式会社ルネサステクノロジ | 半導体装置の製造方法及び製造装置 |
TW523826B (en) * | 2002-03-15 | 2003-03-11 | Mosel Vitelic Inc | Determination method of CMP processing time |
US7066801B2 (en) * | 2003-02-21 | 2006-06-27 | Dow Global Technologies, Inc. | Method of manufacturing a fixed abrasive material |
US6910951B2 (en) | 2003-02-24 | 2005-06-28 | Dow Global Technologies, Inc. | Materials and methods for chemical-mechanical planarization |
US7300875B2 (en) * | 2004-02-11 | 2007-11-27 | Infineon Technologies Richmond, Lp | Post metal chemical mechanical polishing dry cleaning |
US8048086B2 (en) | 2004-02-25 | 2011-11-01 | Femasys Inc. | Methods and devices for conduit occlusion |
US9238127B2 (en) | 2004-02-25 | 2016-01-19 | Femasys Inc. | Methods and devices for delivering to conduit |
US8048101B2 (en) | 2004-02-25 | 2011-11-01 | Femasys Inc. | Methods and devices for conduit occlusion |
US8052669B2 (en) | 2004-02-25 | 2011-11-08 | Femasys Inc. | Methods and devices for delivery of compositions to conduits |
US7004814B2 (en) * | 2004-03-19 | 2006-02-28 | Taiwan Semiconductor Manufacturing Co., Ltd. | CMP process control method |
JP2005288645A (ja) * | 2004-04-01 | 2005-10-20 | Hitachi Maxell Ltd | 固定砥粒研削研磨用工具 |
JP5034262B2 (ja) | 2006-02-24 | 2012-09-26 | 富士通セミコンダクター株式会社 | 研磨装置および研磨方法 |
US7837888B2 (en) * | 2006-11-13 | 2010-11-23 | Cabot Microelectronics Corporation | Composition and method for damascene CMP |
JP2008178886A (ja) * | 2007-01-23 | 2008-08-07 | Disco Abrasive Syst Ltd | 製品情報の刻印方法 |
US12171463B2 (en) | 2008-10-03 | 2024-12-24 | Femasys Inc. | Contrast agent generation and injection system for sonographic imaging |
US10070888B2 (en) | 2008-10-03 | 2018-09-11 | Femasys, Inc. | Methods and devices for sonographic imaging |
US9554826B2 (en) | 2008-10-03 | 2017-01-31 | Femasys, Inc. | Contrast agent injection system for sonographic imaging |
DE102008053610B4 (de) * | 2008-10-29 | 2011-03-31 | Siltronic Ag | Verfahren zum beidseitigen Polieren einer Halbleiterscheibe |
US9233454B2 (en) * | 2009-03-31 | 2016-01-12 | Honda Motor Co., Ltd. | Grinding stone, manufacturing method of grinding stone, and manufacturing apparatus of grinding stone |
KR101285120B1 (ko) * | 2009-06-05 | 2013-07-17 | 가부시키가이샤 사무코 | 실리콘 웨이퍼의 연마방법 및 실리콘 웨이퍼 |
DE102009047926A1 (de) * | 2009-10-01 | 2011-04-14 | Siltronic Ag | Verfahren zum Polieren von Halbleiterscheiben |
CN104742007B (zh) * | 2013-12-30 | 2017-08-25 | 中芯国际集成电路制造(北京)有限公司 | 化学机械研磨装置和化学机械研磨方法 |
US9105687B1 (en) | 2014-04-16 | 2015-08-11 | Nxp B.V. | Method for reducing defects in shallow trench isolation |
CN111744891B (zh) * | 2020-05-22 | 2022-06-10 | 西安奕斯伟材料科技有限公司 | 研磨机吸附台表面的清洁方法 |
CN114310627A (zh) * | 2021-12-30 | 2022-04-12 | 西安奕斯伟材料科技有限公司 | 一种用于对硅片进行抛光的抛光垫和抛光设备 |
Family Cites Families (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3979239A (en) * | 1974-12-30 | 1976-09-07 | Monsanto Company | Process for chemical-mechanical polishing of III-V semiconductor materials |
US4201800A (en) * | 1978-04-28 | 1980-05-06 | International Business Machines Corp. | Hardened photoresist master image mask process |
US4944836A (en) | 1985-10-28 | 1990-07-31 | International Business Machines Corporation | Chem-mech polishing method for producing coplanar metal/insulator films on a substrate |
US5081051A (en) * | 1990-09-12 | 1992-01-14 | Intel Corporation | Method for conditioning the surface of a polishing pad |
US5413966A (en) * | 1990-12-20 | 1995-05-09 | Lsi Logic Corporation | Shallow trench etch |
US5320934A (en) * | 1991-06-28 | 1994-06-14 | Misium George R | Bilayer photolithographic process |
US5212910A (en) * | 1991-07-09 | 1993-05-25 | Intel Corporation | Composite polishing pad for semiconductor process |
JP2870610B2 (ja) | 1991-07-25 | 1999-03-17 | 三菱電機株式会社 | 路側通信放送方式 |
US5264010A (en) * | 1992-04-27 | 1993-11-23 | Rodel, Inc. | Compositions and methods for polishing and planarizing surfaces |
US5302477A (en) * | 1992-08-21 | 1994-04-12 | Intel Corporation | Inverted phase-shifted reticle |
US5399234A (en) * | 1993-09-29 | 1995-03-21 | Motorola Inc. | Acoustically regulated polishing process |
US5454844A (en) * | 1993-10-29 | 1995-10-03 | Minnesota Mining And Manufacturing Company | Abrasive article, a process of making same, and a method of using same to finish a workpiece surface |
US5441598A (en) * | 1993-12-16 | 1995-08-15 | Motorola, Inc. | Polishing pad for chemical-mechanical polishing of a semiconductor substrate |
US5536603A (en) * | 1993-12-21 | 1996-07-16 | Kabushiki Kaisha Toshiba | Phase shift mask and method of fabricating the same |
US5478678A (en) * | 1994-10-05 | 1995-12-26 | United Microelectronics Corporation | Double rim phase shifter mask |
US5688364A (en) * | 1994-12-22 | 1997-11-18 | Sony Corporation | Chemical-mechanical polishing method and apparatus using ultrasound applied to the carrier and platen |
US5792376A (en) * | 1995-01-06 | 1998-08-11 | Kabushiki Kaisha Toshiba | Plasma processing apparatus and plasma processing method |
JP3788810B2 (ja) | 1995-02-20 | 2006-06-21 | 株式会社東芝 | 研磨装置 |
US5868605A (en) * | 1995-06-02 | 1999-02-09 | Speedfam Corporation | In-situ polishing pad flatness control |
CN1197542A (zh) | 1995-09-13 | 1998-10-28 | 株式会社日立制作所 | 抛光方法和设备 |
US5958794A (en) * | 1995-09-22 | 1999-09-28 | Minnesota Mining And Manufacturing Company | Method of modifying an exposed surface of a semiconductor wafer |
US5916819A (en) * | 1996-07-17 | 1999-06-29 | Micron Technology, Inc. | Planarization fluid composition chelating agents and planarization method using same |
US5664990A (en) * | 1996-07-29 | 1997-09-09 | Integrated Process Equipment Corp. | Slurry recycling in CMP apparatus |
GB2316414B (en) * | 1996-07-31 | 2000-10-11 | Tosoh Corp | Abrasive shaped article, abrasive disc and polishing method |
US5972792A (en) * | 1996-10-18 | 1999-10-26 | Micron Technology, Inc. | Method for chemical-mechanical planarization of a substrate on a fixed-abrasive polishing pad |
US5876470A (en) * | 1997-08-01 | 1999-03-02 | Minnesota Mining And Manufacturing Company | Abrasive articles comprising a blend of abrasive particles |
JP3858462B2 (ja) * | 1998-07-30 | 2006-12-13 | 株式会社日立製作所 | 半導体装置の製造方法 |
-
1998
- 1998-07-30 JP JP21511998A patent/JP3858462B2/ja not_active Expired - Fee Related
-
1999
- 1999-07-22 US US09/359,760 patent/US6524961B1/en not_active Expired - Lifetime
-
2002
- 2002-12-03 US US10/308,088 patent/US6723144B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
US6723144B2 (en) | 2004-04-20 |
US20030084998A1 (en) | 2003-05-08 |
JP2000049122A (ja) | 2000-02-18 |
US6524961B1 (en) | 2003-02-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3858462B2 (ja) | 半導体装置の製造方法 | |
TW576772B (en) | Two step chemical mechanical polishing process | |
US6238592B1 (en) | Working liquids and methods for modifying structured wafers suited for semiconductor fabrication | |
JP5455282B2 (ja) | シリコン・オン・インシュレータ搬送ウエハのエッジ除去 | |
US6451696B1 (en) | Method for reclaiming wafer substrate and polishing solution compositions therefor | |
JP3645528B2 (ja) | 研磨方法及び半導体装置の製造方法 | |
JP2000301454A (ja) | 化学的機械研磨プロセス及びその構成要素 | |
JP2002512894A (ja) | 複数のポリシングパッドを用いるケミカルメカニカルポリシング | |
JP2001068441A (ja) | 選択的ダマシンケミカルメカニカルポリシング | |
JP2002530861A (ja) | 金属半導体構造体におけるcmp時のディッシング速度を低下させる方法 | |
JP2002532898A (ja) | 後表面損傷を組み込む半導体ウエハの処理法 | |
TWI500749B (zh) | 使用適用於增加氧化矽移除之研磨組成物化學機械研磨基板之方法 | |
US12172263B2 (en) | Chemical mechanical planarization tool | |
JP3668046B2 (ja) | 研磨布及びこの研磨布を用いた半導体装置の製造方法 | |
JP3668647B2 (ja) | 半導体ウエハ基板の再生法および半導体ウエハ基板再生用研磨液 | |
KR100792066B1 (ko) | 반도체 웨이퍼의 평탄화 가공방법 | |
Yano et al. | High-performance CMP slurry with inorganic/resin abrasive for Al/low k damascene | |
JP3510036B2 (ja) | 半導体装置の製造方法 | |
JP2002066905A (ja) | 半導体装置の製造方法及びその装置 | |
JP3728950B2 (ja) | 半導体装置の製造方法及び平坦化加工装置 | |
JP2003100681A (ja) | 仕上げ研磨パッド | |
JP7210823B2 (ja) | 研磨液、研磨方法及び半導体部品の製造方法 | |
US6300248B1 (en) | On-chip pad conditioning for chemical mechanical polishing | |
JP3601937B2 (ja) | 表面平坦化方法および表面平坦化装置 | |
JP3847500B2 (ja) | 半導体ウェハ平坦化加工方法および平坦化加工装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20050822 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20050830 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20051031 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20060411 |
|
RD01 | Notification of change of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7421 Effective date: 20060417 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060602 |
|
A911 | Transfer of reconsideration by examiner before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20060614 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20060829 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20060911 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090929 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100929 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100929 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110929 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120929 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120929 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130929 Year of fee payment: 7 |
|
LAPS | Cancellation because of no payment of annual fees |