[go: up one dir, main page]

JP3854398B2 - One can two water heater - Google Patents

One can two water heater Download PDF

Info

Publication number
JP3854398B2
JP3854398B2 JP35629297A JP35629297A JP3854398B2 JP 3854398 B2 JP3854398 B2 JP 3854398B2 JP 35629297 A JP35629297 A JP 35629297A JP 35629297 A JP35629297 A JP 35629297A JP 3854398 B2 JP3854398 B2 JP 3854398B2
Authority
JP
Japan
Prior art keywords
hot water
water supply
supply side
burner
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP35629297A
Other languages
Japanese (ja)
Other versions
JPH11173664A (en
Inventor
節義 田畑
正登 近藤
寿久 斉藤
達也 和田
良彦 田中
Original Assignee
株式会社ガスター
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ガスター filed Critical 株式会社ガスター
Priority to JP35629297A priority Critical patent/JP3854398B2/en
Publication of JPH11173664A publication Critical patent/JPH11173664A/en
Application granted granted Critical
Publication of JP3854398B2 publication Critical patent/JP3854398B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Control For Baths (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、給湯熱交換器と追い焚き熱交換器等の非給湯側熱交換器が一体化され、その一体化した熱交換器を共通のバーナーで加熱する一缶二水路給湯器に関するものである。
【0002】
【従来の技術】
図5には出願人らが開発している一缶二水路給湯器としての一缶二水路風呂給湯器のシステム構成例が示されている。同図において、この一缶二水路風呂給湯器(器具)は燃焼室1を有し、この燃焼室1にはバーナー2が配設され、このバーナー2の上方には給湯熱交換器3と非給湯側循環通路としての追い焚き熱交換器4が設けられている。これら給湯熱交換器3と追い焚き熱交換器4は一体化されて配設されている。すなわち、複数の共通のフィンプレート5に給湯側の管路を貫通装着して給湯熱交換器3と成し、同じくフィンプレート5に追い焚き側の管路を貫通装着して追い焚き熱交換器4と成しており、上記バーナー2は給湯熱交換器3と追い焚き熱交換器4を共に加熱する構成になっている。
【0003】
上記バーナー2の下方側の燃焼室1は給気通路6に連通され、この給気通路6には燃焼ファン7が組み込まれており、燃焼ファン7の回転駆動により外部から給気通路6を介してバーナー2へ空気が送り込まれると共に、バーナー2の燃焼により生じた排気ガスがバーナー2の上方の燃焼室1に連通する排気通路9から外部へ排出される。
【0004】
上記バーナー2のガス導入口にはガスノズル19が対向配設され、このガスノズル19には燃料ガスを導入するためのガス供給通路8が接続されており、このガス供給通路8により導かれた燃料ガスはガスノズル19を介してバーナー2に供給される。また、上記ガス供給通路8には通路の開閉を行う電磁弁10,11a,11bと、ガスの供給量を開弁量により制御する比例弁12とが介設されている。
【0005】
前記給湯熱交換器3の入側には給水通路13の一端側が接続され、給湯熱交換器3の出側には給湯通路14の一端側が接続されており、上記給水通路13の他端側は外部配管を介して水供給源に接続され、前記給湯通路14の他端側は外部配管を介して台所等の所望の給湯場所に導かれている。また、上記給湯熱交換器3の入側の給水通路13と出側の給湯通路14を短絡するバイパス通路15が設けられており、上記バイパス通路15には通路の開閉を行うバイパス弁16が介設されている。
【0006】
前記追い焚き熱交換器4の入側には管路18の一端側が接続され、この管路18の他端側は循環ポンプ20の吐出口に接続されており、循環ポンプ20の吸入口には戻り管21の一端側が接続され、戻り管21の他端側は浴槽22に連接されている。また、追い焚き熱交換器4の出側には管路23の一端側が接続されており、この管路23の他端側は前記浴槽22に連接されている。上記戻り管21と循環ポンプ20と管路18と追い焚き熱交換器4と管路23により非給湯側循環通路としての追い焚き循環通路24が構成される。
【0007】
上記追い焚き循環通路24の管路18と前記給湯通路14は湯張り通路25により連通されており、この湯張り通路25には通路の開閉を制御する注湯制御弁26と、浴槽22の水位を検出する水位センサ28とが設けられている。
【0008】
なお、図中に示す30は燃焼室1内の風量を検出する風量センサであり、31は給水通路13に設けられて給水の流量を検出する水量センサであり、32は給水通路13の水の温度を検出する入水温度センサであり、34は給湯通路14に設けられて通水流量を制御する流量制御弁であり、35は給湯通路14に設けられて給湯が行われていることを水流により検出する給湯確認スイッチであり、36は追い焚き循環通路24の水流の有無を検出する流水スイッチであり、37は追い焚き循環通路24を循環する熱媒体としての湯水の温度を浴槽湯水の温度(風呂温度)として検出する非給湯側温度検出手段である風呂温度センサであり、38は給湯熱交換器3で作り出された湯の温度を検出する出湯温度センサである。
【0009】
この一缶二水路風呂給湯器には制御装置40が設けられており、この制御装置40にはリモコン41が接続されている。このリモコン41には給湯温度を設定するための給湯温度設定手段や、浴槽22の風呂の温度を設定する風呂温度設定手段や、浴槽22の湯水の水位を設定する風呂水位設定手段等が設けられている。
【0010】
上記制御装置40は各種センサのセンサ出力信号やリモコン41の情報を取り込み、それら情報と予め与えられているシーケンスプログラムに従って、給湯運転や、湯張り運転や、追い焚き運転等の各種の器具運転の動作を次のように制御する。
【0011】
例えば、台所等に導かれた給湯通路の水栓が開けられ、水供給源から給水通路13に水が流れ込んで水量センサ31が給水通路13の通水を検出すると、器具は給湯運転を開始する。まず、燃焼ファン7の回転駆動を開始させ、電磁弁11a,11bの両方又はどちらか一方と電磁弁10を開動作させガス供給通路8を通してバーナー2に燃料ガスを供給し、図示されていない点着火手段によりバーナー2の点着火を行い燃焼を開始させる。
【0012】
そして、給湯湯温が前記給湯温度設定手段に設定されている給湯設定温度となるように比例弁12の開弁量を制御して(バーナー2への供給ガス量を制御して)バーナー2の燃焼能力を制御し、給湯熱交換器3の通水をバーナー2の燃焼火炎により加熱して設定温度の湯を作り出し、この湯を給湯通路14を通して給湯場所に供給する。
【0013】
湯の使用が終了して水栓が閉められると、給湯熱交換器3への通水が停止し、水量センサ31が給水通路13の通水を検知しなくなったときに、電磁弁10を閉じてバーナー2の燃焼を停止させる。その後、予め定められたポストパージ期間(例えば、5分間)が経過したときに、燃焼ファン7の回転駆動を停止して給湯運転を終了し次の給湯に備える。
【0014】
湯張り運転を行うときには、例えば、注湯制御弁26を開弁し、この注湯制御弁26の開弁動作により水供給源から給水通路13に水が流れ込んで水量センサ31が給水通路13の通水を検知すると、上記給湯運転と同様にバーナー2の燃焼を開始させる。
【0015】
このバーナー2の燃焼火炎により給湯熱交換器3で作り出された湯は給湯通路14と湯張り通路25を順に介して追い焚き循環通路24に送り込まれ、追い焚き循環通路24に流れ込んだ湯は戻り管21を通る経路と追い焚き熱交換器4を通る経路との2経路で浴槽22に落とし込まれる。そして、水位センサ28が検出する浴槽22の水位がリモコン41に設定されている設定水位に達したときに、注湯制御弁26を閉じ、電磁弁10を閉じてバーナー2の燃焼を停止させ、湯張り運転を終了する。
【0016】
追い焚き運転を行うときには、循環ポンプ20を駆動させて浴槽22内の湯水を追い焚き循環通路24を通して循環させ、この湯水の流れを流水スイッチ36により検知した後、バーナー2の燃焼を開始させ、バーナー2の燃焼火炎により追い焚き熱交換器4の循環湯水を加熱して追い焚きを行う。そして、風呂温度センサ37により検出される風呂温度が前記風呂温度設定手段により設定されている設定温度に達したときに、バーナー2の燃焼を停止させ、追い焚き運転を終了する。
【0017】
前記の如く、一缶二水路風呂給湯器は、一体化された給湯熱交換器3と追い焚き熱交換器4を共通のバーナー2を用いて加熱する方式であるので、別体に設けられた給湯熱交換器と追い焚き熱交換器をそれぞれ別個のバーナーを用いて燃焼加熱する方式に比べて、装置構成の簡易化が図れ、これに伴い、装置の小型化とコストの低減が図れることになる。
【0018】
また、図6,7には、一缶二水路給湯器としての給湯暖房機の例が示されており、これらの図において、図5の一缶二水路風呂給湯器と同一名称部分には同一符号が付してある。また、図中、57は非給湯側熱交換器としての暖房用熱交換器を示しており、52(52a,52b,52c)は暖房オン・オフバルブ、53(53a,53b,53c)は放熱器、54(54a,54b,54c)はファン、55はシスターンタンク、56はバイパス通路をそれぞれ示している。暖房用循環通路51を循環する熱媒体としては、例えば、エチレングリコールとプロピレングリコールに水を加えたものが用いられる。
【0019】
【発明が解決しようとする課題】
ところで、従来は、一缶二水路風呂給湯器において、前記の如く、追い焚き運転を行うときには、循環ポンプ20の駆動により浴槽22内の湯水を追い焚き循環通路24を通して循環させて、この湯水の流れを流水スイッチ36によって検知した後、バーナー2の燃焼を開始させているが、追い焚き循環通路24を通る浴槽湯水には髪等のごみが多く含まれており、流水スイッチ36に髪等のごみが絡み付き、故障することがよくあるために、できれば流水スイッチ36を用いずに追い焚き循環通路24の湯水の流れを検知したいといった要求があった。
【0020】
また、上記のような一缶二水路タイプの風呂給湯器においては、例えば、追い焚き熱交換器4側と給湯熱交換器3側の吸熱比率に基づいて、給湯と風呂の追い焚きの同時燃焼時の燃焼制御が行われるために、追い焚き循環通路24を通る湯水の循環流量を検出したいといった要求があり、追い焚き循環通路24の湯水循環流量をボール式水量センサにより測定する方法等が以前に提案されているが、このようなセンサは、前記流水スイッチ36と同様に、浴槽湯水中のごみが絡み付くと故障し易く、測定される浴槽湯水の循環流量が不正確な値になりがちであった。
【0021】
本発明は上記課題を解決するためになされたものであり、その目的は、追い焚き循環通路の湯水の流れの有無、および循環流量を正確に検出することができる一缶二水路風呂給湯器を提供し、さらには、非給湯側循環通路の熱媒体の流れの有無、および、循環流量を正確に検出することができる一缶二水路給湯器を提供することにある。
【0025】
【課題を解決するための手段】
上記目的を達成するために、本発明は次のような構成をもって課題を解決するための手段としている。すなわち、本第の発明は、給水通路から導かれた水を加熱し給湯通路に湯を給湯する給湯熱交換器と、給湯熱交換器の湯温を検出する給湯熱交換器湯温検出手段と、非給湯側循環通路に組み込まれ上記非給湯側循環通路を循環する熱媒体を加熱する非給湯側熱交換器とを有し、上記給湯熱交換器と非給湯側熱交換器は一体化され、上記給湯熱交換器と非給湯側熱交換器を共通に加熱するバーナーが設けられ、上記給湯熱交換器で作られた湯を給湯通路を通して供給する給湯機能と、熱媒体を上記非給湯側循環通路の非給湯側熱交換器を通して加熱し熱媒体の加熱を行う非給湯側加熱機能と、給湯が行われず非給湯側運転のみを行う非給湯側単独運転中に上記給湯熱交換器湯温検出手段により検出される給湯熱交換器の湯温がバーナー燃焼能力を低下させる設定温度以上になったときにはバーナーの燃焼能力を低下させ、上記給湯熱交換器の湯温がバーナー燃焼能力を増加させる設定温度以下になったときにはバーナーの燃焼能力を増加させる非給湯側単独運転燃焼制御機能とを備えた一缶二水路給湯器であって、上記非給湯側循環通路を循環する熱媒体の温度を検出する非給湯側温度検出手段が設けられており、前記非給湯側単独運転燃焼制御機能によって制御されるバーナー燃焼能力の予め定めた切り換え区間の時間情報と非給湯側循環通路を循環する熱媒体の流量との関係データが非給湯側循環通路を循環する熱媒体の温度に対応させて予め与えられており、該関係データと非給湯側単独運転中に検出されるバーナー燃焼能力の前記予め定めた切り換え区間の時間検出情報と非給湯側単独運転中の上記非給湯側温度検出手段により検出される非給湯側循環通路の熱媒体の温度に基づいて非給湯側循環通路を循環する熱媒体の流量を検出する非給湯側循環流量検出手段が設けられている構成をもって課題を解決するための手段としている。
【0026】
さらに、上記関係データにおけるバーナー燃焼能力の予め定めた切り換え区間の時間情報は非給湯側単独運転中のバーナー燃焼能力低下制御開始時から次回のバーナー燃焼能力増加制御開始時までのバーナー燃焼能力低下制御期間としたこと、上記関係データにおけるバーナー燃焼能力の予め定めた切り換え区間の時間情報は非給湯側単独運転中のバーナー燃焼能力低下制御以降のバーナー燃焼能力増加制御開始時からバーナー燃焼能力低下制御開始時までのバーナー燃焼能力増加制御期間としたことも本発明の特徴的な構成とされている。
【0027】
さらに、上記関係データにおけるバーナー燃焼能力の予め定めた切り換え区間の時間情報は非給湯側単独運転中のバーナー燃焼能力低下制御開始時からバーナー燃焼能力増加制御期間を介して次回のバーナー燃焼能力低下制御開始時までの燃焼能力ダウン周期としたこと、上記関係データにおけるバーナー燃焼能力の予め定めた切り換え区間の時間情報は非給湯側単独運転中のバーナー燃焼能力低下制御以降のバーナー燃焼能力増加制御開始時からバーナー燃焼能力低下制御期間を介して次回のバーナー能力増加制御開始時までの燃焼能力アップ周期としたことも本発明の特徴的な構成とされている。
【0028】
さらに、非給湯側運転指令が与えられてから非給湯側循環流量検出手段によって検出される非給湯側単独運転中における非給湯側循環通路の熱媒体の循環流量が予め定められた作動流量以上となったことを最初に確認したときに非給湯側燃焼ランプを報知動作させて該報知動作を非給湯側運転終了まで動作させる非給湯側ランプ作動手段を設けたことも本発明の特徴的な構成とされている。
【0029】
さらに、上記非給湯側循環通路は追い焚き循環通路とし、非給湯側熱交換器は追い焚き熱交換器とし、上記非給湯側循環通路を循環する熱媒体は湯水とし、非給湯側の運転は風呂の追い焚き運転としたことも本発明の特徴的な構成とされている。
【0033】
【発明の実施の形態】
以下、本発明の実施の形態を図面に基づいて説明する。なお、本実施形態例の説明において、従来例と同一名称部分には同一符号を付し、その重複説明は省略する。本実施形態例の一缶二水路給湯器は一缶二水路風呂給湯器であり、図5に示した一缶二水路風呂給湯器とほぼ同様のシステム構成を有しているが、本実施形態例の一缶二水路風呂給湯器においては、追い焚き循環通路24に流水スイッチ36を設けずに給湯器を構成している。また、本実施形態例においては、給湯熱交換器湯温検出手段としての図の破線に示す給湯熱交湯温センサ33を、給湯熱交換器3のU字管に設け、さらに、制御装置40に、図1に示すような本実施形態例の特有な制御構成を設けている。
【0034】
図1に示されるように、本実施形態例の制御装置40は、追い焚き燃焼強制開始手段46、燃焼制御部42、追い焚き単独運転監視部43、追い焚き単独運転燃焼制御部45、データ格納部44、追い焚きランプ作動手段49、湯水循環流量検出手段48を有しており、リモコン41には追い焚き燃焼ランプ50が設けられている。
【0035】
燃焼制御部42には、給湯や追い焚き等の様々な運転のシーケンスプログラムが与えられており、燃焼制御部42はリモコン41の情報や風呂温度センサ37等のセンサ出力を取り込んで、それら取り込んだ情報とシーケンスプログラムに従って給湯器の燃焼運転動作を制御する。
【0036】
追い焚き燃焼強制開始手段46は、例えばリモコン41等から追い焚き指示が与えられたときに、循環ポンプ20を駆動させるとともに、燃焼制御部42にバーナー燃焼運転開始指令を加え、それにより、追い焚き循環通路24の湯水の流れを検知せずにバーナー燃焼運転を直ちに開始させる。
【0037】
追い焚き単独運転監視部43は、上記燃焼制御部42の運転情報を取り込み、この情報に基づき、例えば、循環ポンプ20の駆動を検知している状態で給湯確認スイッチ35又は水量センサ31が通水を検知していないときには、器具が追い焚き単独運転をしていると検知し、それ以外のときには器具は追い焚き単独運転をしていないと検知する。
【0038】
参考例として、データ格納部44には、バーナー燃焼を停止させる設定温度としてのオフ温度とバーナー燃焼を再開させる設定温度としてのオン温度が予め定められて格納されている。上記オフ温度は、例えば追い焚き単独運転中に給湯熱交換器3のピーク温度領域の滞留湯が沸騰に近い状態であることを示す予め定めた湯温(例えば、90℃)になったときに給湯熱交湯温センサ33により検出される湯温である。上記オン温度は、上記オフ温度よりも予め定めた温度(例えば、3℃)分だけ低下させた湯温である。
【0039】
追い焚き単独運転燃焼制御部45は、非給湯側単独運転燃焼制御機能としての以下の動作を行う。すなわち、追い焚き単独運転燃焼制御部45は、時々刻々と、給湯熱交湯温センサ33のセンサ出力を給湯熱交換器3の湯温として検出して制御動作を行うが、本実施形態例の制御動作を説明する前に前記参考例としてデータ格納部44に格納されたデータを用いた参考例の制御動作を説明する。この参考例の制御動作として追い焚き単独運転制御部45は、データ格納部44のオン温度とオフ温度および追い焚き単独運転監視部43の監視情報を時々刻々と取り込み、取り込まれた検出給湯熱交換器湯温を前記オフ温度に比較し、上記追い焚き単独運転監視部43の監視情報に基づき追い焚き単独運転中であると検知しているときに、給湯熱交換器3の湯温がオフ温度以上になったと判断したときには、バーナー2の燃焼を停止させる必要があると判断し、電磁弁10を閉弁させバーナー2の燃焼を停止させる。
【0040】
また、追い焚き単独運転燃焼制御部45はバーナー燃焼停止信号を燃焼制御部42に出力する。燃焼制御部42は上記バーナー燃焼停止信号を受け、バーナー2の燃焼停止が追い焚き単独運転制御によりなされたものであり、器具の異常ではないと判断し、循環ポンプ20の駆動等の器具運転動作を継続して行う。このため、上記追い焚き単独運転中のバーナー2の停止期間に循環ポンプ20の駆動は継続される。
【0041】
さらに、追い焚き単独運転燃焼制御部45は、追い焚き単独運転中のバーナー2の燃焼停止中にも引き続き給湯熱交湯温センサ33のセンサ出力と、データ格納部44のオフ温度およびオン温度との取り込みを行って、給湯熱交湯温センサ33により検出される給湯熱交換器3の湯温を前記オン温度に比較し、給湯熱交換器3の湯温がオン温度以下に低下したと判断したときに、バーナー2の燃焼を再開させてもよいと判断し、点着火手段(図示せず)を用いてバーナー2の点着火を行いバーナー2の燃焼を再開させる。
【0042】
ところで、追い焚き運転が行われるときには、給湯熱交換器3の水管をバーナー2の燃焼火炎によって加熱し、この給湯熱交換器3の水管内の水を熱媒体として給湯熱交換器3に接している追い焚き熱交換器4の水管を加熱し、追い焚き熱交換器4内の循環湯水を加熱しており、言い換えれば、追い焚き熱交換器4内の循環湯水は、給湯熱交換器3の水管内の湯水の熱を奪い、給湯熱交換器3内の湯水からの吸熱によって温度が上昇していく。したがって、追い焚き熱交換器4内の循環湯水の流量が異なると、前記吸熱の割合が異なることにより、給湯熱交湯温センサ33によって検出される給湯熱交換器3の検出湯温データは異なるものとなる。
【0043】
すなわち、追い焚き循環通路24の湯水循環流量が多くなるにつれて、給湯熱交換器3側の湯水から追い焚き循環通路24の循環湯水が奪う熱量が多くなるため、前記追い焚き単独運転燃焼制御部45によって、前記オフ温度とオン温度に基づいてバーナー2のオン・オフ燃焼制御を行った場合に、追い焚き循環通路24の湯水循環流量の違いによって、例えば、図3の(a)〜(c)に示すように、給湯熱交換器3の検出湯温データに違いが生じる。
【0044】
なお、同図の(a)に示すグラフは、追い焚き循環通路24の湯水循環流量が少ないときの給湯熱交換器3の検出湯温データを示し、同図の(b)に示すものは、同図の(a)の場合よりも追い焚き循環通路24の湯水循環流量が多い場合の、給湯熱交換器3の検出湯温データを示しており、同図の(c)に示すグラフは、同図の(b)に示す場合よりもさらに追い焚き循環通路24の湯水循環流量が多い場合の、給湯熱交換器3の検出湯温データを示している。
【0045】
これらのグラフから明らかなように、追い焚き単独運転中のバーナー2の燃焼停止時から次回のバーナー2の燃焼開始時までのバーナーオフ時間T1(T1S,T1M,T1B)は、追い焚き循環通路24の湯水循環流量が多くなるに従って小さくなり( T1S>T1M>T1B)、バーナー燃焼停止以降のバーナー2の燃焼再開時からバーナー2の燃焼停止時までのバーナーオン時間T2(T2S,T2M,T2B)は、追い焚き循環通路24の湯水循環流量が多くなるに従って大きくなる( T2S<T2M<T2B)。
【0046】
また、追い焚き単独運転中のバーナー燃焼停止時からバーナーオン期間を介して次回のバーナー燃焼停止時までのオフ周期T3 (T3S,T3M,T3B)は、追い焚き循環通路24の湯水循環流量が多くなるに従って小さくなり( T3S>T3M>T3B)、追い焚き単独運転中のバーナー燃焼停止以降のバーナー燃焼開始時からバーナーオフ期間を介して次回のバーナー燃焼再開時までのオン周期T4 (T4S,T4M,T4B)も、追い焚き循環通路24の湯水循環流量が多くなるに従って小さくなる( T4S>T4M>T4B)。
【0047】
また、追い焚き循環通路24の循環湯水が給湯熱交換器3の湯水から奪う熱量は、追い焚き循環通路24の湯水の温度によっても異なり、追い焚き循環通路24を循環する湯水の温度が高くなるにつれて、追い焚き循環通路の循環湯水が給湯熱交換器3の湯水から奪う熱量は小さくなる。したがって、追い焚き循環通路24の循環湯水の温度が高くなるにつれて、前記バーナーオフ時間T1 および、前記オフ周期T3 、前記オン周期T4 は長くなり、前記バーナーオン時間T2 は短くなる。
【0048】
参考例の制御動作では、以上のような、追い焚き単独運転中の追い焚き循環通路24の湯水循環流量と湯水温の違いによるバーナー燃焼オン・オフ時間の違いに着目し、前記バーナーオフ時間T、バーナーオン時間T、オフ周期T、オン周期T等のバーナー燃焼オン・オフ時間情報と追い焚き循環通路24を循環する湯水の流量との関係データを、追い焚き循環通路24を循環する湯水の温度に対応させて予め実験等により求めてデータ格納部44に格納している。この格納データは、例えば図2の(a)〜(d)に示すようなグラフデータや、表データ、演算データ等によって与えられる。なお、図2において、t,t,tは、追い焚き循環通路24の湯水温を示しており、t>t>tである。
【0049】
湯水循環流量検出手段48は非給湯側循環流量検出手段として機能するものであり、データ格納部44に格納されている前記関係データと、追い焚き単独運転中に検出されるバーナー燃焼オン・オフ検出情報と、追い焚き単独運転中の風呂温度センサ37により検出される追い焚き循環通路24の湯水温に基づいて、追い焚き循環通路24を循環する湯水の流量を検出するものである。
【0050】
湯水循環流量検出手段48は、追い焚き単独運転燃焼制御部45からバーナー2のオン信号とオフ信号を受け、このオン信号とオフ信号から追い焚き単独運転中のバーナーオフ時間、バーナーオン時間、オフ周期、オン周期の少なくとも1つの時間をバーナー燃焼オン・オフ検出情報として検出し、一方、追い焚き単独運転中の風呂温度センサ37の検出温度を追い焚き循環通路24の湯水温として取り込み、この湯水温と前記バーナー燃焼オン・オフ検出情報と、データ格納部44に格納されている前記関係データとに基づいて、追い焚き循環通路24の湯水循環流量を検出する。
【0051】
例えば、湯水循環流量検出手段48は、追い焚き単独運転中に検出される前記バーナーオフ時間が、図2の(a)のT1aであり、このときの風呂温度センサ37の検出温度がt3のときには、追い焚き循環通路24の湯水循環流量はQ3と検出し、オフ時間がT1aで風呂温度センサ37の検出温度がt2のときには、追い焚き循環通路24の湯水循環流量はQ2と検出する。また、湯水循環流量検出手段48は、追い焚き単独運転中に検出されるオン時間が、同図の(b)に示すT2aであり、風呂温度センサ37の検出温度がt3のときには、追い焚き循環通路24の湯水循環流量はQ4であると判断する。
【0052】
同様にして、湯水循環流量検出手段48は、図2の(a)〜(d)に示すような関係データと、追い焚き単独運転中に検出されるバーナー燃焼オン・オフ検出情報におけるバーナーオフ時間、バーナーオン時間、オフ周期、オン周期の少なくとも1つの時間情報と、追い焚き単独運転中の風呂温度センサ37の検出温度とに基づいて、追い焚き循環通路24の湯水循環流量を検出する。そして、湯水循環流量検出手段48は、この検出結果を追い焚きランプ作動手段49に加える。
【0053】
追い焚きランプ作動手段49は非給湯側ランプ作動手段として機能するものであり、例えばリモコン41から追い焚き指令が与えられてから、湯水循環流量検出手段48によって検出される追い焚き単独運転中における追い焚き循環通路の湯水循環流量が予め定められた作動流量以上となったことを最初に確認したときに、追い焚き燃焼ランプ50を点灯させる追い焚き報知動作を行い、この追い焚き報知動作を追い焚き運転終了まで動作させるものである。
【0054】
実施形態例においても、前記提案の給湯器と同様に、シーケンスプログラムに従って、給湯運転や、湯張り運転が行われる。
【0055】
また、本実施形態例では、図4のステップ101に示すように、リモコン41の追い焚きスイッチがオンされて追い焚き指令が与えられると、ステップ102で、追い焚き燃焼強制開始手段46により、循環ポンプ20がオン駆動されるとともに、燃焼制御部42にバーナー燃焼開始指令が加えられて、追い焚き循環通路24の流水検知なしに、ステップ103で、バーナー2の着火トライ(バーナー燃焼開始)が行われる。そして、ステップ104で、燃焼制御部42により、バーナー2の近傍に設けられているフレームロッド電極がオンしたか否かが判断され、フレームロッド電極がオンしてバーナー2の燃焼開始が確認されるまでステップ103の着火トライを行う。
【0056】
バーナー2の燃焼が開始されたときには、追い焚き単独運転監視部43によって、給湯器が追い焚き単独運転を行っているか否かの検知が行われ、追い焚き単独運転中には、追い焚き単独運転燃焼制御部45により、前記の参考制御動作例(参考例の制御動作)の如く、前記オフ温度とオン温度と給湯熱交湯温センサ33の検出温度とに基づいてバーナー2のオン・オフ燃焼制御を行う。そして、このバーナー2とオン信号とオフ信号は湯水循環流量検出手段48にも加えられ、湯水循環流量検出手段48は、このバーナー2のオン信号とオフ信号に基づいてバーナー燃焼オン・オフ検出情報を得、風呂温度センサ37によって検出される追い焚き循環通路24の湯水温を取り込み、このバーナー燃焼オン・オフ検出情報と追い焚き循環通路24の湯水温と、前記参考例としてデータ格納部44に格納されている、例えば図2に示したような関係データとに基づいて追い焚き循環通路24を循環する湯水の循環流量を検出する。
【0057】
そして、この循環流量の値は、時々刻々と追い焚きランプ作動手段49に加えられ、図4のステップ105で、追い焚きランプ作動手段49により、追い焚きの循環流量が予め定められた作動流量であるAリットルとなったか否かが判断され、循環流量がAリットルとなったときには、ステップ106で、追い焚き燃焼ランプ50がオンされ、点灯される。
【0058】
そして、このランプ点灯は、ステップ107で追い焚き燃焼運転が終了されたことが確認されるまで行われ、追い焚き燃焼運転が終了したときには、ステップ108で、追い焚き燃焼ランプ50がオフ(消灯)される。また、追い焚き燃焼運転が終了したときには、循環ポンプ20の駆動もオフされる。
【0059】
一方、前記ステップ105で、追い焚き循環通路24の循環流量がAリットルに達していないと判断されたときには、ステップ109に示すように、追い焚き燃焼ランプ50のオフ状態を継続し、ステップ110で、追い焚き指令が加えられてから10分以上経ったか否かの判断を行い、追い焚き指令が与えられてから10分以上経ったときには、ステップ111で、燃焼制御部42により循環ポンプ20をオフする。
【0060】
参考制御動作例によれば、追い焚き単独運転燃焼制御部45によって、追い焚き単独運転中にバーナー2のオン・オフ燃焼制御を行い、追い焚き単独運転中のバーナー燃焼オン・オフ時間情報と追い焚き循環通路24の湯水循環流量との関係データを追い焚き循環通路24を循環する湯水温に対応させて予め与え、湯水循環流量検出手段48によって、この関係データと追い焚き単独運転中に検出されるバーナー燃焼オン・オフ検出情報と追い焚き循環通路24の湯水温に基づいて追い焚き循環通路24を循環する湯水の流量を検出するようにしたため、追い焚き循環通路24に流水スイッチ36やボール式水量センサ等を直接設ける場合と異なり、浴槽湯水に含まれる髪等のごみに左右されることなく、追い焚き循環通路24の湯水の流れの有無および湯水循環流量を正確に検出することができる。
【0061】
そして、参考制御動作例によれば、このように、追い焚き循環通路24の湯水の流れの有無を正確に検出できるために、従来、一缶二水路風呂給湯器に設けられていた流水スイッチ36を省略することが可能となり、流水スイッチ36を省略することにより、その分だけ給湯器のシステム構成を簡略化することができるし、コストダウンを図ることができる。
【0062】
また、本実施形態例によれば、追い焚き循環通路24の湯水循環流量を正確に検出し、この流量が予め定められた作動流量となったときに、追い焚きランプ作動手段49によって追い焚き燃焼ランプ50を点灯させることにより、追い焚き循環通路24の湯水循環流量が前記作動流量以上で確実に追い焚き燃焼運転が行われているときにのみ追い焚き燃焼ランプ50を点灯させて、追い焚き燃焼運転が行われていることを給湯器の利用者に報知することができる。
【0063】
さらに、本実施形態例によれば、後述する本実施形態例における追い焚き単独運転燃焼制御部45の動作によって正確に検出した追い焚き循環通路24の湯水循環流量に基づき、追い焚き熱交換器4側と給湯熱交換器3側の吸熱比率を求め、追い焚きと給湯の同時燃焼時の燃焼制御も正確に行うことができる。
【0064】
なお、本発明は上記実施形態例に限定されることはなく、様々な実施の態様を採り得る。例えば、上記実施形態例では、追い焚きランプ作動手段49は、追い焚き燃焼ランプ50の追い焚き報知動作として、追い焚き燃焼ランプ50を点灯させるようにしたが、追い焚き報知動作として、追い焚き燃焼ランプ50を点滅させるようにしてもよく、追い焚き報知動作は適宜設定されるものである。また、追い焚きランプ作動手段49は省略することもできる。
【0065】
また、上記実施形態例では、流水スイッチ36を省略した構成としたが、流水スイッチ36を追い焚き循環通路24に設けて給湯器を構成し、流水スイッチ36によって追い焚き循環通路24の湯水の流れを検知するようにしてもよい。この場合、参考制御動作例で説明したように、湯水循環流量検出手段48によって、追い焚き循環通路24の湯水循環流量の検出を行うようにしてもよい。
【0066】
さらに、上記実施形態例では、追い焚き指示が与えられたときに、追い焚き燃焼強制開始手段46により、循環ポンプ20を直接駆動させたが、例えば追い焚き燃焼強制開始手段46により燃焼制御部42にポンプ駆動指令を加え、この指令によって、燃焼制御部42により循環ポンプ20を駆動させるようにしてもよい。
【0067】
さらに、上記実施形態例では、追い焚き燃焼強制開始手段46を設け、リモコン41から追い焚き指示が加えられたときに、循環ポンプ20を駆動させるとともに、追い焚き循環通路24の流れを検知せずにバーナー燃焼運転を直ちに開始させるようにしたが、追い焚き燃焼強制開始手段46は省略することもできる。
【0068】
さらに、上記実施形態例では、給湯熱交湯温センサ33は給湯熱交換器3のU字管に設けられていたが、図5の鎖線に示すように、給湯熱交換器3の出側に設けるようにしてもよい。
【0069】
さらに、上記実施形態例では、給湯熱交換器3の湯温を給湯熱交湯温センサ33から直接的に検出していたが、上記給湯熱交換器3の湯温は排気温度に基づき間接的に検出することが可能であることから、排気温度と給湯熱交換器3の湯温との関係データを予め実験や演算等により求めて与えておき、その関係データと排気温度によって給湯熱交換器3の湯温を間接的に検出する給湯熱交換器湯温検出手段を設けるようにしてもよい。より望ましくは、上記関係データと排気温度に基づき検出した給湯熱交換器湯温を、風呂温度センサ37により検出される追い焚き循環通路の湯温や、予め定まる追い焚き循環湯量や、給湯温度を考慮して補正することによって、より正確な給湯熱交換器3の湯温を検出することが可能である。
【0070】
参考制御動作例では、追い焚き単独運転燃焼制御部45は、追い焚き単独運転中に給湯熱交湯温センサ33により検出される給湯熱交換器3の湯温がオフ温度以上になったときにはバーナー2の燃焼を停止させ、給湯熱交換器3の湯温がオン温度以下になったときにはバーナー2の燃焼を再開させるようにしたが、本実施形態例では、追い焚き単独運転燃焼制御部45は、前記給湯熱交換器3の湯温がバーナー燃焼能力を低下させる設定温度以上になったときにはバーナー2の燃焼能力を低下させ、給湯熱交換器3の湯温がバーナー燃焼能力を増加させる設定温度以下になったときにはバーナー2の燃焼能力を増加させる。
【0071】
この場合、給湯器には、追い焚き単独運転中のバーナー燃焼能力制御情報と追い焚き循環通路24を循環する湯水の流量との関係データを追い焚き循環通路24の湯水温に対応させて予め与え、湯水循環流量検出手段48は、この関係データと追い焚き単独運転中に検出されるバーナー燃焼能力制御情報と追い焚き単独運転中の風呂温度センサ37により検出される追い焚き循環通路24の湯水温とに基づいて、追い焚き循環通路24を循環する湯水の循環流量を検出することになる。
【0072】
本実施形態例では、湯水循環流量検出手段48によって、このようにして追い焚き循環通路24の湯水循環流量を検出するので、関係データのバーナー燃焼能力制御情報は、例えば、以下のような情報とすればよい。すなわち、バーナー燃焼能力制御情報は、追い焚き単独運転中のバーナー燃焼能力低下制御開始から次回のバーナー燃焼能力増加制御開始時までのバーナー燃焼能力低下制御期間としたり、関係データのバーナー燃焼能力制御情報は、追い焚き単独運転中のバーナー燃焼能力低下制御以降のバーナー燃焼能力増加制御開始時からバーナー燃焼能力低下制御開始時までのバーナー燃焼能力増加制御期間とすることができる。
【0073】
また、上記関係データのバーナー燃焼能力制御情報は、追い焚き単独運転中のバーナー燃焼能力低下制御開始時からバーナー燃焼能力増加制御期間を介して次回のバーナー燃焼能力低下制御開始時までの能力ダウン周期としてもよく、関係データのバーナー燃焼能力制御情報は、追い焚き単独運転中のバーナー燃焼能力低下期間以降のバーナー燃焼能力増加開始時からバーナー燃焼能力低下期間を介して次回のバーナー燃焼能力増加制御開始時までの燃焼能力アップ周期としてもよい。
【0074】
上記実施形態例は図5に示す一缶二水路風呂給湯器を例にして説明したが、一缶二水路タイプで、給湯熱交換器の湯温を検出する給湯熱交換器湯温検出手段が設けられ、給湯機能と追い焚き機能を備えている一缶二水路風呂給湯器であれば、この発明を適用することができる。
【0075】
さらに、本発明は、上記実施形態例のような一缶二水路風呂給湯器にのみ適用されるとは限らず、例えば図6,7に示したような給湯暖房機等のように、給湯熱交換器3と、循環ポンプ20を備えた非給湯側循環通路に組み込まれ非給湯側循環通路を循環する熱媒体を加熱する非給湯側熱交換器等を有し、給湯熱交換器と非給湯側熱交換器が一体化され、給湯熱交換器と非給湯側熱交換器を共通に加熱するバーナーが設けられており、給湯運転機能と非給湯側熱交換器を有する様々な一缶二水路給湯器に広く適用されるものである。
【0076】
なお、図7に示したような暖房給湯機に本発明を適用した場合、以下のようなメリットがある。例えば、同図における全ての放熱器53a、53b、53cが運転していないときには、暖房オン・オフバルブ52a,52b、52cは全て閉じられているため、暖房用循環通路51を通る熱媒体は、バイパス通路56しか流れない。そのため、暖房用循環通路51を通る熱媒体の循環流量は少ない。一方、全ての放熱器53a,53b、53cが運転しているときには、暖房用循環通路51を通る熱媒体の循環流量は最も多くなる。そこで、非給湯側の循環流量検出手段の検出流量に基づいて、暖房用循環通路51の循環流量が例えば5リットルの時には放熱器53の運転は行われていない、10リットルの時は1台の放熱器53が運転されている、20リットルの時には3台の放熱器53が運転されているといったように、運転されている放熱器53の台数を知ることができる。
【0077】
また、上記のように、放熱器53の運転台数が分かるので、燃焼熱量と給湯熱交湯温センサ33の温度情報から、放熱器53の運転能力が分かる。例えば、放熱器53が1台しか運転されていないが、その能力がファン最大で運転しているとか、3台運転されているが3台ともファン能力が小さいとかといったことを知ることができる。
【0078】
さらに、給湯暖房機でも風呂給湯器でも,非給湯側循環通路の配管の長さは工事後にならないとわからないが、本発明により非給湯側循環通路の熱媒体の循環流量を検出した結果と、予め分かっている非給湯側循環通路の配管の径から求められる熱媒体の流速が、例えば2m/s以上となって、エロージョン・コロージョンの発生する危険があると判断される時には、循環ポンプの能力を落とす等して非給湯側循環通路の熱媒体流速を落とすといった対策を施すことができる。
【0079】
さらに、たとえば、風呂給湯器において、循環金具にごみ詰まりが生じたときにも、追い焚き循環通路の循環流量が変化(低下)するので、その変化状況によって循環金具のごみ詰まりの状況も知ることが可能となり、利用者に知らせることができる。
【0081】
【発明の効果】
発明によれば、非給湯側単独運転燃焼制御機能によって、非給湯側単独運中の給湯熱交換器の湯温がバーナー燃焼能力を低下させる設定温度になったときにはバーナーの燃焼能力を低下させ、給湯熱交換器の湯温がバーナー燃焼能力を増加させる設定温度になったときにはバーナーの燃焼能力を増加させ、この非給湯側単独運転中に検出されるバーナー燃焼能力の予め定めた切り換え区間の時間の情報と、予め与えた非給湯側単独運転中のバーナー燃焼能力の前記予め定めた切り換え区間の時間情報と非給湯側循環通路の熱媒体の流量との非給湯側循環通路熱媒体温度に対応する関係データと、非給湯側循環通路の熱媒体の検出温度とに基づいて、非給湯側循環通路を循環する熱媒体の流量を検出する非給湯側循環流量検出手段を設けたものであるから、非給湯側循環通路の熱媒体中のごみ等に左右されることなく、非給湯側循環通路の熱媒体の流れの有無および循環流量を正確に検出することができる。
【0082】
そのため、本発明によれば、一缶二水路給湯器において、従来、非給湯側循環通路に設けられていた流水スイッチ等の流れ検知手段を省略することが可能となり、その分だけ給湯器のシステム構成を簡略化することが可能となり、コストダウンを図ることができる。
【0083】
また、本発明によれば、上記のように、非給湯側循環通路を循環する熱媒体の流量を正確に検出することができるために、例えば検出した流量に基づいて、非給湯側熱交換器側と給湯熱交換器側の吸熱比率を正確に求めることが可能となり、求めた吸熱比率に基づいて、非給湯側燃焼と給湯燃焼の同時燃焼時における燃焼制御を的確に行えるようにすることができる。
【0084】
さらに、非給湯側指令が与えられてから非給湯側循環流量検出手段によって検出される非給湯側単独運転中における非給湯側循環通路の熱媒体の循環流量が予め定められた作動流量以上となったことを最初に確認したときに非給湯側燃焼ランプを報知動作させて該報知動作を非給湯側運転終了まで動作させる非給湯側ランプ作動手段を設けた本発明によれば、上記非給湯側循環流量検出手段によって検出される正確な非給湯側循環通路の熱媒体の循環流量に基づき、その流量が作動流量以上となったことを最初に確認してから非給湯側燃焼ランプを報知動作させるため、非給湯側循環通路の熱媒体の循環流量が確実に作動流量となって非給湯側燃焼運転が行われているときに非給湯側燃焼ランプを報知動作させて、給湯器の利用者に非給湯側燃焼運転中であることを報知することができる。
【0085】
さらに、非給湯側循環通路は追い焚き循環通路とし、非給湯側熱交換器は追い焚き熱交換器とし、上記非給湯側循環通路を循環する熱媒体は湯水とし、非給湯側の運転は風呂の追い焚き運転とした本発明によれば、上記優れた効果を奏する一缶二水路風呂給湯器を提供することができる。
【図面の簡単な説明】
【図1】本発明に係る一缶二水路給湯器の一実施形態例の制御構成を示すブロック図である。
【図2】 上記実施形態例の一缶二水路給湯器に与えられる、追い焚き単独運転中のバーナー燃焼オン・オフ時間情報と追い焚き循環通路の湯水循環流量との関係データを参考例として示すグラフである。
【図3】一缶二水路風呂給湯器において、給湯熱交換器の湯温がオフ温度以上になったときにバーナー燃焼を停止させ、オン温度以下になったときにバーナー燃焼を再開させる制御を行ったときの、追い焚き循環通路の湯水循環流量の違いによる給湯熱交換器の湯温変動の違いを示すグラフである。
【図4】上記実施形態例の一缶二水路給湯器における追い焚き単独運転動作のフローチャートである。
【図5】一缶二水路風呂給湯器のモデル例を示すシステム構成図である。
【図6】給湯暖房機のモデル例の要部構成を示すシステム図である。
【図7】給湯暖房機の別の例の要部構成を示すシステム図である。
【符号の説明】
3 給湯熱交換器
24 追い焚き循環通路
33 給湯熱交湯温センサ
37 風呂温度センサ
44 データ格納部
45 追い焚き単独燃焼制御部
48 湯水循環流量検出手段
49 追い焚きランプ作動手段
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a canned and two-channel water heater in which a hot water supply heat exchanger and a non-hot water heat exchanger such as a reheating heat exchanger are integrated, and the integrated heat exchanger is heated by a common burner. is there.
[0002]
[Prior art]
FIG. 5 shows a system configuration example of a single can two water bath hot water heater developed by the applicants as a single can two water heater. In the figure, this single can two water bath hot water heater (equipment) has a combustion chamber 1, a burner 2 is disposed in the combustion chamber 1, and a hot water supply heat exchanger 3 and a non-heater 3 are disposed above the burner 2. A reheating heat exchanger 4 is provided as a hot water supply side circulation passage. These hot water supply heat exchangers 3 and reheating heat exchangers 4 are integrated. That is, the hot water supply side pipe line is inserted through a plurality of common fin plates 5 to form the hot water supply heat exchanger 3, and the reheating side pipe line is also inserted through the fin plate 5 to reheat the heat exchanger. The burner 2 is configured to heat both the hot water supply heat exchanger 3 and the reheating heat exchanger 4.
[0003]
The combustion chamber 1 below the burner 2 communicates with an air supply passage 6, and a combustion fan 7 is incorporated in the air supply passage 6, and the combustion fan 7 is driven to rotate from the outside through the air supply passage 6. Then, air is sent to the burner 2 and exhaust gas generated by the combustion of the burner 2 is discharged to the outside from the exhaust passage 9 communicating with the combustion chamber 1 above the burner 2.
[0004]
A gas nozzle 19 is disposed opposite to the gas inlet of the burner 2, and a gas supply passage 8 for introducing fuel gas is connected to the gas nozzle 19, and the fuel gas introduced by the gas supply passage 8 is connected to the gas nozzle 19. Is supplied to the burner 2 via the gas nozzle 19. The gas supply passage 8 is provided with electromagnetic valves 10, 11a, 11b for opening and closing the passage, and a proportional valve 12 for controlling the gas supply amount by the valve opening amount.
[0005]
One end side of the water supply passage 13 is connected to the inlet side of the hot water supply heat exchanger 3, one end side of the hot water supply passage 14 is connected to the outlet side of the hot water supply heat exchanger 3, and the other end side of the water supply passage 13 is It is connected to a water supply source through an external pipe, and the other end of the hot water supply passage 14 is led to a desired hot water supply place such as a kitchen through the external pipe. Further, a bypass passage 15 for short-circuiting the inlet side water supply passage 13 and the outlet side hot water supply passage 14 of the hot water supply heat exchanger 3 is provided, and a bypass valve 16 for opening and closing the passage is interposed in the bypass passage 15. It is installed.
[0006]
One end of a pipe 18 is connected to the inlet side of the reheating heat exchanger 4, and the other end of the pipe 18 is connected to the discharge port of the circulation pump 20. One end side of the return pipe 21 is connected, and the other end side of the return pipe 21 is connected to the bathtub 22. In addition, one end side of a pipe line 23 is connected to the outlet side of the reheating heat exchanger 4, and the other end side of the pipe line 23 is connected to the bathtub 22. The return pipe 21, the circulation pump 20, the pipe 18, the reheating heat exchanger 4, and the pipe 23 constitute a recirculation circulation path 24 as a non-hot water supply side circulation path.
[0007]
The pipe 18 of the recirculation circulation passage 24 and the hot water supply passage 14 are communicated with each other by a hot water filling passage 25, and the hot water filling passage 25 has a pouring control valve 26 for controlling the opening and closing of the passage, and the water level of the bathtub 22. And a water level sensor 28 for detecting the above.
[0008]
In the figure, 30 is an air volume sensor that detects the air volume in the combustion chamber 1, 31 is a water volume sensor that is provided in the water supply passage 13 and detects the flow rate of the water supply, and 32 is water in the water supply passage 13. A water temperature sensor for detecting temperature, 34 is a flow rate control valve provided in the hot water supply passage 14 to control the flow rate of water flow, and 35 is provided in the hot water supply passage 14 to indicate that hot water is being supplied. A hot water supply confirmation switch to be detected, 36 is a flowing water switch for detecting the presence or absence of water flow in the recirculation circulation passage 24, and 37 is a temperature of hot water as a heat medium circulating in the recirculation circulation passage 24 (temperature of hot water in the bathtub ( The bath temperature sensor is a non-hot-water supply side temperature detecting means for detecting the temperature as a bath temperature), and 38 is a hot water temperature sensor for detecting the temperature of hot water produced by the hot-water supply heat exchanger 3.
[0009]
A control device 40 is provided in the single can two water bath hot water heater, and a remote controller 41 is connected to the control device 40. The remote control 41 is provided with hot water supply temperature setting means for setting the hot water supply temperature, bath temperature setting means for setting the bath temperature of the bathtub 22, bath water level setting means for setting the hot water level of the bathtub 22, and the like. ing.
[0010]
The control device 40 takes in sensor output signals from various sensors and information from the remote controller 41, and performs various appliance operations such as a hot water supply operation, a hot water filling operation and a reheating operation according to the information and a sequence program given in advance. The operation is controlled as follows.
[0011]
For example, when a faucet of a hot water supply passage led to a kitchen or the like is opened, water flows into the water supply passage 13 from a water supply source, and the water amount sensor 31 detects water passing through the water supply passage 13, the appliance starts a hot water supply operation. . First, the rotational drive of the combustion fan 7 is started, and both or one of the solenoid valves 11a and 11b and the solenoid valve 10 are opened to supply the fuel gas to the burner 2 through the gas supply passage 8, which is not shown. The burner 2 is ignited by ignition means to start combustion.
[0012]
Then, the valve opening amount of the proportional valve 12 is controlled (the amount of gas supplied to the burner 2 is controlled) so that the hot water temperature becomes the hot water setting temperature set in the hot water temperature setting means. The combustion capacity is controlled, and the water flowing through the hot water supply heat exchanger 3 is heated by the combustion flame of the burner 2 to produce hot water having a set temperature, and this hot water is supplied to the hot water supply place through the hot water supply passage 14.
[0013]
When the use of hot water is finished and the faucet is closed, water flow to the hot water supply heat exchanger 3 is stopped, and the electromagnetic valve 10 is closed when the water amount sensor 31 no longer detects water flow through the water supply passage 13. The combustion of the burner 2 is stopped. Thereafter, when a predetermined post-purge period (for example, 5 minutes) elapses, the rotation drive of the combustion fan 7 is stopped, the hot water supply operation is terminated, and the next hot water supply is prepared.
[0014]
When performing the hot water filling operation, for example, the pouring control valve 26 is opened, and by the opening operation of the pouring control valve 26, water flows from the water supply source into the water supply passage 13, and the water amount sensor 31 is connected to the water supply passage 13. When water flow is detected, combustion of the burner 2 is started similarly to the hot water supply operation.
[0015]
Hot water produced in the hot water supply heat exchanger 3 by the combustion flame of the burner 2 is sent to the recirculation circulation passage 24 through the hot water supply passage 14 and the hot water filling passage 25 in order, and the hot water flowing into the recirculation circulation passage 24 returns. It is dropped into the bathtub 22 by two paths, a path passing through the pipe 21 and a path passing through the reheating heat exchanger 4. When the water level of the bathtub 22 detected by the water level sensor 28 reaches the set water level set in the remote controller 41, the pouring control valve 26 is closed, the electromagnetic valve 10 is closed, and the combustion of the burner 2 is stopped. The hot water filling operation is terminated.
[0016]
When the reheating operation is performed, the circulation pump 20 is driven to circulate hot water in the bathtub 22 through the recirculation circulation passage 24, and after detecting the flow of this hot water by the flowing water switch 36, the combustion of the burner 2 is started. Reheating is performed by heating the circulating hot water in the reheating heat exchanger 4 with the combustion flame of the burner 2. When the bath temperature detected by the bath temperature sensor 37 reaches the set temperature set by the bath temperature setting means, the combustion of the burner 2 is stopped and the reheating operation is ended.
[0017]
As described above, the single can two water bath hot water heater is a system in which the integrated hot water supply heat exchanger 3 and the reheating heat exchanger 4 are heated by using the common burner 2, and thus are provided separately. Compared with the method in which the hot water supply heat exchanger and the reheating heat exchanger are each heated by combustion using separate burners, the structure of the apparatus can be simplified, and accordingly, the apparatus can be reduced in size and cost can be reduced. Become.
[0018]
6 and 7 show an example of a hot water heater as a single can two water heater, and in these drawings, the same name as the single can two water bath water heater in FIG. 5 is the same. The code | symbol is attached | subjected. In the figure, 57 denotes a heating heat exchanger as a non-hot water supply side heat exchanger, 52 (52a, 52b, 52c) is a heating on / off valve, and 53 (53a, 53b, 53c) is a radiator. , 54 (54a, 54b, 54c) are fans, 55 is a cistern tank, and 56 is a bypass passage. As the heat medium circulating in the heating circulation passage 51, for example, a solution obtained by adding water to ethylene glycol and propylene glycol is used.
[0019]
[Problems to be solved by the invention]
By the way, in the conventional canned two-water bath water heater, when reheating operation is performed as described above, hot water in the bathtub 22 is circulated through the recirculation circulation passage 24 by driving the circulation pump 20, and this hot water is circulated. After the flow is detected by the flowing water switch 36, the burner 2 starts to burn, but the bathtub hot water passing through the recirculation circulation passage 24 contains a lot of garbage such as hair. Since dust often gets tangled and breaks down, there is a demand for detecting the flow of hot water in the recirculation passage 24 without using the flow switch 36 if possible.
[0020]
Further, in the canned and double-channel type bath water heater as described above, for example, based on the heat absorption ratio between the reheating heat exchanger 4 side and the hot water supply heat exchanger 3 side, simultaneous combustion of reheating of hot water supply and bath is performed. In order to perform the combustion control at the time, there is a demand for detecting the circulating flow rate of hot water passing through the recirculation circulation passage 24, and a method of measuring the hot water circulation flow rate in the recirculation circulation passage 24 with a ball-type water amount sensor has been previously used. However, like the flow switch 36, such a sensor is prone to failure when dust in the bath water is entangled, and the circulating flow rate of the bath water measured tends to be an inaccurate value. there were.
[0021]
The present invention has been made in order to solve the above-mentioned problems, and its purpose is to provide a single-can two-water bath water heater that can accurately detect the presence or absence of hot water flow in the recirculation circulation passage and the circulation flow rate. Furthermore, another object of the present invention is to provide a single-can two-water heater that can accurately detect the presence / absence of the flow of the heat medium in the non-hot water supply side circulation passage and the circulation flow rate.
[0025]
[Means for Solving the Problems]
In order to achieve the above object, the present invention has the following configuration as means for solving the problems. That is,Book number1The present invention comprises a hot water heat exchanger that heats water led from a water supply passage and supplies hot water to the hot water supply passage, a hot water supply heat exchanger that detects the hot water temperature of the hot water heat exchanger, and a non-hot water supply side A non-hot water supply side heat exchanger that heats a heat medium that is incorporated in the circulation passage and circulates through the non-hot water supply side circulation passage, the hot water supply heat exchanger and the non-hot water supply side heat exchanger are integrated, and the hot water supply heat A burner that heats the exchanger and the non-hot water side heat exchanger in common is provided, a hot water supply function for supplying hot water made by the hot water supply heat exchanger through the hot water supply passage, and a heat medium in the non-hot water supply side circulation passage. Detected by the non-hot water supply side heating function that heats the heating medium by heating through the hot water supply side heat exchanger, and the hot water supply heat exchanger hot water temperature detection means during non-hot water supply side independent operation in which only hot water supply side operation is performed without hot water supply The hot water temperature of the hot water supply heat exchanger is set to reduce the burner combustion capacity. Non-hot water supply side single operation combustion control that reduces the burner's combustion capacity when the temperature rises above, and increases the burner's combustion capacity when the hot water temperature of the hot water heat exchanger falls below the set temperature that increases the burner combustion capacity A can with two water heaters having a function, provided with a non-hot water supply side temperature detection means for detecting the temperature of the heat medium circulating in the non-hot water supply side circulation passage,Controlled by the non-hot water supply side single operation combustion control functionBurner combustion capacityThe predetermined switching interval timeThe relational data between the information and the flow rate of the heat medium circulating in the non-hot water supply side circulation passage is given in advance corresponding to the temperature of the heat medium circulating in the non-hot water supply side circulation passage. Burner burning capacity detected inThe predetermined switching interval time ofDetecting the flow rate of the heat medium circulating in the non-hot water supply side circulation passage based on the detection information and the temperature of the heat medium in the non-hot water supply side circulation passage detected by the non-hot water supply side temperature detection means during the non-hot water supply side independent operation The hot water supply side circulating flow rate detection means is provided as means for solving the problem.
[0026]
  In addition, the above relational dataOf the predetermined switching interval of the burner combustion capacity atThe information includes the burner combustion capacity decrease control period from the start of burner combustion capacity decrease control during non-hot water supply side independent operation to the start of the next burner combustion capacity increase control.Of the predetermined switching interval of the burner combustion capacity atThe information may be the burner combustion capacity increase control period from the start of the burner combustion capacity increase control after the burner combustion capacity decrease control during the non-hot water supply independent operation to the start of the burner combustion capacity decrease controlMain departureIt has a distinctive structure.
[0027]
  In addition, the above relational dataOf the predetermined switching interval of the burner combustion capacity atThe information is the combustion capacity down period from the start of burner combustion capacity reduction control during the non-hot water supply side independent operation to the start of the next burner combustion capacity reduction control through the burner combustion capacity increase control period, the above relational dataOf the predetermined switching interval of the burner combustion capacity atThe information is the combustion capacity increase period from the start of the burner combustion capacity increase control after the burner combustion capacity decrease control during the non-hot water supply side independent operation to the start of the next burner capacity increase control through the burner combustion capacity decrease control period BookinventionIt has a characteristic configuration.
[0028]
  Further, the circulation flow rate of the heat medium in the non-hot water supply side circulation passage detected by the non-hot water supply side circulation flow detection means after the non-hot water supply side operation command is given is equal to or higher than a predetermined operating flow rate. A non-hot water supply side lamp operating means is provided for informing the non-hot water supply side combustion lamp when it is first confirmed that the operation has been performed until the non-hot water supply side operation is completed.Main departureIt has a distinctive structure.
[0029]
  Further, the non-hot water supply side circulation passage is a reheating circulation passage, the non-hot water supply side heat exchanger is a reheating heat exchanger, the heat medium circulating in the non-hot water supply side circulation passage is hot water, and the operation on the non-hot water supply side is It ’s also a hot spring bathMain departureIt has a distinctive structure.
[0033]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the description of the present embodiment, the same reference numerals are assigned to the same name portions as in the conventional example, and the duplicate description thereof is omitted. One can two water channel hot water heater of the present embodiment is a single can two water bath hot water heater, and has a system configuration substantially the same as that of the single can two water bath hot water heater shown in FIG. In the one can two water bath hot water heater of the example, the hot water heater 36 is configured without providing the flowing water switch 36 in the recirculation circulation passage 24. Further, in the present embodiment, a hot water supply / hot water temperature sensor 33 indicated by a broken line in the figure as hot water supply heat exchanger hot water temperature detecting means is provided in the U-shaped tube of the hot water supply heat exchanger 3, and the control device 40. 1 is provided with a control configuration unique to this embodiment as shown in FIG.
[0034]
As shown in FIG. 1, the control device 40 of the present embodiment includes a reheating combustion forcible start means 46, a combustion control unit 42, a reheating single operation monitoring unit 43, a reheating single operation combustion control unit 45, and data storage. Unit 44, reheating lamp operating means 49, hot water circulation flow rate detecting means 48, and reheating combustion lamp 50 is provided in remote controller 41.
[0035]
The combustion control unit 42 is provided with various operation sequence programs such as hot water supply and reheating, and the combustion control unit 42 captures information from the remote controller 41 and sensor output from the bath temperature sensor 37 and the like. The combustion operation of the water heater is controlled according to the information and the sequence program.
[0036]
The forcible combustion forcible start means 46 drives the circulation pump 20 and gives a burner combustion operation start command to the combustion control unit 42 when a rebirth instruction is given from the remote control 41 or the like, for example. The burner combustion operation is started immediately without detecting the flow of hot water in the circulation passage 24.
[0037]
The reheating independent operation monitoring unit 43 takes in the operation information of the combustion control unit 42, and based on this information, for example, the hot water supply confirmation switch 35 or the water amount sensor 31 detects water flow while detecting the driving of the circulation pump 20. When it is not detected, it is detected that the appliance is in a reciprocal single operation, and in other cases, it is detected that the device is not in a replenishment single operation.
[0038]
  As a reference example,In the data storage unit 44, an off temperature as a set temperature for stopping the burner combustion and an on temperature as a set temperature for restarting the burner combustion are determined and stored. For example, when the off-temperature reaches a predetermined hot water temperature (for example, 90 ° C.) indicating that the staying hot water in the peak temperature region of the hot water supply heat exchanger 3 is close to boiling during the reheating independent operation. This is the hot water temperature detected by the hot water supply hot water temperature sensor 33. The ON temperature is a hot water temperature that is lower than the OFF temperature by a predetermined temperature (for example, 3 ° C.).
[0039]
  The reheating independent operation combustion control unit 45 performs the following operation as the non-hot water supply side independent operation combustion control function. That is, the reheating independent operation combustion control unit 45 detects the sensor output of the hot water supply hot water temperature sensor 33 as the hot water temperature of the hot water supply heat exchanger 3 every moment.The control operation of the reference example using the data stored in the data storage unit 44 will be described as the reference example before describing the control operation of the present embodiment. As the control operation of this reference example,The on- and off-temperatures of the data storage unit 44 and the monitoring information of the reheating independent operation monitoring unit 43 are taken in every moment, the detected hot water supply heat exchanger hot water temperature is compared with the off temperature, and the reheating independent operation is performed. When it is detected that the hot water temperature of the hot water supply heat exchanger 3 is equal to or higher than the off temperature when it is detected based on the monitoring information of the operation monitoring unit 43 that the reheating operation is being performed, the combustion of the burner 2 is stopped. It is determined that it is necessary, and the solenoid valve 10 is closed to stop the combustion of the burner 2.
[0040]
Further, the reheating independent operation combustion control unit 45 outputs a burner combustion stop signal to the combustion control unit 42. The combustion control unit 42 receives the burner combustion stop signal, determines that the combustion stop of the burner 2 has been made by the follow-up single operation control, and that it is not an abnormality of the appliance, and the appliance operation operation such as driving of the circulation pump 20 is performed. To continue. For this reason, the drive of the circulation pump 20 is continued during the stop period of the burner 2 during the above-mentioned reheating independent operation.
[0041]
Further, the reheating independent operation combustion control unit 45 continues the sensor output of the hot water supply hot water temperature sensor 33 and the off temperature and on temperature of the data storage unit 44 even while the combustion of the burner 2 during reheating independent operation is stopped. The hot water temperature of the hot water supply heat exchanger 3 detected by the hot water supply hot water temperature sensor 33 is compared with the ON temperature, and it is determined that the hot water temperature of the hot water supply heat exchanger 3 has dropped below the ON temperature. In this case, it is determined that the combustion of the burner 2 may be resumed, and the ignition of the burner 2 is performed using a spot ignition means (not shown) to resume the combustion of the burner 2.
[0042]
By the way, when the reheating operation is performed, the water pipe of the hot water supply heat exchanger 3 is heated by the combustion flame of the burner 2, and the water in the water pipe of the hot water supply heat exchanger 3 is contacted with the hot water supply heat exchanger 3 as a heat medium. The water pipe of the reheating heat exchanger 4 is heated, and the circulating hot water in the reheating heat exchanger 4 is heated. In other words, the circulating hot water in the reheating heat exchanger 4 is supplied to the hot water heat exchanger 3. The heat of the hot water in the water pipe is taken away, and the temperature rises due to heat absorption from the hot water in the hot water supply heat exchanger 3. Therefore, when the flow rate of the circulating hot water in the reheating heat exchanger 4 is different, the detected hot water temperature data of the hot water supply heat exchanger 3 detected by the hot water supply hot water temperature sensor 33 is different due to the difference in the heat absorption rate. It will be a thing.
[0043]
That is, as the hot water circulation flow rate in the recirculation circulation passage 24 increases, the amount of heat taken by the recirculation hot water in the recirculation circulation passage 24 increases from the hot water on the hot water supply heat exchanger 3 side. When the on / off combustion control of the burner 2 is performed based on the off temperature and the on temperature, the difference in the hot water circulation flow rate in the recirculation circulation passage 24, for example, (a) to (c) in FIG. As shown in FIG. 3, there is a difference in the detected hot water temperature data of the hot water supply heat exchanger 3.
[0044]
In addition, the graph shown to (a) of the same figure shows the detected hot water temperature data of the hot water supply heat exchanger 3 when the hot water circulation flow rate of the recirculation circulation passage 24 is small, and what is shown to (b) of the same figure is The figure shows the detected hot water temperature data of the hot water supply heat exchanger 3 when the hot water circulation flow rate in the recirculation circulation passage 24 is larger than the case of (a) of the same figure, and the graph shown in (c) of FIG. The figure shows the detected hot water temperature data of the hot water supply heat exchanger 3 when the hot water circulation flow rate in the recirculation circulation passage 24 is larger than in the case shown in FIG.
[0045]
As is apparent from these graphs, the burner off time T from the time when the combustion of the burner 2 during the reheating independent operation is stopped to the time when the combustion of the next burner 2 is started is shown.1(T1S, T1M, T1B) Decreases as the hot water circulation flow rate in the recirculation circulation passage 24 increases (T1S> T1M> T1B), Burner on-time T from the time when combustion of the burner 2 is resumed after the combustion of the burner is stopped to the time when combustion of the burner 2 is stopped2(T2S, T2M, T2B) Increases as the hot water circulation flow rate in the recirculation circulation passage 24 increases (T2S<T2M<T2B).
[0046]
In addition, the off cycle T from the time when the burner combustion is stopped during the refueling single operation to the time when the next burner combustion is stopped through the burner ON period.Three(T3S, T3M, T3B) Decreases as the hot water circulation flow rate in the recirculation circulation passage 24 increases (T3S> T3M> T3B), ON period T from the start of burner combustion after the burner combustion stop during the reheating independent operation to the next burner combustion restart through the burner off periodFour (T4S, T4M, T4B) Also decreases as the hot water circulation flow rate in the recirculation circulation passage 24 increases (T4S> T4M> T4B).
[0047]
Further, the amount of heat taken by the circulating hot water in the recirculation circulation passage 24 from the hot water in the hot water supply heat exchanger 3 varies depending on the temperature of the hot water in the recirculation circulation passage 24, and the temperature of the hot water circulating in the recirculation circulation passage 24 becomes higher. Accordingly, the amount of heat taken by the circulating hot water in the recirculation circulation passage from the hot water in the hot water supply heat exchanger 3 is reduced. Therefore, as the temperature of the circulating hot water in the recirculation circulation passage 24 increases, the burner off time T1And the off-period TThree, The on-period TFourBecomes longer and the burner-on time T2 Becomes shorter.
[0048]
  Control action of reference exampleThen, paying attention to the difference in the burner combustion on / off time due to the difference between the hot water circulation flow rate and the hot water temperature of the reheating circulation passage 24 during the reheating independent operation, the burner off time T1, Burner on time T2, Off-period T3, ON cycle T4The data of the relationship between the burner combustion on / off time information such as the flow rate of hot water circulating in the recirculation circulation passage 24 is obtained in advance by experiments or the like corresponding to the temperature of the hot water circulating in the recirculation circulation passage 24 and stored. Stored in the unit 44. This stored data is given by, for example, graph data as shown in FIGS. 2A to 2D, table data, operation data, or the like. In FIG. 2, t1, T2, T3Indicates the hot water temperature of the recirculation circulation passage 24, and t1> T2> T3It is.
[0049]
The hot water circulation flow rate detection means 48 functions as a non-hot water supply side circulation flow rate detection means, and the related data stored in the data storage unit 44 and the burner combustion on / off detection detected during the reheating independent operation. The flow rate of hot water circulating in the recirculation circulation passage 24 is detected based on the information and the hot water temperature of the recirculation circulation passage 24 detected by the bath temperature sensor 37 during the reheating independent operation.
[0050]
The hot water circulation flow rate detecting means 48 receives the ON signal and OFF signal of the burner 2 from the reheating isolated operation combustion control unit 45, and the burner OFF time, burner ON time, OFF during the reheating isolated operation from the ON signal and OFF signal. At least one time of the cycle and the on cycle is detected as burner combustion on / off detection information, while the detected temperature of the bath temperature sensor 37 during the reheating independent operation is taken in as the hot water temperature of the recirculation circulation passage 24. Based on the water temperature, the burner combustion on / off detection information, and the relational data stored in the data storage unit 44, the hot water circulation flow rate in the recirculation circulation passage 24 is detected.
[0051]
For example, the hot water circulation flow rate detecting means 48 determines that the burner off time detected during the reheating independent operation is T in FIG.1aThe detected temperature of the bath temperature sensor 37 at this time is tThreeThe hot water circulation flow rate in the recirculation circulation passage 24 is QThreeAnd the off time is T1aThe temperature detected by the bath temperature sensor 37 is t2The hot water circulation flow rate in the recirculation circulation passage 24 is Q2Is detected. Further, the hot water circulation flow rate detecting means 48 has an on-time detected during the reheating independent operation as shown in FIG.2aAnd the temperature detected by the bath temperature sensor 37 is tThreeThe hot water circulation flow rate in the recirculation circulation passage 24 is QFourIt is judged that.
[0052]
Similarly, the hot water circulation flow rate detecting means 48 is connected to the burner off time in the relational data as shown in FIGS. 2A to 2D and the burner combustion on / off detection information detected during the reheating independent operation. The hot water circulation flow rate in the recirculation circulation passage 24 is detected based on the time information of at least one of the burner on time, the off cycle, and the on cycle, and the detected temperature of the bath temperature sensor 37 during the reheating independent operation. Then, the hot water circulation flow rate detecting means 48 adds this detection result to the reheating lamp operating means 49.
[0053]
The reheating lamp operating means 49 functions as a non-hot water supply side lamp operating means. For example, after the reheating command is given from the remote controller 41, the reheating lamp operating means 49 is detected during the reheating independent operation detected by the hot water circulation flow rate detecting means 48. When it is first confirmed that the hot water circulation flow rate in the water circulation passage is equal to or higher than a predetermined operating flow rate, a reheating notification operation for turning on the reheating combustion lamp 50 is performed, and this renewal notification operation is performed. It is operated until the end of operation.
[0054]
  BookIn the embodiment as well, a hot water supply operation and a hot water filling operation are performed according to the sequence program, as in the proposed hot water heater.
[0055]
Further, in this embodiment, as shown in step 101 of FIG. 4, when the reheating switch of the remote control 41 is turned on and a reheating command is given, in step 102, the reheating combustion forcible start means 46 circulates. The pump 20 is turned on, and a burner combustion start command is added to the combustion control unit 42. In step 103, an ignition trie (burner combustion start) is performed without detecting the flowing water in the recirculation circulation passage 24. Is called. In step 104, the combustion control unit 42 determines whether or not the flame rod electrode provided in the vicinity of the burner 2 is turned on, and the flame rod electrode is turned on and the start of combustion of the burner 2 is confirmed. Until step 103, the ignition try is performed.
[0056]
  When the combustion of the burner 2 is started, the reheating independent operation monitoring unit 43 detects whether or not the water heater is retreating, and during reheating independent operation, the reheating independent operation is performed. By the combustion control unit 45, the above-mentionedReference control operation example (control operation of reference example)Thus, on / off combustion control of the burner 2 is performed based on the off temperature, the on temperature, and the temperature detected by the hot water supply hot water temperature sensor 33. The burner 2 and the ON signal and the OFF signal are also applied to the hot water circulation flow rate detection means 48, and the hot water circulation flow rate detection means 48 detects the burner combustion ON / OFF detection information based on the ON signal and the OFF signal of the burner 2. The hot water temperature of the recirculation circulation passage 24 detected by the bath temperature sensor 37 is taken in, the burner combustion on / off detection information, the hot water temperature of the recirculation circulation passage 24,As a reference exampleThe circulating flow rate of the hot water circulating in the recirculation circulation passage 24 is detected based on the relationship data stored in the data storage unit 44, for example, as shown in FIG.
[0057]
The value of the circulating flow rate is added to the reheating lamp actuating means 49 from moment to moment. In step 105 in FIG. 4, the recirculating ramp operating means 49 sets the recirculation flow rate at a predetermined working flow rate. It is determined whether or not a certain A liter has been reached, and when the circulating flow rate has reached A liter, in step 106, the reheating combustion lamp 50 is turned on and turned on.
[0058]
The lamp is turned on until it is confirmed in step 107 that the reheating combustion operation is completed. When the reheating combustion operation is completed, the reheating combustion lamp 50 is turned off (turned off) in step 108. Is done. Further, when the reheating combustion operation is finished, the driving of the circulation pump 20 is also turned off.
[0059]
On the other hand, when it is determined in step 105 that the circulation flow rate in the reheating circulation passage 24 has not reached A liter, the reheating combustion lamp 50 is kept off as shown in step 109. Then, a determination is made as to whether or not 10 minutes or more have passed since the refueling command was added, and if 10 minutes or longer has elapsed since the refueling command was given, the combustion control unit 42 turns off the circulation pump 20 in step 111. To do.
[0060]
  Reference control operationAccording to the example, the on-off combustion control of the burner 2 is performed by the reheating independent operation combustion control unit 45 during the refueling independent operation, and the burner combustion on / off time information and the recirculation circulation path during the reheating independent operation. 24 is given in advance in correspondence with the hot water temperature circulating in the circulation passage 24, and the hot water circulation flow rate detecting means 48 detects this relationship data and the burner combustion detected during the isolated single operation. Since the flow rate of hot water circulating in the recirculation circulation passage 24 is detected based on the on / off detection information and the hot water temperature in the recirculation circulation passage 24, a flow switch 36, a ball-type water amount sensor, etc. Unlike the case where the hot water is directly provided, the presence or absence of the flow of hot water in the recirculation circulation passage 24 without being affected by dirt such as hair contained in the bathtub hot water and Water circulation flow rate can be accurately detected.
[0061]
  AndReference control operationAccording to the example, in order to accurately detect the presence or absence of hot water flow in the recirculation circulation passage 24 as described above, it is possible to omit the flowing water switch 36 conventionally provided in the single can two water bath hot water heater. By omitting the running water switch 36, the system configuration of the water heater can be simplified correspondingly, and the cost can be reduced.
[0062]
Further, according to the present embodiment, the hot water circulation flow rate in the recirculation circulation passage 24 is accurately detected, and when this flow rate becomes a predetermined operation flow rate, the reheating lamp actuating means 49 performs the reheating combustion. By turning on the lamp 50, the reheating combustion lamp 50 is turned on only when the hot water circulation flow rate in the reheating circulation passage 24 is equal to or higher than the operating flow rate and the reheating combustion operation is performed, and the reheating combustion is performed. It is possible to notify the user of the water heater that the operation is being performed.
[0063]
  Furthermore, according to the present embodiment example,This is accurately detected by the operation of the reheating isolated operation combustion control unit 45 in the embodiment described later.Hot water circulation flow in the recirculation circulation passage 24To quantityBased on this, the heat absorption ratio between the reheating heat exchanger 4 side and the hot water supply heat exchanger 3 side is obtained, and combustion control at the time of simultaneous combustion of reheating and hot water supply can also be accurately performed.
[0064]
In addition, this invention is not limited to the said embodiment example, Various aspects can be taken. For example, in the above embodiment, the reheating lamp actuating means 49 turns on the reheating combustion lamp 50 as the reheating notification operation of the reheating combustion lamp 50. However, as the reheating notification operation, the reheating combustion operation is performed. The lamp 50 may be blinked, and the chasing notification operation is appropriately set. Further, the reheating lamp actuating means 49 can be omitted.
[0065]
  In the above embodiment, the flowing water switch 36 is omitted. However, the flowing water switch 36 is provided in the recirculation circulation passage 24 to form a hot water heater, and the flow of hot water in the recirculation circulation passage 24 is constituted by the flow water switch 36. DetectYou may make it do. In this case, as explained in the reference control operation exampleThe hot water circulation flow rate detection means 48, AddThe hot water circulation flow rate in the fired circulation passage 24 may be detected.
[0066]
Further, in the above embodiment, when the reheating instruction is given, the circulation pump 20 is directly driven by the reheating combustion forcing start means 46. A pump drive command may be added to the engine, and the circulation controller 20 may be driven by the combustion control unit 42 in accordance with this command.
[0067]
Further, in the above embodiment, the reheating combustion forced start means 46 is provided, and when the reheating instruction is applied from the remote controller 41, the circulation pump 20 is driven and the flow of the reheating circulation passage 24 is not detected. Although the burner combustion operation is immediately started, the forced combustion forced start means 46 can be omitted.
[0068]
Further, in the above-described embodiment, the hot water supply / hot water temperature sensor 33 is provided in the U-shaped tube of the hot water supply heat exchanger 3, but as shown by the chain line in FIG. You may make it provide.
[0069]
Further, in the above embodiment, the hot water temperature of the hot water supply heat exchanger 3 is detected directly from the hot water supply hot water temperature sensor 33, but the hot water temperature of the hot water supply heat exchanger 3 is indirectly based on the exhaust gas temperature. Therefore, the relationship data between the exhaust temperature and the hot water temperature of the hot water supply heat exchanger 3 is obtained in advance through experiments and calculations, and the hot water supply heat exchanger is determined according to the relationship data and the exhaust temperature. The hot water supply heat exchanger hot water temperature detecting means for indirectly detecting the hot water temperature 3 may be provided. More preferably, the hot water temperature of the hot water supply heat exchanger detected based on the relational data and the exhaust gas temperature is set as the hot water temperature in the recirculation circulation path detected by the bath temperature sensor 37, the predetermined recirculation hot water volume or the hot water supply temperature. By correcting in consideration, it is possible to detect the hot water temperature of the hot water supply heat exchanger 3 more accurately.
[0070]
  UpRecordReference control operationIn the example, the reheating independent operation combustion control unit 45 combusts the burner 2 when the hot water temperature of the hot water supply heat exchanger 3 detected by the hot water supply hot water temperature sensor 33 becomes higher than the off temperature during the reheating independent operation. , And the combustion of the burner 2 is resumed when the hot water temperature of the hot water supply heat exchanger 3 falls below the on temperature.In this embodiment example,When the hot water temperature of the hot water supply heat exchanger 3 becomes equal to or higher than a set temperature at which the burner combustion capacity is reduced, the reheating independent operation combustion control unit 45 decreases the combustion capacity of the burner 2 and the hot water temperature of the hot water supply heat exchanger 3. When the temperature falls below the set temperature that increases the burner combustion capacity, increase the burner 2 combustion capacity.The
[0071]
In this case, the hot water heater is preliminarily given relational data between the burner combustion capacity control information during the reheating independent operation and the flow rate of the hot water circulating in the recirculation circulation passage 24 corresponding to the hot water temperature in the recirculation circulation passage 24. The hot water circulation flow rate detecting means 48 detects the relationship data, the burner combustion capacity control information detected during the reheating independent operation, and the hot water temperature of the recirculation circulation passage 24 detected by the bath temperature sensor 37 during the reheating independent operation. Based on the above, the circulating flow rate of the hot water circulating in the recirculation circulation passage 24 is detected.
[0072]
  In this embodiment exampleThus, the hot water circulation flow rate detecting means 48 detects the hot water circulation flow rate of the recirculation circulation passage 24 in this way.BecauseFor example, the burner combustion capacity control information in the relational data may be the following information. In other words, the burner combustion capacity control information is the burner combustion capacity decrease control period from the start of the burner combustion capacity decrease control during the follow-up single operation to the start of the next burner combustion capacity increase control, or the burner combustion capacity control information of the related data Can be a burner combustion capacity increase control period from the start of the burner combustion capacity increase control after the burner combustion capacity decrease control during the chasing single operation to the start of the burner combustion capacity decrease control.
[0073]
Also, the burner combustion capacity control information in the above-mentioned relational data is the capacity down period from the start of the burner combustion capacity decrease control during the follow-up single operation to the start of the next burner combustion capacity decrease control through the burner combustion capacity increase control period. The burner combustion capacity control information of the related data is the start of the next burner combustion capacity increase control through the burner combustion capacity decrease period from the start of the burner combustion capacity decrease after the burner combustion capacity decrease period during the follow-up single operation. It is good also as a combustion capacity up period until time.
[0074]
  the aboveThe embodiment has been described by taking the single-can two-water bath water heater shown in FIG. 5 as an example, but it is a single-can two-water channel type and is provided with a hot water supply heat exchanger hot water temperature detection means for detecting the hot water temperature of the hot water heat exchanger. The present invention can be applied to any one can two water channel bath water heater having a hot water supply function and a reheating function.
[0075]
Furthermore, the present invention is not necessarily applied only to the single can two water bath hot water heater as in the above-described embodiment example. For example, hot water heating heat such as a hot water heater shown in FIGS. It has a non-hot water supply side heat exchanger or the like that heats a heat medium circulating in the non-hot water supply side circulation passage that is incorporated in the non-hot water supply side circulation passage provided with the exchanger 3 and the circulation pump 20. A side heat exchanger is integrated, and a burner for heating the hot water supply heat exchanger and the non-hot water supply side heat exchanger in common is provided, and various cans and two water channels having a hot water supply operation function and a non-hot water supply side heat exchanger. It is widely applied to water heaters.
[0076]
In addition, when this invention is applied to a heating water heater as shown in FIG. 7, there exists the following merit. For example, when all the radiators 53a, 53b, 53c in the figure are not in operation, the heating on / off valves 52a, 52b, 52c are all closed, so that the heat medium passing through the heating circulation passage 51 is bypassed. Only the passage 56 flows. Therefore, the circulation flow rate of the heat medium passing through the heating circulation passage 51 is small. On the other hand, when all the radiators 53a, 53b, 53c are in operation, the circulation flow rate of the heat medium passing through the heating circulation passage 51 is the largest. Therefore, based on the detected flow rate of the circulating flow rate detecting means on the non-hot water supply side, the radiator 53 is not operated when the circulating flow rate of the heating circulation passage 51 is 5 liters, for example. It is possible to know the number of the radiators 53 that are in operation, such as when the radiator 53 is in operation and three radiators 53 are in operation at 20 liters.
[0077]
Further, as described above, since the number of operating radiators 53 is known, the operating capacity of the radiator 53 is known from the amount of combustion heat and the temperature information of the hot water supply hot water temperature sensor 33. For example, although only one radiator 53 is operated, it is possible to know that the capacity is operating with the maximum fan, or that three fans are operating but all three have low fan capacity.
[0078]
Furthermore, in both hot water heaters and bath water heaters, the length of the piping of the non-hot water supply side circulation passages is not known until after the construction, but according to the present invention, the result of detecting the circulation flow rate of the heat medium in the non-hot water supply side circulation passages and When the flow rate of the heat medium calculated from the known pipe diameter of the non-hot water supply side circulation passage is 2 m / s or more, for example, and it is judged that there is a risk of erosion / corrosion, the capacity of the circulation pump is reduced. It is possible to take measures such as dropping the heat medium flow rate in the non-hot water supply side circulation passage.
[0079]
In addition, for example, in a bath water heater, when the clogging of the circulating metal fittings occurs, the circulation flow rate in the recirculation circulation passage changes (decreases), so you know the status of the clogging of the circulating metal fittings depending on the change. Can be notified to the user.
[0081]
【The invention's effect】
  BookAccording to the invention, when the hot water temperature of the hot water supply heat exchanger operating independently on the non-hot water supply side becomes a set temperature that lowers the burner combustion capacity, the burner combustion capacity is reduced by the non-hot water supply side single operation combustion control function, When the hot water temperature of the hot water supply heat exchanger reaches a set temperature that increases the burner combustion capacity, the burner combustion capacity is increased, and the burner combustion capacity detected during this non-hot water supply side single operationThe predetermined switching interval timeInformation and burner combustion capacity during non-hot water supply side operation given in advanceThe predetermined switching interval time ofThe relationship between the information and the flow rate of the heat medium in the non-hot water supply side circulation passage corresponding to the non-hot water supply side circulation passage heat medium temperature,detectionSince non-hot water supply side circulation flow rate detecting means for detecting the flow rate of the heat medium circulating in the non-hot water supply side circulation passage is provided based on the temperature., NonThe presence or absence of the heat medium in the non-hot water supply side circulation passage and the circulation flow rate can be accurately detected without being influenced by dust in the heat medium in the hot water supply side circulation passage.
[0082]
Therefore, according to the present invention, in a single can two-water heater, it is possible to omit flow detection means such as a flowing water switch that has been conventionally provided in the non-hot water supply side circulation passage, and the hot water heater system accordingly. The configuration can be simplified and the cost can be reduced.
[0083]
Further, according to the present invention, as described above, since the flow rate of the heat medium circulating in the non-hot water supply side circulation passage can be accurately detected, for example, based on the detected flow rate, the non-hot water supply side heat exchanger It is possible to accurately determine the heat absorption ratio between the hot water supply side and the hot water supply heat exchanger side, and based on the obtained heat absorption ratio, it is possible to accurately perform the combustion control during the simultaneous combustion of the non-hot water supply side combustion and the hot water supply combustion. it can.
[0084]
Further, the circulation flow rate of the heat medium in the non-hot water supply side circulation passage detected by the non-hot water supply side circulating flow rate detecting means after the non-hot water supply side command is given becomes equal to or higher than a predetermined operating flow rate. According to the present invention, there is provided a non-hot water supply side lamp operating means for informing the non-hot water supply side combustion lamp when the first confirmation is made and operating the notification operation until the end of the non-hot water supply side operation. Based on the accurate circulation flow rate of the heat medium in the non-hot water supply side circulation passage detected by the circulation flow rate detection means, firstly confirms that the flow rate is equal to or higher than the operation flow rate, and then performs a notification operation for the non-hot water supply side combustion lamp. Therefore, when the circulating flow rate of the heat medium in the non-hot water supply side circulation passage is reliably set to the operating flow rate and the non-hot water supply side combustion operation is performed, the non-hot water supply side combustion lamp is informed to notify the user of the hot water heater Non-hot water supply side It is possible to notify that it is in the baking operation.
[0085]
Further, the non-hot water supply side circulation passage is a reheating circulation passage, the non-hot water supply side heat exchanger is a reheating heat exchanger, the heat medium circulating in the non-hot water supply side circulation passage is hot water, and the operation on the non-hot water supply side is a bath. According to the present invention in which the reheating operation is performed, it is possible to provide a one-can two-water bath water heater that exhibits the above-described excellent effects.
[Brief description of the drawings]
FIG. 1 is a block diagram showing a control configuration of an embodiment of a single can and two water heater according to the present invention.
FIG. 2 is a relation data between burner combustion on / off time information during a single reheating operation and a hot water circulation flow rate in a recirculation circulation path, which is given to the single can two-way water heater in the embodiment.As a reference exampleIt is a graph to show.
[Fig. 3] In a can and two water bath hot water heater, control is performed to stop burner combustion when the hot water temperature of the hot water heat exchanger becomes higher than or equal to the off temperature, and to resume burner combustion when the temperature becomes lower than or equal to the on temperature. It is a graph which shows the difference in the hot water temperature fluctuation | variation of the hot water supply heat exchanger by the difference in the hot water circulation flow rate of the recirculation circulation path when it went.
FIG. 4 is a flowchart of a reheating independent operation in the single can two-way water heater of the embodiment.
FIG. 5 is a system configuration diagram showing a model example of a single can / two water bath hot water heater.
FIG. 6 is a system diagram showing a main configuration of a model example of a hot water heater.
FIG. 7 is a system diagram showing a main configuration of another example of the hot water heater.
[Explanation of symbols]
3 Hot water supply heat exchanger
24 Recirculation passage
33 Hot water hot water temperature sensor
37 Bath temperature sensor
44 Data storage
45 Reheating single combustion control unit
48 Hot water circulation flow rate detection means
49 Reheating lamp operating means

Claims (7)

給水通路から導かれた水を加熱し給湯通路に湯を給湯する給湯熱交換器と、給湯熱交換器の湯温を検出する給湯熱交換器湯温検出手段と、非給湯側循環通路に組み込まれ上記非給湯側循環通路を循環する熱媒体を加熱する非給湯側熱交換器とを有し、上記給湯熱交換器と非給湯側熱交換器は一体化され、上記給湯熱交換器と非給湯側熱交換器を共通に加熱するバーナーが設けられ、上記給湯熱交換器で作られた湯を給湯通路を通して供給する給湯機能と、熱媒体を上記非給湯側循環通路の非給湯側熱交換器を通して加熱し熱媒体の加熱を行う非給湯側加熱機能と、給湯が行われず非給湯側運転のみを行う非給湯側単独運転中に上記給湯熱交換器湯温検出手段により検出される給湯熱交換器の湯温がバーナー燃焼能力を低下させる設定温度以上になったときにはバーナーの燃焼能力を低下させ、上記給湯熱交換器の湯温がバーナー燃焼能力を増加させる設定温度以下になったときにはバーナーの燃焼能力を増加させる非給湯側単独運転燃焼制御機能とを備えた一缶二水路給湯器であって、上記非給湯側循環通路を循環する熱媒体の温度を検出する非給湯側温度検出手段が設けられており、前記非給湯側単独運転燃焼制御機能によって制御されるバーナー燃焼能力の予め定めた切り換え区間の時間情報と非給湯側循環通路を循環する熱媒体の流量との関係データが非給湯側循環通路を循環する熱媒体の温度に対応させて予め与えられており、該関係データと非給湯側単独運転中に検出されるバーナー燃焼能力の前記予め定めた切り換え区間の時間検出情報と非給湯側単独運転中の上記非給湯側温度検出手段により検出される非給湯側循環通路の熱媒体の温度に基づいて非給湯側循環通路を循環する熱媒体の流量を検出する非給湯側循環流量検出手段が設けられていることを特徴とする一缶二水路給湯器。Built into a hot water supply heat exchanger that heats water guided from the water supply passage and supplies hot water to the hot water supply passage, a hot water supply heat exchanger that detects the hot water temperature of the hot water heat exchanger, and a non-hot water supply side circulation passage A non-hot water supply side heat exchanger that heats the heat medium circulating in the non-hot water supply side circulation passage, and the hot water supply heat exchanger and the non-hot water supply side heat exchanger are integrated with each other. A hot water supply function for supplying hot water produced by the hot water supply heat exchanger through the hot water supply passage and a non-hot water supply side heat exchange of the non-hot water supply side circulation passage are provided with a burner for heating the hot water supply side heat exchanger in common. Non-hot water supply side heating function that heats the heating medium by heating through a heater, and hot water supply heat detected by the hot water supply heat exchanger hot water temperature detection means during non-hot water supply side single operation in which no hot water supply is performed and only non-hot water supply side operation is performed The hot water temperature of the exchanger exceeds the set temperature that reduces the burner combustion capacity The combustion capacity of the burner is reduced, and when the hot water temperature of the hot water supply heat exchanger becomes lower than the set temperature for increasing the burner combustion capacity, the non-hot water supply side independent combustion control function for increasing the combustion capacity of the burner is provided. 1 can two water channel hot water heater provided with non-hot water supply side temperature detection means for detecting the temperature of the heat medium circulating in the non-hot water supply side circulation passage, and by the non -hot water supply side single operation combustion control function The relational data between the time information of the predetermined switching section of the burner combustion capacity to be controlled and the flow rate of the heat medium circulating in the non-hot water supply side circulation passage correspond to the temperature of the heat medium circulating in the non-hot water supply side circulation passage in advance. given and, the relationship between the data and the non-hot water supply side alone of the predetermined switching period of operation burner firing capacity detected during time detection information and the non-hot-water supply side alone during operation of the non Non-hot water supply side circulation flow rate detecting means for detecting the flow rate of the heat medium circulating in the non-hot water supply side circulation passage based on the temperature of the heat medium in the non-hot water supply side circulation passage detected by the hot water side temperature detection means is provided. A can of two water heaters. 関係データにおけるバーナー燃焼能力の予め定めた切り換え区間の時間情報は非給湯側単独運転中のバーナー燃焼能力低下制御開始時から次回のバーナー燃焼能力増加制御開始時までのバーナー燃焼能力低下制御期間としたことを特徴とする請求項記載の一缶二水路給湯器。 The time information of the predetermined switching section of the burner combustion capacity in the relational data is the burner combustion capacity decrease control period from the start of the burner combustion capacity decrease control during the non-hot water supply side single operation to the start of the next burner combustion capacity increase control. The single can two-way water heater according to claim 1 . 関係データにおけるバーナー燃焼能力の予め定めた切り換え区間の時間情報は非給湯側単独運転中のバーナー燃焼能力低下制御以降のバーナー燃焼能力増加制御開始時からバーナー燃焼能力低下制御開始時までのバーナー燃焼能力増加制御期間としたことを特徴とする請求項記載の一缶二水路給湯器。 The time information of the predetermined switching interval of the burner combustion capacity in the relational data is the burner combustion capacity from the start of the burner combustion capacity increase control after the burner combustion capacity decrease control during the non-hot water supply independent operation until the start of the burner combustion capacity decrease control a can two waterways water heater according to claim 1, characterized in that an increase control period. 関係データにおけるバーナー燃焼能力の予め定めた切り換え区間の時間情報は非給湯側単独運転中のバーナー燃焼能力低下制御開始時からバーナー燃焼能力増加制御期間を介して次回のバーナー燃焼能力低下制御開始時までの燃焼能力ダウン周期としたことを特徴とする請求項記載の一缶二水路給湯器。 The time information of the predetermined switching section of the burner combustion capacity in the relational data is from the start of the burner combustion capacity decrease control during the non-hot water supply side single operation to the start of the next burner combustion capacity decrease control through the burner combustion capacity increase control period a can two waterways water heater according to claim 1, characterized in that of a combustion capability down period. 関係データにおけるバーナー燃焼能力の予め定めた切り換え区間の時間情報は非給湯側単独運転中のバーナー燃焼能力低下制御以降のバーナー燃焼能力増加制御開始時からバーナー燃焼能力低下制御期間を介して次回のバーナー能力増加制御開始時までの燃焼能力アップ周期としたことを特徴とする請求項記載の一缶二水路給湯器。 The time information of the predetermined switching interval of the burner combustion capacity in the related data is the next burner through the burner combustion capacity decrease control period from the start of the burner combustion capacity increase control after the burner combustion capacity decrease control during the non-hot water supply alone operation. a can two waterways water heater according to claim 1, characterized in that a combustion capacity up period of until the capacity increase control start. 非給湯側運転指令が与えられてから非給湯側循環流量検出手段によって検出される非給湯側単独運転中における非給湯側循環通路の熱媒体の循環流量が予め定められた作動流量以上となったことを最初に確認したときに非給湯側燃焼ランプを報知動作させて該報知動作を非給湯側運転終了まで動作させる非給湯側ランプ作動手段を設けたことを特徴とする請求項1乃至請求項のいずれか1つに記載の一缶二水路給湯器。The circulation flow rate of the heat medium in the non-hot water supply side circulation passage detected by the non-hot water supply side circulating flow rate detecting means after the non-hot water supply side operation command is given becomes equal to or higher than a predetermined operating flow rate. A non-hot-water supply side lamp operating means is provided for informing the non-hot-water supply side combustion lamp when it is confirmed for the first time and operating the notification operation until the end of the non-hot-water supply side operation. 5. One can two water heater as described in any one of 5 ; 非給湯側循環通路は追い焚き循環通路とし、非給湯側熱交換器は追い焚き熱交換器とし、上記非給湯側循環通路を循環する熱媒体は湯水とし、非給湯側の運転は風呂の追い焚き運転としたことを特徴とする請求項1乃至請求項のいずれか1つに記載の一缶二水路給湯器。The non-hot water supply side circulation passage is a reheating circulation passage, the non-hot water supply side heat exchanger is a reheating heat exchanger, the heat medium circulating through the non-hot water supply side circulation passage is hot water, and the non-hot water supply side operation is a bath retreat. The canned two-way water heater according to any one of claims 1 to 6 , wherein the watering operation is performed.
JP35629297A 1997-12-09 1997-12-09 One can two water heater Expired - Fee Related JP3854398B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35629297A JP3854398B2 (en) 1997-12-09 1997-12-09 One can two water heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35629297A JP3854398B2 (en) 1997-12-09 1997-12-09 One can two water heater

Publications (2)

Publication Number Publication Date
JPH11173664A JPH11173664A (en) 1999-07-02
JP3854398B2 true JP3854398B2 (en) 2006-12-06

Family

ID=18448308

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35629297A Expired - Fee Related JP3854398B2 (en) 1997-12-09 1997-12-09 One can two water heater

Country Status (1)

Country Link
JP (1) JP3854398B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5326650B2 (en) * 2009-02-25 2013-10-30 株式会社ノーリツ Heating control device
JP5734677B2 (en) * 2011-01-21 2015-06-17 株式会社ガスター One can two water bath water heater

Also Published As

Publication number Publication date
JPH11173664A (en) 1999-07-02

Similar Documents

Publication Publication Date Title
EP2933576B1 (en) Hot water-centered combined hot water and heating boiler
JP4253006B2 (en) Circulating water heater
KR100279885B1 (en) Circulating Pump Control Method of Gas Boiler According to Circulating Flow Rate and Flow Rate
JP3854398B2 (en) One can two water heater
KR101835269B1 (en) Hybrid boiler for low-carbon and Eco-friendly, and the control method thereof
JP3754537B2 (en) One can two water heater
JP3798134B2 (en) One can two water heater
JP3822721B2 (en) One can two water bath hot water heater
JP3848728B2 (en) One can two water bath hot water heater
JP3778678B2 (en) One can two water heater
JP3834405B2 (en) One can two water heater
JP3834406B2 (en) One can two water heater
JP3872876B2 (en) One can two water heater
CN110671811A (en) Gas water heater and control method thereof
KR20000032723A (en) Method for sensing disorder of three-way valve of gas boiler
JP3926909B2 (en) One can two water heater
KR20000041752A (en) Method for controlling pump according to state of system in gas boiler
JP3859846B2 (en) One can two water heater
JP3834423B2 (en) One can multi-channel combustion equipment
JP3859829B2 (en) One can two water bath hot water heater
JP3862811B2 (en) One can two water bath hot water heater
JP3811559B2 (en) Bath equipment
JP3748681B2 (en) One can two water bath hot water heater
KR20110133074A (en) Boiler system and circulation pump control controller with electric heater and oil and gas burner
JPH11101503A (en) One boiler two water passage water heater

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040507

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060207

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060410

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060822

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060908

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100915

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees