JP3852230B2 - In-cylinder injection spark ignition engine - Google Patents
In-cylinder injection spark ignition engine Download PDFInfo
- Publication number
- JP3852230B2 JP3852230B2 JP35344098A JP35344098A JP3852230B2 JP 3852230 B2 JP3852230 B2 JP 3852230B2 JP 35344098 A JP35344098 A JP 35344098A JP 35344098 A JP35344098 A JP 35344098A JP 3852230 B2 JP3852230 B2 JP 3852230B2
- Authority
- JP
- Japan
- Prior art keywords
- injection
- pressurized air
- fuel
- during
- period
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000002347 injection Methods 0.000 claims description 202
- 239000007924 injection Substances 0.000 claims description 202
- 238000002485 combustion reaction Methods 0.000 claims description 160
- 239000000446 fuel Substances 0.000 claims description 129
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 39
- 230000006835 compression Effects 0.000 claims description 38
- 238000007906 compression Methods 0.000 claims description 38
- 239000012530 fluid Substances 0.000 claims description 7
- 230000007423 decrease Effects 0.000 claims description 3
- 239000003921 oil Substances 0.000 description 41
- 239000000203 mixture Substances 0.000 description 30
- 238000010586 diagram Methods 0.000 description 10
- 238000013517 stratification Methods 0.000 description 10
- 230000000694 effects Effects 0.000 description 9
- 230000008859 change Effects 0.000 description 8
- 239000007788 liquid Substances 0.000 description 7
- 238000009834 vaporization Methods 0.000 description 7
- 230000008016 vaporization Effects 0.000 description 7
- 230000015572 biosynthetic process Effects 0.000 description 6
- 238000001514 detection method Methods 0.000 description 5
- 239000010763 heavy fuel oil Substances 0.000 description 4
- 230000001965 increasing effect Effects 0.000 description 4
- 238000007664 blowing Methods 0.000 description 3
- 239000000779 smoke Substances 0.000 description 3
- 230000009471 action Effects 0.000 description 2
- 238000000889 atomisation Methods 0.000 description 2
- 230000002708 enhancing effect Effects 0.000 description 2
- 239000008240 homogeneous mixture Substances 0.000 description 2
- 238000000265 homogenisation Methods 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 239000007921 spray Substances 0.000 description 2
- 238000009825 accumulation Methods 0.000 description 1
- 230000002238 attenuated effect Effects 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000010705 motor oil Substances 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B75/00—Other engines
- F02B75/12—Other methods of operation
- F02B2075/125—Direct injection in the combustion chamber for spark ignition engines, i.e. not in pre-combustion chamber
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/12—Improving ICE efficiencies
Landscapes
- Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
- Combustion Methods Of Internal-Combustion Engines (AREA)
- Fuel-Injection Apparatus (AREA)
- Output Control And Ontrol Of Special Type Engine (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は筒内噴射式火花点火機関に関する。
【0002】
【従来の技術】
燃焼室に直接燃料を噴射する燃料噴射弁と、点火プラグとを備えて、機関の低負荷域で圧縮行程中に燃料を噴射させて成層燃焼を行わせる一方、機関の高負荷域では吸気行程中に燃料を噴射させて均質燃焼を行わせるようにした筒内噴射式火花点火機関では、前述の成層燃焼を成立させるためには、吸入行程で燃焼室内に吸入空気に強力な筒内流動を付与することが不可欠となる。
【0003】
そこで、一般には吸気ポートをヘリカルポート構造としたり、あるいは吸気ポートに旋回流強化手段を設けて、吸気行程で吸気に強い旋回流を付与するようにしている。
【0004】
【発明が解決しようとする課題】
吸気行程で吸気に強い旋回流を付与したとしても、圧縮行程では圧縮作用で筒内流動が減衰されてしまうことは否めない。
【0005】
一方、特開平5−180123号公報には、燃料と加圧エアとを供給する2流体式の燃料噴射弁を用いて、機関の特定運転域では加圧エアを増量するようにした燃料供給システムが開示されており、そこで、この2流体式の燃料噴射弁を用いて加圧エアにより筒内流動を強化させることが考えられるが、単純に加圧エアを筒内流動強化手段に用いても、加圧エアによる燃料の微粒化,気化促進作用と燃料の拡散作用とで却って成層燃焼が不安定になってしまう可能性がある。
【0006】
そこで、本発明は燃料噴射弁として前述の2流体式の燃料噴射弁を採用し、成層燃焼運転および均質燃焼運転の何れの運転時にあっても、運転条件に合わせて加圧エアの供給を細かく制御できて各運転条件に最適な筒内流動を得ることができて、燃焼の安定化と機関出力の向上および排気エミッションの向上とを実現できる筒内噴射式火花点火機関を提供するものである。
【0007】
【課題を解決するための手段】
請求項1の発明にあっては、燃焼室に直接燃料を噴射する燃料噴射弁と、点火プラグとを備え、低負荷域で圧縮行程中に燃料を噴射させて成層燃焼を行わせると共に、高負荷域で吸気行程中に燃料を噴射させて均質燃焼を行わせるようにした筒内噴射式火花点火機関において、前記燃料噴射弁として燃料と加圧エアとを個別に噴射可能な2流体式の燃料噴射弁を用いると共に、成層燃焼運転時および均質燃焼運転時に、機関の運転条件に応じて該燃料噴射弁の加圧エアの噴射時期および噴射期間を可変制御する噴射時期・期間可変手段を設け、成層燃焼運転時に、機関回転数が低くなるほど加圧エアの噴射期間を長くすることを特徴としている。
【0008】
請求項2の発明にあっては、請求項1に記載の噴射時期・期間可変手段が、成層燃焼運転時に、機関回転数,負荷,および油水温に応じて、加圧エアの噴射時期と噴射期間とを変化させるものであることを特徴としている。
【0010】
請求項3の発明にあっては、請求項2に記載の噴射時期・期間可変手段が、成層燃焼運転時に、機関負荷が増大するほど加圧エアの噴射期間を長くするものであることを特徴としている。
【0011】
請求項4の発明にあっては、請求項2,3に記載の噴射時期・期間可変手段が、成層燃焼運転時に、油水温が低いほど加圧エアの噴射期間を長くするものであることを特徴としている。
【0012】
請求項5の発明にあっては、請求項1〜4に記載の噴射時期・期間可変手段は、その加圧エア噴射終了時期が燃料噴射終了時期よりも後に設定されていることを特徴している。
【0013】
請求項6の発明にあっては、請求項5に記載の噴射時期・期間可変手段は、成層燃焼運転時に、油水温が低いほど燃料噴射終了時期から加圧エア噴射終了時期までの期間を長くするものであることを特徴としている。
【0014】
請求項7の発明にあっては、請求項1〜6に記載の噴射時期・期間可変手段が、均質燃焼運転時に、圧縮行程中には燃焼室内に加圧エアのみを噴射させるものであることを特徴としている。
【0015】
請求項8の発明にあっては、請求項7に記載の噴射時期・期間可変手段が、均質燃焼運転時に、機関回転数,負荷,および油水温に応じて、圧縮行程中の燃焼室内への加圧エア噴射期間を変化させるものであることを特徴としている。
【0016】
請求項9の発明にあっては、請求項8に記載の噴射時期・期間可変手段が、均質燃焼運転時に、機関負荷が増大するほど加圧エア噴射期間を長くするものであることを特徴としている。
【0017】
【発明の効果】
請求項1に記載の発明によれば、燃料噴射弁として燃料と加圧エアとを噴射可能な2流体式の燃料噴射弁を用いて、成層燃焼運転時および均質燃焼運転時に、それぞれ機関の運転条件に応じて該燃料噴射弁の加圧エアの噴射時期および噴射期間を可変制御するようにしてあるため、成層燃焼運転時には運転条件に応じた加圧エアの噴射時期と噴射期間の制御によって、全ての運転条件下で最適な燃焼をもたらす筒内流動を積極的に作り出すことができ、燃焼を安定化させて燃焼効率を向上できると共に、燃料消費率および排気性状を改善することができる。
特に、成層燃焼運転時でも機関回転数が低い場合には、吸気行程で生成される筒内流動が弱く、良好な混合気形成と点火プラグ周りへの混合気の輸送作用とが不十分となってしまうが、機関回転数が低くなるほど加圧エアの噴射期間が長くなるように制御されるため、機関回転数の低い運転時にあっても混合気の成層化と輸送性に適切な強い筒内流動が得られて安定した成層燃焼を行わせることができる。
他方、機関回転数が高い場合には、吸気行程で生成される筒内流動で良好な混合気形成と、点火プラグ周りへの混合気の良好な輸送性とが得られるが、この機関回転数が高い場合には前述とは逆に加圧エアの噴射期間が短くされるため、混合気の成層化を阻害しない適切な筒内流動とすることができる。
【0018】
また、均質燃焼運転時にも前記成層燃焼運転時と同様に、全ての運転条件下で最適な燃焼をもたらす筒内流動を積極的に作り出すことができるため、筒内混合気の均質化がより一層促進されて機関出力の向上と排気性状の改善とを実現することができる。
【0019】
請求項2に記載の発明によれば、請求項1の発明の効果に加えて、成層燃焼運転時に、運転条件を表す主要なパラメータである機関回転数,負荷,および油水温の検出信号に基づいて加圧エアの噴射時期と噴射期間とを、運転条件に合わせて細かく適切に可変制御することができて、より一層安定した成層燃焼を行わせることができる。
【0022】
請求項3に記載の発明によれば、請求項2の発明の効果に加えて、通常、成層燃焼運転時でも機関負荷が高い場合には、圧縮行程で燃焼室内に噴射される燃料量が多く、吸気行程で生成される筒内流動だけでは良好な混合気形成が不十分となってしまうが、機関負荷が増大するほど加圧エアの噴射期間が長くなるように制御されるため、機関負荷が高い運転時にあっても混合気の成層化に適切な強い筒内流動が得られて安定した成層燃焼を行わせることができる。
【0023】
他方、機関負荷が低い場合には、圧縮行程で燃焼室内に噴射される燃料量が少なく、吸気行程で生成される筒内流動で良好な混合気形成が行われるが、この機関負荷が低い場合には前述とは逆に加圧エアの噴射期間が短くされるので、混合気の成層化を阻害しない適切な筒内流動とすることができる。
【0024】
請求項4に記載の発明によれば、請求項2,3の発明の効果に加えて、成層燃焼運転時でも油水温の低い場合、即ち、機関の冷機時には、圧縮行程で燃焼室内へ燃料が噴射されてピストン冠面に液膜となって付着する燃料の気化が困難となって、燃焼の不安定化および未燃HC,スモークの発生やデポジットの堆積が問題となるが、油水温が低いほど加圧エアの噴射期間が長くなるように制御されるため、筒内流動が強化されて前記付着分の燃料の気化を促進させることができて、成層燃焼の安定化と排気性状の改善とを行わせることができる。
【0025】
他方、油水温が十分に高まって暖機完了状態になると、前述とは逆に加圧エアの噴射期間が短くされるので、混合気の成層化を阻害しない適切な筒内流動とすることができる。
【0026】
請求項5に記載の発明によれば、請求項1〜4の発明の効果に加えて、加圧エアの噴射終了時期が燃料の噴射終了時期よりも後となるため、特に成層燃焼運転時に燃料噴射弁のノズル孔内に残る燃料液膜を加圧エアの噴射によって吹き飛ばして、該ノズル孔内および出口付近を常にきれいに保つことができ、ノズル先端のデポジット付着を回避して燃料の噴霧形状を安定化させ、機関の安定性を向上することができる。
【0027】
請求項6に記載の発明によれば、請求項5の発明の効果に加えて、成層燃焼運転時でも油水温が低い機関の冷機時には、圧縮行程で燃焼室内へ燃料が噴射されてピストン冠面に液膜となって付着する燃料の気化が困難となって、燃焼の不安定化および未燃HC,スモークの発生やデポジットの堆積が問題となるが、油水温が低いほど燃料噴射終了時期から加圧エア噴射終了時期までの期間が長くなるため、前記付着分の燃料の気化を促進させることができて、成層燃焼の安定化と排気性状の改善とを行わせることができる。
【0028】
他方、油水温が十分に高まって暖機完了状態になると、前述とは逆に燃料噴射終了時期から加圧エア噴射終了時期までの期間が短くされるので、混合気の成層化を阻害しない適切な筒内流動とすることができる。
【0029】
請求項7に記載の発明によれば、請求項1〜6の発明の効果に加えて、均質燃焼運転時に、圧縮行程中には燃焼室内に加圧エアのみを噴射させるため、吸気行程で生成された筒内流動を圧縮行程で加圧エアの噴射により均質燃焼に最適な筒内流動強さになるように強化調整することができて、安定した均質燃焼を行わせることができる。
【0030】
請求項8に記載の発明によれば、請求項7の発明の効果に加えて、均質燃焼運転時に、運転条件を表す主要なパラメータである機関回転数,負荷,および油水温の検出信号に基づいて、圧縮行程中に噴射される加圧エアの噴射期間を運転条件に合わせて細かく適切に可変制御することができて、より一層安定した均質燃焼を行わせることができる。
【0031】
請求項9に記載の発明によれば、請求項8の発明の効果に加えて、通常、均質燃焼運転時でも機関の負荷が高い場合には、吸気行程で燃焼室内に噴射される燃料量が多く、吸気行程で生成される筒内流動だけでは良好な均質混合気の形成が不十分となってしまうが、機関負荷が増大するほど加圧エアの噴射期間が長くなるように制御されるため、機関負荷が高い運転時であっても混合気の均質化に適切な強い筒内流動が得られて安定した均質燃焼を行わせるこができる。
【0032】
他方、機関負荷が低い場合には、吸気行程で燃焼室内に噴射される燃料量が少なく、吸気行程で生成される筒内流動で良好な均質混合気の形成が行われるが、この機関負荷が低い場合には前述とは逆に加圧エアの噴射期間が短くされるので、筒内流動が強くなりすぎて燃焼火炎が吹き消えるのを回避できる適切な筒内流動とすることができる。
【0033】
【発明の実施の形態】
以下、本発明の実施形態を図面と共に詳細する。
【0034】
図1において、1はシリンダブロック、2はピストン、3はシリンダヘッド、4はこれらシリンダブロック1とピストン2およびシリンダヘッド3とで形成された燃焼室を示す。
【0035】
シリンダヘッド3には吸気弁5により開閉される吸気ポート6、および排気弁7により開閉される排気ポート8を設けてあると共に、燃焼室4のほぼ中心に臨む位置に点火プラグ9を配設してある。
【0036】
燃焼室4の周側部には吸気弁5の近傍位置に、燃料を直接燃焼室4に噴射する燃料噴射弁10を配設してある。
【0037】
この燃料噴射弁10として燃料と加圧エアとを個別に噴射可能な2流体式の燃料噴射弁が用いられており、制御装置としてのエンジンコントロールユニット11の出力信号によって後述するように作動制御される。
【0038】
エンジンコントロールユニット11には、吸気ポート6に連なる吸気通路12に設けたエアフローメータ13により検出される空気量信号,エアフローメータ13の下流のスロットルバルブ14に設けたスロットルセンサにより検出される負荷信号,クランク角センサにより検出される回転数信号,温度センサにより検出される油水温信号等が入力され(スロットルセンサ,クランク角センサ,温度センサは何れも図示省略)、これら各種センサの検出信号にもとづいて、エンジンコントロールユニット11により点火プラグ9や燃料噴射弁10および図外の動弁装置等を総合的に作動制御するようにしてある。
【0039】
燃料噴射弁10に加圧エアを供給する加圧エア通路15は前記吸気通路12に連通し、該吸気通路12より取り入れた空気を加圧エア通路15に設けたエアポンプ16およびエアポンプ16をバイパスするバイパス通路17に設けた空気圧レギレータ18によって加圧および圧力調整して燃料噴射弁10に供給する。
【0040】
後述するように機関の圧縮行程中に筒内圧に逆らって燃焼室4に加圧エアを噴射するためには、燃料噴射弁10に供給される加圧エアは1MPa以上の空気圧に調整される。
【0041】
ここで、前記加圧エア通路15は吸気通路12のエアフローメータ13とスロットルバルブ14との間に連通し、吸気ポート6から供給される空気量と燃料噴射弁10より噴射される空気量との合計をエアフローメータ13で検出して空燃比制御を適正に行えるようにしてある。
【0042】
前記吸気ポート6は吸気行程で燃焼室4に吸入された空気流に所要の旋回流、例えば順タンブル流を形成し得るように所定の傾き角度に設定してある一方、燃料噴射弁10は前記吸気行程で生成される筒内流動の流れとほぼ同じ向きに加圧エアを噴射し得る取付角度に設定してある。
【0043】
成層燃焼運転時には機関の圧縮行程中に燃料噴射弁10から、吸気行程で生成された筒内流動に向けて燃料を直接燃焼室4に噴射することによって混合気を成層化し、点火プラグ9により火花着火して成層燃焼を行わせる一方、均質燃焼運転時には機関の吸気行程中に燃料噴射弁10より燃料を直接燃焼室4に噴射することにより混合気を均質化させ、点火プラグ9により火花着火して均質燃焼を行わせる。
【0044】
エンジンコントロールユニット11には加圧エア噴射期間可変手段11Aと、加圧エア噴射時期可変手段11Bとがソフトウエア的に構成されていて、燃料噴射弁10から加圧エアが例えば燃料噴射と同時又は若干遅れて噴射される他、成層燃焼運転時および均質燃焼運転時に、それぞれの運転条件に応じて加圧エアの噴射パルス信号を変化させて噴射時期と噴射期間とが可変制御される。
【0045】
前述の機関運転条件を示す信号としては、運転条件を表す主要なパラメータである機関の回転数,負荷,および油水温の各検出信号が用いられ、これらの各検出信号に基づいて加圧エアの噴射時期と噴射期間とを、運転条件に合わせて細かく可変制御して適切な筒内流動を形成できるようにして、成層燃焼および均質燃焼をそれぞれの運転条件に応じて安定して行わせるようにしている。
【0046】
これを具体的に説明すると、前記エンジンコントロールユニット11の加圧エア噴射期間可変手段11Aおよび加圧エア噴射時期可変手段11Bには、例えば図2に示す成層燃焼運転時における加圧エア噴射の制御マップと、図3に示す均質燃焼運転時における加圧エア噴射の制御マップがメモリされている。
【0047】
成層燃焼運転と均質燃焼運転の判断としては、一般的に機関の高回転,高負荷域は均質燃焼運転でないと成立しないことから、図2,3の各マップに示されるように機関の回転数−負荷により成層燃焼運転領域と均質燃焼運転領域とを区分けしている。
【0048】
図2に示すマップにおいて、成層燃焼運転領域では機関回転数が低くなるほど前記加圧エアの噴射開始から噴射終了までの噴射期間が長くなり、また、負荷が増大するほど加圧エアの前記噴射期間が長くなるように設定してある。
【0049】
図3に示すマップにおいて、均質燃焼運転領域では機関負荷が増大するほど前記加圧エアの噴射開始から噴射終了までの噴射期間が長くなるように設定してある。
【0050】
これら成層燃焼運転時および均質燃焼運転時における加圧エア噴射期間は、油水温の変化に応じて前記各マップで示された回転数−負荷により求められた基本噴射期間(パルス幅)と所定の油水温補正係数との積により補正計算されて、図4に示すように油水温が低いほど噴射期間が長くなるようにしてある。
【0051】
一方、成層燃焼運転時および均質燃焼運転時における加圧エアの噴射時期はエンジンコントロールユニット11の加圧エア噴射時期可変手段11Bによって前記図2および図3のマップに基づいて制御されるが、均質燃焼運転時には、圧縮行程中にも燃焼室4内に加圧エアのみを噴射させるようにしてある。
【0052】
また、加圧エアの噴射終了時期は燃料の噴射終了時期よりも後に設定されるが、油水温の変化に応じて例えば図5に示すように機関の油水温が低いほど燃料噴射終了時期から加圧エア噴射終了時期までの期間が長くなるようにしてある。この図5では成層燃焼運転時における油水温変化に対する加圧エア噴射終了期の変化状態を示しているが、均質燃焼運転時においても同様の制御が行われるようにしてもよい。
【0053】
図6は前述したエンジンコントロールユニット11による加圧エアの噴射制御動作を示すフローチャートである。
【0054】
図6において、ステップS1で機関の回転数信号,負荷信号,油水温信号,および空気量信号を読み込み、これら各種の入力信号に基づいてステップS2で成層燃焼運転条件か均質燃焼運転条件かを判断する。
【0055】
ステップS2で成層燃焼運転条件と判定されると、ステップS3へ進んで圧縮行程中に燃料噴射を行う成層燃焼運転モードで運転される。この成層燃焼運転モードでは次のステップS4で前記回転数信号,負荷信号,および油水温信号に基づいて図2に示したマップおよび油水温による加圧エア噴射期間の補正計算(図4参照)により加圧エアの噴射期間が設定されると同時に、ステップS5で前記回転数信号,負荷信号,および油水温信号に基づいて図2に示したマップおよび油水温による加圧エア噴射終了時期の補正計算(図5参照)により加圧エアの噴射時期が設定され、圧縮行程中に燃料噴射弁10より燃料と共に、その時の運転条件に最適な噴射期間と噴射時期で加圧エアが燃焼室4内に噴射される。
【0056】
ステップS2で運転状態が成層燃焼運転条件下になく均質燃焼運転条件と判定されると、ステップS6へ進んで吸気行程中に燃料噴射を行う均質燃焼運転モードで運転される。
【0057】
この均質燃焼運転モードでは次のステップS7で前記回転数信号,負荷信号,および油水温信号に基づいて図3に示したマップおよび油水温による加圧エア噴射期間の補正計算(図4参照)により加圧エアの噴射期間が設定されると同時に、ステップS8で前記回転数信号,負荷信号,および油水温信号に基づいて図3に示したマップおよび油水温による加圧エア噴射終了時期の補正計算(図5とほぼ同様)により加圧エアの噴射時期が設定され、吸気行程中に燃料噴射弁10より燃料と共にその時の運転条件に最適な噴射期間と噴射時期で加圧エアが燃焼室4内に噴射され、かつ、圧縮行程中にも該燃料噴射弁10より再び加圧エアのみが燃焼室4内に噴射される。
【0058】
図7は成層燃焼運転時に機関の回転数に応じて(但し、負荷は一定とする)、機関回転数が低くなるほど加圧エアの噴射期間が長くなるように制御される場合における筒内流動の挙動を模式的に示している。
【0059】
吸気量および吸気流速は機関回転数にほぼ比例するため、低回転時には同図の(イ)に示すように吸気行程で生成される筒内流動は弱く、圧縮行程で噴射される燃料との混合および混合気の点火プラグ9周りへの輸送性が不十分になり易い傾向にある。
【0060】
しかしながら、燃料噴射が行われる圧縮行程で加圧エアが噴射されることにより筒内流動が加勢され、しかも、該加圧エアの噴射期間が長くされることによって最終的には混合気の成層化と輸送性に適切な強い筒内流動を形成できて安定した成層燃焼を行わせることができる。
【0061】
同図の(ロ),(ハ)に示すように機関回転数が高回転に移行すると、吸気行程で生成される筒内流動は高まるが、圧縮行程で噴射される加圧エアの噴射期間は短くされるため、混合気の成層化を阻害しない適切な筒内流動とすることができ、結果的には全ての回転数域において、混合気の成層化および点火プラグ9周りへの混合気の輸送性に十分かつ適切な流動を与えることができて成層燃焼を安定化させることができる。
【0062】
図8は成層燃焼運転時に機関の負荷に応じて、機関負荷が増大するほど加圧エアの噴射期間が長くなるように制御される場合(但し、回転数は一定とする)における筒内流動および混合気形成の挙動を模式的に示している。
【0063】
燃料噴射量は機関負荷にほぼ比例するため、低負荷時には同図の(イ)に示すように圧縮行程中に燃焼室4内に噴射される燃料量が少なく、吸気行程で生成される筒内流動で良好な混合気形成が行われ、従って、筒内流動の強化はさほど必要ではないが、この低負荷時には加圧エアの噴射期間は短く、従って、混合気の成層化を阻害しない程度に筒内流動を調節できる。
【0064】
同図の(ロ),(ハ)に示すように機関が高負荷に移行すると、圧縮行程で燃焼室4内に噴射される燃料量が多くなり、吸気行程で生成される筒内流動だけでは良好な混合気形成が不十分となり易い傾向となる。
【0065】
しかしながら、機関負荷が増大するほど前記加圧エアの噴射期間が長くされることにより筒内流動がより強化されるため、機関負荷が高い運転時にも混合気の成層化に適切な筒内流動にして安定した成層燃焼を行わせることができる。
【0066】
図9は成層燃焼運転時に油水温に応じて、油水温が低いほど加圧エアの噴射期間が長くなるように制御される場合における筒内流動の挙動を模式的に示している。
【0067】
成層燃焼運転時でも油水温が低く機関が暖機未完了状態にある時は、同図の (イ)に示すように圧縮行程で燃焼室4内へ燃料が噴射されてピストン2の冠面に付着すると、燃料の気化が困難で該ピストン冠面に液膜状に付着し、燃焼の不安定化および未燃HC,スモークの発生やデポジットの堆積が問題となるが、油水温が低いほど圧縮行程で噴射される加圧エアの噴射期間が長くされるため、筒内流動が強化されて前記ピストン冠面に付着した燃料Fの気化を促進させて、成層燃焼の安定化と排気性状の改善とを行わせることができる。
【0068】
同図の(ロ),(ハ)に示すように油水温が上昇して暖機完了状態になるにつれて、ピストン冠面に付着する燃料Fの気化が良好に行われるようになるが、この場合前述とは逆に加圧エアの噴射期間が短くされるため、混合気の成層化を阻害しない程度に筒内流動を調節できる。
【0069】
ここで、前述の各成層燃焼運転状態にあっても、圧縮行程で燃料と共に噴射される加圧エアの噴射終了時期が、燃料の噴射時期よりも後に設定されているため、燃料噴射弁10のノズル孔内の残留燃料除去対策を行うことができる。
【0070】
これを、図10によって説明すると、同図の(イ)に示すように圧縮行程で燃料の噴射終了時期と加圧エアの噴射終了時期とがほぼ同時であった場合、燃料噴射弁10のノズル孔10aから燃料と加圧エアとが噴射された後に、該ノズル孔10a内には燃料Fが液膜状に付着残留し、これがノズル孔10aの出口で次第に炭化してデポジットが発生する傾向となる。
【0071】
ところが同図の(ロ)に示すように圧縮行程で噴射される加圧エアの噴射終了時期が、燃料の噴射終了時期よりも後に設定されているため、燃料噴射弁10のノズル孔10aから燃料と加圧エアとが噴射され、燃料噴射が停止されてノズル孔10a内に燃料が液膜状に付着しても、この付着残留燃料は噴射が継続される加圧エアによってノズル孔10a外へ吹き飛ばされ、ノズル孔10aの内面および出口付近を常にきれいに保つことができる。
【0072】
この結果、ノズル先端のデポジット付着を回避して燃料の噴霧形状を安定化させ、機関の安定性を向上することができる。
【0073】
この加圧エアの噴射終了時期は油水温に応じて制御されるため、成層燃焼の安定化と排気性状の改善とをより効果的に行わせることができる。
【0074】
図11は成層燃焼運転時に、油水温が低いほど燃料噴射終了時期から加圧エア噴射終了時期までの期間が長くなるように制御される場合における筒内流動の挙動を模式的に示している。
【0075】
油水温が低く機関が暖機未完了状態にある時は前述したように圧縮行程で噴射されてピストン冠面に付着した燃料の気化が不十分となって、燃焼の不安定化および排気性状の悪化を誘発してしまうが、このような油水温が低い状態時では図11の(イ)に示すように燃料噴射終了時期から加圧エア噴射終了時期までの期間が長くなるため、ピストン2の冠面に液膜状に付着した燃料Fの気化を促進させることができて、成層燃焼の安定化と排気性状の改善とを行わせることができる。
【0076】
他方、同図の(ロ),(ハ)に示すように油水温が上昇して暖機完了状態になるにつれて、ピストン冠面に付着する燃料Fの気化が良好に行われるようになるが、この場合、前述とは逆に燃料噴射終了時期から加圧エア噴射終了時期までの期間が短くされるため、混合気の成層化を阻害しない程度に筒内流動を調節できる。
【0077】
図12は均質燃焼運転時における加圧エア噴射制御による筒内流動の挙動を示している。
【0078】
均質燃焼運転は吸気行程中に燃料噴射を行って混合気を均質化させるが、同図に示すように吸気行程で燃料が噴射されると、これとほぼ同時に加圧エアも噴射され、吸気ポート構造および加圧エア噴射により吸気行程で生成される筒内流動で混合気の微粒化と、攪拌による気化促進が行われる。
【0079】
圧縮行程に移行すると該圧縮行程中にも加圧エアのみが噴射されるため、前記吸気行程で生成された筒内流動をこの圧縮行程中に噴射された加圧エアにより強化して、均質燃焼に最適な流動強さに調整(補正)でき、従って、安定した均質燃焼を行わせることができる。
【0080】
この均質燃焼運転時にあっても、前記成層燃焼運転時と同様に加圧エアの噴射制御は機関運転の主要パラメータである機関回転数,負荷,および油水温に応じて適切に制御される。
【0081】
図13は一例として機関負荷に応じて、負荷が増大するほど加圧エア噴射期間が長くなるように制御される場合(但し、回転数は一定とする)の筒内流動の挙動を模式的に示している。
【0082】
前述したように燃料噴射量は機関負荷にほぼ比例するため、低負荷時には同図の(イ)に示すように吸気行程中に燃焼室4内に噴射される燃料量が少なく、吸気行程で生成される筒内流動で良好な均質混合気の形成が行われ、従って、筒内流動の強化はさほど必要ではないが、この機関負荷が低い場合には圧縮機行程で噴射される加圧エアの噴射期間が短くされる。
【0083】
この結果、筒内流動が強くなりすぎて燃焼火炎が吹き消えるのを回避できる程度に、適切な強さの筒内流動とすることができる。
【0084】
同図の(ロ),(ハ)に示すように機関が高負荷に移行すると、吸気行程で燃焼室4内に噴射される燃料量が多くなり、吸気行程で生成される筒内流動だけでは良好な均質混合気の形成が不十分となってしまうが、機関負荷が増大するほど圧縮行程で噴射される加圧エアの噴射期間が長くされる。
【0085】
この結果、機関負荷が高い運転時であっても混合気の均質化に適切な強い筒内流動が得られて安定した均質燃焼を行わせることができる。
【0086】
なお、この均質燃焼運転時には前述のように吸気行程での燃料噴射後、圧縮行程では加圧エアのみが噴射されるため、吸気行程での加圧エア噴射の終了時期を燃料噴射終了時期よりも後に設定しなくても、該圧縮行程で加圧エアの噴射によりノズル孔内の残留燃料の除去を行うことができるが、場合によって吸気行程における加圧エア噴射終了時期を燃料噴射終了時期よりも後に設定して、ノズル孔内の残留燃料除去対策を徹底するようにしてもよい。
【図面の簡単な説明】
【図1】本発明の一実施形態を示す系統図。
【図2】成層燃焼運転時の加圧エア制御マップ図。
【図3】均質燃焼運転時の加圧エア制御マップ図。
【図4】油水温による加圧エア噴射補正期間のマップ図。
【図5】成層燃焼運転時の油水温による加圧エア噴射終了時期の制御マップ図。
【図6】制御装置の制御動作フローチャート。
【図7】成層燃焼運転時の回転数変化に伴う筒内流動の挙動を示す模式図。
【図8】成層燃焼運転時の負荷変化に伴う筒内流動の挙動を示す模式図。
【図9】成層燃焼運転時の油水温変化に伴う筒内流動の挙動を示す模式図。
【図10】成層燃焼運転時の加圧エア噴射によるノズル清掃状況を示す説明図。
【図11】成層燃焼運転時の油水温変化に伴う加圧エア噴射終了時期制御による筒内流動の挙動を示す模式図。
【図12】均質燃焼運転時の加圧エア噴射制御による筒内流動の挙動を示す模式図。
【図13】均質燃焼運転時の負荷変化に伴う筒内流動の挙動を示す模式図。
【符号の説明】
4 燃焼室
9 点火プラグ
10 燃料噴射弁
10a ノズル孔
11 制御装置
11A 噴射時期可変手段
11B 噴射期間可変手段[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a direct injection spark ignition engine.
[0002]
[Prior art]
A fuel injection valve that directly injects fuel into the combustion chamber and an ignition plug are provided, and stratified combustion is performed by injecting fuel during the compression stroke in the low load region of the engine, while intake stroke is performed in the high load region of the engine. In a cylinder injection spark ignition engine in which fuel is injected into the cylinder to perform homogeneous combustion, in order to establish the above-described stratified combustion, a strong in-cylinder flow is applied to the intake air in the combustion chamber during the intake stroke. Granting is essential.
[0003]
Therefore, in general, the intake port has a helical port structure, or a swirl flow enhancing means is provided in the intake port so as to impart a strong swirl flow to the intake stroke in the intake stroke.
[0004]
[Problems to be solved by the invention]
Even if a strong swirl flow is applied to the intake air during the intake stroke, it cannot be denied that the in-cylinder flow is attenuated by the compression action during the compression stroke.
[0005]
On the other hand, Japanese Patent Laid-Open No. 5-180123 discloses a fuel supply system that uses a two-fluid fuel injection valve that supplies fuel and pressurized air, and increases the amount of pressurized air in a specific operating region of the engine. Therefore, it is conceivable to reinforce the in-cylinder flow with the pressurized air using the two-fluid fuel injection valve, but even if the pressurized air is simply used as the in-cylinder flow enhancing means. The stratified combustion may become unstable due to the fuel atomization and vaporization promoting action by the pressurized air and the fuel diffusing action.
[0006]
Therefore, the present invention employs the above-described two-fluid fuel injection valve as the fuel injection valve, and finely supplies the pressurized air in accordance with the operating conditions in any of the stratified combustion operation and the homogeneous combustion operation. Provided is an in-cylinder injection spark ignition engine that can be controlled and can obtain an optimal in-cylinder flow for each operating condition, and can realize stabilization of combustion, improvement of engine output, and improvement of exhaust emission. .
[0007]
[Means for Solving the Problems]
According to the first aspect of the present invention, the fuel injection valve for directly injecting fuel into the combustion chamber and the spark plug are provided, and fuel is injected during the compression stroke in a low load region to perform stratified combustion, and In a direct injection spark ignition engine in which fuel is injected during an intake stroke in a load range to perform homogeneous combustion, the fuel injection valve is a two-fluid type capable of individually injecting fuel and pressurized air In addition to using the fuel injection valve, there is provided an injection timing / period variable means for variably controlling the injection timing and injection period of the pressurized air of the fuel injection valve according to the operating condition of the engine during the stratified combustion operation and the homogeneous combustion operationIn the stratified charge combustion operation, the lower the engine speed, the longer the injection period of pressurized airIt is characterized by that.
[0008]
According to a second aspect of the present invention, the injection timing / period variable means according to the first aspect is configured such that, during the stratified charge combustion operation, the injection timing and the injection timing of the pressurized air according to the engine speed, the load, and the oil / water temperature. It is characterized by changing the period.
[0010]
Claim3In the invention of claim2The injection timing / period variable means described above is characterized in that, during the stratified combustion operation, the injection period of the pressurized air is lengthened as the engine load increases.
[0011]
Claim4In the invention of
[0012]
Claim5In the present invention, claims 1 to4The injection timing / period variable means described in 1) is characterized in that the pressurized air injection end timing is set after the fuel injection end timing.
[0013]
Claim6In the invention of claim5In the stratified combustion operation, the injection timing / period variable means described in (1) is characterized in that the period from the fuel injection end timing to the pressurized air injection end timing becomes longer as the oil / water temperature is lower.
[0014]
Claim7In the present invention, claims 1 to6The injection timing / period variable means described in (1) is characterized in that only the pressurized air is injected into the combustion chamber during the compression stroke during the homogeneous combustion operation.
[0015]
Claim8In the invention of claim7The injection timing / period variable means described in the item (1) changes the pressurized air injection period into the combustion chamber during the compression stroke according to the engine speed, load, and oil / water temperature during homogeneous combustion operation. It is a feature.
[0016]
Claim9In the invention of claim8The injection timing / period variable means described in (1) is characterized in that the pressurized air injection period is lengthened as the engine load increases during the homogeneous combustion operation.
[0017]
【The invention's effect】
According to the first aspect of the present invention, the two-fluid fuel injection valve capable of injecting fuel and pressurized air is used as the fuel injection valve, and the engine operation is performed during the stratified combustion operation and the homogeneous combustion operation, respectively. Because the injection timing and the injection period of the pressurized air of the fuel injection valve are variably controlled according to the conditions, the control of the injection timing and the injection period of the pressurized air according to the operating conditions during the stratified combustion operation, In-cylinder flow that brings about optimal combustion under all operating conditions can be positively generated, combustion can be stabilized and combustion efficiency can be improved, and fuel consumption rate and exhaust properties can be improved.
In particular, when the engine speed is low even during stratified charge combustion operation, the in-cylinder flow generated in the intake stroke is weak, resulting in insufficient mixture formation and transport of the mixture around the spark plug. However, since the injection period of pressurized air is controlled to be longer as the engine speed is lower, the strong cylinder suitable for stratification and transportability of the air-fuel mixture can be achieved even when the engine speed is low. Flow can be obtained and stable stratified combustion can be performed.
On the other hand, when the engine speed is high, good mixture formation and good transportability of the mixture around the spark plug can be obtained by in-cylinder flow generated in the intake stroke. On the other hand, when the air pressure is high, the injection period of the pressurized air is shortened, contrary to the above, so that an appropriate in-cylinder flow that does not inhibit the stratification of the air-fuel mixture can be achieved.
[0018]
In addition, in the homogeneous combustion operation, as in the stratified combustion operation, the in-cylinder flow that brings about optimal combustion under all operating conditions can be positively created, so that the in-cylinder air-fuel mixture can be further homogenized. It is promoted to improve engine output and exhaust properties.
[0019]
According to the second aspect of the present invention, in addition to the effect of the first aspect of the invention, during the stratified charge combustion operation, based on detection signals of engine speed, load, and oil / water temperature, which are main parameters representing operating conditions. Thus, the injection timing and injection period of the pressurized air can be finely and appropriately controlled in accordance with the operating conditions, so that more stable stratified combustion can be performed.
[0022]
Claim3According to the invention described in claim2In addition to the effects of the invention, normally, when the engine load is high even during stratified combustion operation, a large amount of fuel is injected into the combustion chamber during the compression stroke, and good mixing is achieved only with the in-cylinder flow generated during the intake stroke. Although the formation of the air becomes insufficient, it is controlled so that the injection period of the pressurized air becomes longer as the engine load increases, so that it is suitable for stratification of the air-fuel mixture even when the engine load is high. Strong in-cylinder flow can be obtained and stable stratified combustion can be performed.
[0023]
On the other hand, when the engine load is low, the amount of fuel injected into the combustion chamber in the compression stroke is small, and a good mixture is formed by the in-cylinder flow generated in the intake stroke, but this engine load is low On the contrary, since the injection period of the pressurized air is shortened contrary to the above, it is possible to achieve an appropriate in-cylinder flow that does not inhibit the stratification of the air-fuel mixture.
[0024]
Claim4According to the invention described in
[0025]
On the other hand, when the temperature of the oil / water is sufficiently increased and the warm-up is completed, the pressurized air injection period is shortened, contrary to the above, so that an appropriate in-cylinder flow that does not inhibit the stratification of the air-fuel mixture can be achieved. .
[0026]
Claim5According to the invention described in
[0027]
Claim6According to the invention described in claim5In addition to the effects of the present invention, when the engine is cold, the oil temperature is low even during stratified combustion operation, fuel is injected into the combustion chamber during the compression stroke, and it is difficult to vaporize the fuel adhering to the piston crown as a liquid film Therefore, instability of combustion, generation of unburned HC, smoke and deposit accumulation are problems, but the lower the oil water temperature, the longer the period from the fuel injection end timing to the pressurized air injection end timing, Vaporization of the adhering fuel can be promoted, and stratified combustion can be stabilized and exhaust properties can be improved.
[0028]
On the other hand, when the temperature of the oil / water is sufficiently increased to reach the warm-up completion state, the period from the fuel injection end timing to the pressurized air injection end timing is shortened contrary to the above, so that appropriate stratification of the mixture is not hindered. It can be in-cylinder flow.
[0029]
Claim7According to the invention described in
[0030]
Claim8According to the invention described in claim7In addition to the effects of the present invention, during homogeneous combustion operation, injection of pressurized air that is injected during the compression stroke based on detection signals of engine speed, load, and oil / water temperature, which are main parameters representing operating conditions The period can be finely and appropriately controlled in accordance with the operating conditions, and more stable homogeneous combustion can be performed.
[0031]
Claim9According to the invention described in claim8In addition to the effects of the invention, normally, when the engine load is high even during homogeneous combustion operation, the amount of fuel injected into the combustion chamber during the intake stroke is large, and only the in-cylinder flow generated during the intake stroke is good. However, since the injection period of the pressurized air is controlled to be longer as the engine load is increased, the mixture mixture is reduced even when the engine load is high. Strong in-cylinder flow suitable for homogenization is obtained, and stable homogeneous combustion can be performed.
[0032]
On the other hand, when the engine load is low, the amount of fuel injected into the combustion chamber in the intake stroke is small, and a good homogeneous mixture is formed by the in-cylinder flow generated in the intake stroke. When the pressure is low, the injection period of the pressurized air is shortened, contrary to the above, so that an appropriate in-cylinder flow that can prevent the in-cylinder flow from becoming too strong and blowing off the combustion flame can be achieved.
[0033]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
[0034]
In FIG. 1, 1 is a cylinder block, 2 is a piston, 3 is a cylinder head, and 4 is a combustion chamber formed by the
[0035]
The
[0036]
There is an intake valve at the peripheral side of the combustion chamber 45A
[0037]
As the
[0038]
The engine control unit 11 has an air amount signal detected by an
[0039]
A pressurized air passage 15 for supplying pressurized air to the
[0040]
As will be described later, in order to inject pressurized air into the
[0041]
Here, the pressurized air passage 15 communicates between the
[0042]
The
[0043]
During the stratified combustion operation, the fuel-air mixture is stratified by injecting fuel directly from the
[0044]
The engine control unit 11 includes a pressurized air injection period varying means 11A and a pressurized air injection timing varying means 11B configured as software, and pressurized air is supplied from the
[0045]
As the signals indicating the engine operating conditions described above, detection signals of the engine speed, load, and oil / water temperature, which are main parameters indicating the operating conditions, are used. Based on these detection signals, the pressurized air is detected. The injection timing and injection period are finely variably controlled in accordance with the operating conditions so that an appropriate in-cylinder flow can be formed, so that stratified combustion and homogeneous combustion can be performed stably according to the respective operating conditions. ing.
[0046]
More specifically, the pressurized air injection period varying means 11A and the pressurized air injection timing varying means 11B of the engine control unit 11 include, for example, control of pressurized air injection during the stratified combustion operation shown in FIG. A map and a control map of pressurized air injection during the homogeneous combustion operation shown in FIG. 3 are stored in memory.
[0047]
In order to judge the stratified combustion operation and the homogeneous combustion operation, the high engine speed and the high load region are generally not established unless the homogeneous combustion operation is performed. Therefore, as shown in the maps of FIGS. -The stratified combustion operation region and the homogeneous combustion operation region are separated by load.
[0048]
In the map shown in FIG. 2, in the stratified combustion operation region, the injection period from the start of injection of the pressurized air to the end of injection becomes longer as the engine speed decreases, and the injection period of the pressurized air increases as the load increases. Is set to be long.
[0049]
In the map shown in FIG. 3, in the homogeneous combustion operation region, the injection period from the start of injection of the pressurized air to the end of injection is set longer as the engine load increases.
[0050]
The pressurized air injection period during the stratified combustion operation and the homogeneous combustion operation is based on the basic injection period (pulse width) obtained from the rotation speed-load shown in each map according to the change in the oil temperature and a predetermined value. The correction is calculated by the product of the oil / water temperature correction coefficient, and as shown in FIG. 4, the lower the oil / water temperature, the longer the injection period.
[0051]
On the other hand, the injection timing of the pressurized air during the stratified combustion operation and the homogeneous combustion operation is controlled by the pressurized air injection timing varying means 11B of the engine control unit 11 based on the maps of FIGS. During the combustion operation, only pressurized air is injected into the
[0052]
Further, the pressurized air injection end timing is set after the fuel injection end timing. However, as shown in FIG. 5, for example, as the engine oil / water temperature decreases, the pressurized air injection end timing increases from the fuel injection end timing. The period until the end of the pressurized air injection is made longer. Although FIG. 5 shows a change state at the end of the pressurized air injection with respect to the oil / water temperature change during the stratified combustion operation, similar control may be performed during the homogeneous combustion operation.
[0053]
FIG. 6 is a flowchart showing the pressurized air injection control operation by the engine control unit 11 described above.
[0054]
In FIG. 6, the engine speed signal, load signal, oil / water temperature signal, and air amount signal are read in step S1, and based on these various input signals, it is determined whether the stratified combustion operation condition or the homogeneous combustion operation condition in step S2. To do.
[0055]
When it is determined in step S2 that the stratified combustion operation condition is satisfied, the process proceeds to step S3, and the operation is performed in the stratified combustion operation mode in which fuel injection is performed during the compression stroke. In this stratified combustion operation mode, in the next step S4, based on the rotation speed signal, load signal and oil / water temperature signal, the map shown in FIG. 2 and the correction calculation of the pressurized air injection period by the oil / water temperature (see FIG. 4) At the same time as the pressurized air injection period is set, the correction calculation of the pressurized air injection end timing based on the map and the oil / water temperature shown in FIG. 2 based on the rotational speed signal, the load signal, and the oil / water temperature signal in step S5. (Refer to FIG. 5), the injection timing of the pressurized air is set. During the compression stroke, the pressurized air is introduced into the
[0056]
If it is determined in step S2 that the operation state is not the stratified combustion operation condition but the homogeneous combustion operation condition, the process proceeds to step S6 and the operation is performed in the homogeneous combustion operation mode in which fuel injection is performed during the intake stroke.
[0057]
In this homogeneous combustion operation mode, in the next step S7, based on the rotation speed signal, load signal and oil / water temperature signal, the map shown in FIG. 3 and the correction calculation of the pressurized air injection period based on the oil / water temperature (see FIG. 4). At the same time as the pressurized air injection period is set, correction calculation of the pressurized air injection end time based on the map and the oil / water temperature shown in FIG. 3 based on the rotation speed signal, the load signal, and the oil / water temperature signal in step S8. (Similar to FIG. 5), the injection timing of the pressurized air is set. During the intake stroke, the pressurized air is injected into the
[0058]
FIG. 7 shows the in-cylinder flow in the case where the pressurized air injection period is controlled to be longer as the engine speed is lower, according to the engine speed during the stratified combustion operation (however, the load is constant). The behavior is schematically shown.
[0059]
Since the intake air flow rate and the intake air flow velocity are almost proportional to the engine speed, the in-cylinder flow generated in the intake stroke is weak as shown in FIG. In addition, the transportability of the air-fuel mixture around the spark plug 9 tends to be insufficient.
[0060]
However, in-cylinder flow is energized by injecting pressurized air in the compression stroke in which fuel injection is performed, and the air-fuel mixture is finally stratified by extending the injection period of the pressurized air. In addition, a strong in-cylinder flow suitable for transportability can be formed, and stable stratified combustion can be performed.
[0061]
As shown in (b) and (c) of the figure, when the engine speed shifts to a high speed, the in-cylinder flow generated in the intake stroke increases, but the injection period of the pressurized air injected in the compression stroke is Since it is shortened, an appropriate in-cylinder flow that does not inhibit the stratification of the air-fuel mixture can be achieved. The stratified combustion can be stabilized by providing a sufficient and appropriate flow for the property.
[0062]
FIG. 8 shows the in-cylinder flow when the pressurized air injection period is controlled to be longer as the engine load increases (however, the rotation speed is constant) according to the engine load during stratified combustion operation. The behavior of mixture formation is schematically shown.
[0063]
Since the fuel injection amount is almost proportional to the engine load, the amount of fuel injected into the
[0064]
When the engine shifts to a high load as shown in (b) and (c) in the figure, the amount of fuel injected into the
[0065]
However, since the in-cylinder flow is further strengthened by increasing the injection period of the pressurized air as the engine load increases, the in-cylinder flow suitable for stratification of the air-fuel mixture is achieved even when the engine load is high. And stable stratified combustion can be performed.
[0066]
FIG. 9 schematically shows the behavior of in-cylinder flow in the case where control is performed so that the injection period of pressurized air becomes longer as the oil / water temperature is lower in accordance with the oil / water temperature during the stratified combustion operation.
[0067]
Even during stratified combustion operation, when the oil temperature is low and the engine is not warmed up, fuel is injected into the
[0068]
As shown in (b) and (c) of the figure, the fuel F adhering to the piston crown surface is favorably vaporized as the oil water temperature rises and the warm-up is completed. In contrast to the above, since the injection period of the pressurized air is shortened, the in-cylinder flow can be adjusted to such an extent that the stratification of the air-fuel mixture is not hindered.
[0069]
Here, even in each of the stratified combustion operation states described above, the injection end timing of the pressurized air injected together with the fuel in the compression stroke is set after the fuel injection timing. It is possible to take measures for removing the residual fuel in the nozzle hole.
[0070]
This will be described with reference to FIG. 10. When the fuel injection end timing and the pressurized air injection end timing are substantially the same in the compression stroke as shown in FIG. After fuel and pressurized air are injected from the
[0071]
However, as shown in (b) of the figure, since the injection end timing of the pressurized air injected in the compression stroke is set after the fuel injection end timing, the fuel is injected from the
[0072]
As a result, it is possible to avoid deposit adhesion at the nozzle tip, stabilize the fuel spray shape, and improve engine stability.
[0073]
Since the injection end timing of the pressurized air is controlled according to the oil temperature, the stratified combustion can be stabilized and the exhaust properties can be improved more effectively.
[0074]
FIG. 11 schematically shows the behavior of in-cylinder flow when the control is performed so that the period from the fuel injection end timing to the pressurized air injection end timing becomes longer as the oil / water temperature is lower during the stratified combustion operation.
[0075]
When the oil / water temperature is low and the engine is not fully warmed up, the fuel injected by the compression stroke and adhering to the piston crown is insufficiently vaporized as described above, resulting in unstable combustion and exhaust properties. However, when the oil / water temperature is low, the period from the fuel injection end timing to the pressurized air injection end timing becomes longer as shown in FIG. Vaporization of the fuel F adhering to the crown surface in the form of a liquid film can be promoted, and stratified combustion can be stabilized and exhaust properties can be improved.
[0076]
On the other hand, as shown in (b) and (c) in the figure, as the oil temperature rises and the warm-up is completed, the fuel F adhering to the piston crown surface is better vaporized. In this case, contrary to the above, since the period from the fuel injection end timing to the pressurized air injection end timing is shortened, the in-cylinder flow can be adjusted to such an extent that the stratification of the air-fuel mixture is not hindered.
[0077]
FIG. 12 shows the behavior of in-cylinder flow by pressurized air injection control during homogeneous combustion operation.
[0078]
In homogeneous combustion operation, fuel mixture is injected during the intake stroke to homogenize the mixture. When fuel is injected during the intake stroke as shown in the figure, pressurized air is also injected almost simultaneously with the intake port. The mixture and atomization of the air-fuel mixture are generated by the in-cylinder flow generated in the intake stroke by the pressurized air injection, and vaporization is promoted by stirring.
[0079]
When a transition is made to the compression stroke, only pressurized air is injected during the compression stroke, so the in-cylinder flow generated during the intake stroke is reinforced by the pressurized air injected during the compression stroke, and homogeneous combustion is performed. Therefore, the flow strength can be adjusted (corrected) to an optimum flow strength, and stable homogeneous combustion can be performed.
[0080]
Even during the homogeneous combustion operation, similarly to the stratified combustion operation, the injection control of the pressurized air is appropriately controlled according to the engine speed, load, and oil / water temperature, which are the main parameters of the engine operation.
[0081]
As an example, FIG. 13 schematically shows the behavior of in-cylinder flow in a case where the pressurized air injection period is controlled to become longer as the load increases (however, the rotation speed is constant) according to the engine load. Show.
[0082]
As described above, since the fuel injection amount is almost proportional to the engine load, the amount of fuel injected into the
[0083]
As a result, the in-cylinder flow having an appropriate strength can be achieved to such an extent that the in-cylinder flow can be prevented from excessively blowing out the combustion flame.
[0084]
When the engine shifts to a high load as shown in (b) and (c) of the figure, the amount of fuel injected into the
[0085]
As a result, even when the engine load is high, a strong in-cylinder flow suitable for homogenization of the air-fuel mixture can be obtained, and stable homogeneous combustion can be performed.
[0086]
In this homogeneous combustion operation, after the fuel injection in the intake stroke as described above, only the compressed air is injected in the compression stroke, so the end timing of the pressurized air injection in the intake stroke is set to be higher than the fuel injection end timing. Even if it is not set later, residual fuel in the nozzle hole can be removed by injection of pressurized air in the compression stroke, but in some cases, the pressurized air injection end timing in the intake stroke may be more than the fuel injection end timing. It may be set later and thorough measures to remove residual fuel in the nozzle holes may be used.
[Brief description of the drawings]
FIG. 1 is a system diagram showing an embodiment of the present invention.
FIG. 2 is a map of pressurized air control during stratified combustion operation.
FIG. 3 is a map of pressurized air control during homogeneous combustion operation.
FIG. 4 is a map diagram of a pressurized air injection correction period according to oil / water temperature.
FIG. 5 is a control map diagram of the end time of pressurized air injection according to the oil temperature during stratified combustion operation.
FIG. 6 is a control operation flowchart of the control device.
FIG. 7 is a schematic diagram showing the behavior of in-cylinder flow accompanying a change in rotational speed during stratified charge combustion operation.
FIG. 8 is a schematic diagram showing the behavior of in-cylinder flow accompanying a load change during stratified charge combustion operation.
FIG. 9 is a schematic diagram showing the behavior of in-cylinder flow associated with oil / water temperature change during stratified combustion operation.
FIG. 10 is an explanatory diagram showing a nozzle cleaning state by pressurized air injection during stratified combustion operation.
FIG. 11 is a schematic diagram showing the behavior of in-cylinder flow by pressurized air injection end timing control according to oil temperature change during stratified combustion operation.
FIG. 12 is a schematic diagram showing the behavior of in-cylinder flow by pressurized air injection control during homogeneous combustion operation.
FIG. 13 is a schematic diagram showing the behavior of in-cylinder flow accompanying a load change during homogeneous combustion operation.
[Explanation of symbols]
4 Combustion chamber
9 Spark plug
10 Fuel injection valve
10a Nozzle hole
11 Control device
11A Injection timing variable means
11B Injection period variable means
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP35344098A JP3852230B2 (en) | 1998-12-11 | 1998-12-11 | In-cylinder injection spark ignition engine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP35344098A JP3852230B2 (en) | 1998-12-11 | 1998-12-11 | In-cylinder injection spark ignition engine |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2000179433A JP2000179433A (en) | 2000-06-27 |
JP3852230B2 true JP3852230B2 (en) | 2006-11-29 |
Family
ID=18430869
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP35344098A Expired - Lifetime JP3852230B2 (en) | 1998-12-11 | 1998-12-11 | In-cylinder injection spark ignition engine |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3852230B2 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AUPP070497A0 (en) * | 1997-12-03 | 1998-01-08 | Orbital Engine Company (Australia) Proprietary Limited | Improved method of fuelling an engine |
JP4158328B2 (en) * | 2000-10-19 | 2008-10-01 | トヨタ自動車株式会社 | Fuel injection control device for in-cylinder internal combustion engine |
JP2002130013A (en) | 2000-10-23 | 2002-05-09 | Toyota Motor Corp | Control device for in-cylinder injection internal combustion engine |
JP4135912B2 (en) * | 2003-05-16 | 2008-08-20 | 本田技研工業株式会社 | In-cylinder internal combustion engine |
JP6765758B2 (en) * | 2016-10-31 | 2020-10-07 | ダイハツ工業株式会社 | Internal combustion engine |
-
1998
- 1998-12-11 JP JP35344098A patent/JP3852230B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JP2000179433A (en) | 2000-06-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4379479B2 (en) | In-cylinder injection engine control method, control device for implementing the control method, and control circuit device used in the control device | |
US7198031B2 (en) | Control device of internal combustion engine | |
US7599787B2 (en) | Fuel injection control device for engine | |
JP2002206446A5 (en) | ||
JP3724032B2 (en) | Fuel supply apparatus for in-cylinder injection internal combustion engine | |
JP2002206446A (en) | Internal combustion engine and fuel injection control device for internal combustion engine | |
EP1859153A1 (en) | Fuel supply apparatus for an internal combustion engine | |
EP1859139A1 (en) | Control device for internal combustion engine | |
JP2007224753A (en) | Spark ignition type direct injection engine | |
JP3885614B2 (en) | Internal combustion engine | |
CN108730053A (en) | The control device of internal combustion engine | |
JP2005016496A (en) | Fuel injection controller for internal combustion engine | |
JP3852230B2 (en) | In-cylinder injection spark ignition engine | |
US20060207547A1 (en) | Internal Combustion engine | |
JP6568808B2 (en) | Control device for fuel injection valve | |
JP4055292B2 (en) | Direct injection spark ignition internal combustion engine fuel injection control device | |
JPH05263698A (en) | Fuel pressure control device of internal combustion engine of fuel injection type | |
JPH10115269A (en) | Fuel injection device for engine | |
JP2000054883A (en) | Controller for cylinder injection type engine | |
JP2002038995A (en) | Fuel injection device for diesel engine | |
JP5262991B2 (en) | Intake control system for spark ignition direct injection engine | |
JPS6035115A (en) | Laminar charging engine | |
JP4238752B2 (en) | Control device for internal combustion engine | |
JP2002332888A (en) | Combustion control device for in-cylinder injection internal combustion engine | |
JP3823612B2 (en) | Direct-injection spark ignition internal combustion engine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060516 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060710 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20060815 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20060828 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100915 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100915 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110915 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120915 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120915 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130915 Year of fee payment: 7 |
|
EXPY | Cancellation because of completion of term |