[go: up one dir, main page]

JP3849837B2 - Synthesis method of dimethyltin dichloride - Google Patents

Synthesis method of dimethyltin dichloride Download PDF

Info

Publication number
JP3849837B2
JP3849837B2 JP35257499A JP35257499A JP3849837B2 JP 3849837 B2 JP3849837 B2 JP 3849837B2 JP 35257499 A JP35257499 A JP 35257499A JP 35257499 A JP35257499 A JP 35257499A JP 3849837 B2 JP3849837 B2 JP 3849837B2
Authority
JP
Japan
Prior art keywords
dimethyltin dichloride
catalyst
iodine
tin
synthesis method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP35257499A
Other languages
Japanese (ja)
Other versions
JP2001226384A (en
Inventor
雄志 岡田
孝 三好
朋也 久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichia Corp
Original Assignee
Nichia Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichia Corp filed Critical Nichia Corp
Priority to JP35257499A priority Critical patent/JP3849837B2/en
Publication of JP2001226384A publication Critical patent/JP2001226384A/en
Application granted granted Critical
Publication of JP3849837B2 publication Critical patent/JP3849837B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は太陽電池を構成する透明導電膜SnO2の原料として使用することができる高純度の二塩化ジメチルスズの合成方法に関するものである。
【0002】
【従来の技術】
二塩化ジメチルスズを合成する方法において、金属スズと塩化メチルとを原料とし、触媒を用いて合成する方法が多数開発されている。実用的な収率を得るための方法としては、触媒としてヨウ素含有化合物を用いる方法が提案されている(米国特許3519665号、及び英国特許1053996号)。しかし、一般的にこのようなヨウ素含有化合物は高価であるので、コストを下げるために使用済みの触媒を回収・再生する等の方法もなされているが、この作業自体が時間もコストもかかるので、結果として、大きなコストダウンにはなっていない。
また、ヨウ素化合物を触媒として用いて合成された二塩化ジメチルスズの粗結晶の純度は50〜99%であるので、精製する必要がある。精製後に得られる製品中には、副生成物はもちろん、触媒も残留していないことが望ましい。これは、如何なる触媒を使って他の化合物を合成する場合でも当然要求される特性であるが、ヨウ素化合物を触媒として用いた場合、精製工程を経てもヨウ素分が残留し易い。特に、よく用いられている蒸留法で精製を行う場合に多く残留し易い。これは、ヨウ素が持つ昇華性が原因の一つであり、製品を蒸留する時にヨウ素も同時に昇華してしまうためである。そうすると、日数が経つにつれて残留ヨウ素分によって製品である二塩化ジメチルスズが着色してくるという問題が生じる。着色した二塩化ジメチルスズは、透明性導電膜SnO2の原料としては用いることは難しい。
【0003】
【発明が解決しようとする課題】
本発明は上記した問題点を解決することにあり、経済的で、しかも高純度で着色の心配のない二塩化ジメチルスズの合成方法を提供することを目的とする。
【0004】
【課題を解決するための手段】
本発明者等は触媒としてヨウ素含有化合物を用いずに二塩化ジメチルスズを合成する方法を鋭意検討した結果、有機リン化合物を触媒として用いることにより二塩化ジメチルスズが得られることを見いだし、本発明を成すに至った。
【0005】
すなわち本発明は、触媒の存在下で金属スズと塩化メチルとを反応させる二塩化ジメチルスズの合成方法であって、前記触媒は下記の一般式(I)で示される有機リン化合物であることを特徴とする二塩化ジメチルスズの合成方法である。
【0006】
【化2】

Figure 0003849837
〔但し、R1、R2、R3及びR4は炭素数が1〜24のアルキル基又はアリール基であり、Xは塩素または臭素である〕
【0007】
また、前記有機リン化合物は、スズ1グラム原子当たり0.001〜0.05モル添加することが好ましい。
【0008】
さらにまた、前記反応は、反応温度100〜300℃、反応圧力は1〜10MPaで行われることが好ましい。
【0009】
【発明の実施の形態】
本発明では、二塩化ジメチルスズの合成時に、触媒として下記の一般式(I)で示される有機リン化合物を用いる。
【0010】
【化3】
Figure 0003849837
〔但し、R1、R2、R3及びR4は炭素数が1〜24のアルキル基又はアリール基であり、Xは塩素または臭素である〕
【0011】
有機リン化合物の具体的な例としては、トリメチルホスフィン、トリイソプロピル−、トリブチル−、トリs−ブチル−、トリオクチル−、ジブチルドデシル−、ジメチルオクタデシル−、トリフェニル−、ジブチルフェニルホスフィン、テトラメチルホスホニウムクロライド、テトラメチルホスホニウムブロマイド、テトラエチルホスホニウムクロライド、テトラエチルホスホニウムブロマイド、テトライソプロピルホスホニウムクロライド、テトライソプロピルホスホニウムブロマイド、テトラブチルホスホニウムクロライド、テトラブチルホスホニウムブロマイド、テトラオクチルホスホニウムクロライド、テトラオクチルホスホニウムブロマイド、テトラオクタデシルホスホニウムクロライド、テトラオクタデシルホスホニウムブロマイド、テトラフェニルホスホニウムクロライド、テトラフェニルホスホニウムブロマイド、メチルトリフェニルホスホニウムクロライド、メチルトリフェニルホスホニウムブロマイド等がある。好ましい化合物としてはトリフェニルホスフィン等が挙げられる。
【0012】
これら有機リン化合物は、ヨウ素のような昇華性を有していないので、二塩化ジメチルスズ合成後の精製時に蒸留法を用いても、製品である二塩化ジメチルスズ中に残留しにくいので、高純度のものが得られる。
【0013】
有機リン化合物の添加量は、スズ1グラム原子当り0.001〜0.05モル用いるのが好ましく、さらに好ましくは0.01〜0.03モルである。0.05モルより多く用いると、二塩化ジメチルスズ中にリン成分が多く残留し易くなるので好ましくない。また、0.001モル未満の極低濃度においてはスズの転化率が低下し、未反応の原料が残って二塩化ジメチルスズの収率が減少するので好ましくない。
【0014】
また、反応媒体としては、有機エーテル又はこれらと芳香族炭化水素溶媒、もしくは脂肪族炭化水素溶媒との混合物を用いることができる。具体的な例としては、有機エーテルとしてはジエチルエーテル、ジブチルエーテル、テトラヒドロフラン等、芳香族炭化水素溶媒としてはベンゼン、トルエン、キシレン等、脂肪族炭化水素溶媒としてはヘキサン、ヘプタン、オクタン等が挙げられる。これらのうち、好ましくはエーテル化合物であり、さらに好ましくはテトラヒドロフランである。使用する溶媒の量は、金属スズに対して重量比で0.01〜10倍であればよく、反応容器等に応じてこの範囲内の取り扱いやすい量に設定することができる。
【0015】
塩化メチルの添加量は、スズ1グラム原子当たり2.0〜4.0モルの範囲が好ましく、特に好ましくは2.4〜2.8モルである。この範囲で使用することにより(CH3nSnCl4-n(n=0,1,3,4)で示される副生成物の生成を抑制することができる。
【0016】
反応温度は100〜300℃が好ましく、さらに好ましくは150〜250℃である。反応温度が100℃未満では反応が進みにくく、また、300℃をこえると副生成物が生成し易くなるので好ましくない。圧力は1〜10MPaが好ましく、さらに好ましくは2〜4.5MPaである。圧力が1MPa未満では反応が進みにくく、また、10MPaをこえると、副生成物が生成するため好ましくない。
【0017】
金属スズの形状は、生成する二塩化ジメチルスズの特性に影響を与えるものではないので、任意の形状のものを用いることができるが、好ましくは表面積の大きな金属スズである。このような金属スズを用いれば反応を早く終了させることができ、工程時間を短縮することができる。
【0018】
【実施例】
実施例で本発明の二塩化ジメチルスズの合成方法について詳述するが、以下に示す実施例は本発明を具現化させる一例を示すものであり、本発明を拘束するものではない。
【0019】
(実施例1)
内容量20Lの耐圧反応容器にスズ微細片1600g、トリフェニルホスフィン35.4g(スズ1グラム原子当り0.01モル)、塩化メチル1900g及びテトラヒドロフラン720mLを入れ、圧力3.7MPa、温度165℃で8時間加熱しながら撹拌して、二塩化ジメチルスズを得た。得られた二塩化ジメチルスズ2946.5gをキシレン8.9Lに溶解し、加熱しながら1.0時間還流させた後、溶液が冷えないうちに濾過した。室温まで冷却して結晶を析出させた後、この結晶を濾過、乾燥して本発明の二塩化ジメチルスズ2799.2g(精製収率94.5%)を得た。得られた二塩化ジメチルスズのリンの分析値は6.5ppmであった。なお、分析は、ICPを用いて測定した。
【0020】
(実施例2)
内容量20Lの耐圧反応容器にスズ微細片1600g、トリフェニルホスフィン3.5g(スズ1グラム原子当り0.001モル)、塩化メチル1958g及びテトラヒドロフラン742mLを入れ、圧力3.8MPa、温度170℃で8時間加熱しながら撹拌して、二塩化ジメチルスズを得た。得られた二塩化ジメチルスズ2724gをキシレン8.3Lに溶解し、加熱しながら1.0時間還流させた後、溶液が冷えないうちに濾過した。室温まで冷却して結晶を析出させた後、この結晶を濾過、乾燥して本発明の二塩化ジメチルスズ2590g(精製収率87.5%)を得た。得られた二塩化ジメチルスズのリンの分析値は2.4ppmであった。
【0021】
(比較例1)
内容量20Lの耐圧反応容器にスズ微細片1600g、ヨウ素含有触媒としてヨウ化ブチル135g、マグネシウム3.2g、塩化メチル1635g及びテトラヒドロフラン750mLを入れ、圧力3.35MPa、温度170℃で7時間加熱しながら撹拌して、二塩化ジメチルスズを得た。得られた二塩化ジメチルスズ3.6kg、をキシレン8.2Lに溶解し、加熱しながら0.5時間還流させた後、溶液が冷えないうちに濾過した。室温まで冷却して結晶を析出させた後、この結晶を濾過、乾燥して二塩化ジメチルスズ2580g(精製収率87.4%)を得た。得られた二塩化ジメチルスズについて、デンプン水溶液によるヨウ素の有無テストを行った結果、デンプン水溶液が青紫色に変色た。また、ヨウ素の分析値は20ppmであった。なお、二塩化ジメチルスズ中に含まれるヨウ素分の定性には1wt%デンプン水溶液を用いた。具体的には、二塩化ジメチルスズ3gを水3mLに溶解させ、1wt%デンプン水溶液を0.2mL添加して色の変化を見た。無色ならヨウ素は存在せず(検出限界0.01ppm)、青紫色になればヨウ素分が含まれている。又、ヨウ素の定量には、1wt%デンプン水溶液を指示薬としてチオ硫酸ナトリウム水溶液による滴定で行った。
【0022】
【発明の効果】
以上説明したように、本発明の二塩化ジメチルスズの合成方法では、触媒として有機リン化合物を使用する。そのため、従来のようなヨウ素含有化合物を触媒に用いた場合に比べて、有機リン化合物自体が安価である上に、触媒の回収等の余計な工程も必要なくなって工程が短縮されるので、さらにコストが安価になる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for synthesizing high-purity dimethyltin chloride that can be used as a raw material for a transparent conductive film SnO 2 constituting a solar cell.
[0002]
[Prior art]
In the method of synthesizing dimethyltin dichloride, many methods have been developed using metal tin and methyl chloride as raw materials and using a catalyst. As a method for obtaining a practical yield, a method using an iodine-containing compound as a catalyst has been proposed (US Pat. No. 3,519,665 and British Patent 1053996). However, since such iodine-containing compounds are generally expensive, there are methods such as collecting and regenerating used catalysts in order to reduce costs. However, this work itself takes time and costs. As a result, the cost is not greatly reduced.
Moreover, since the purity of the crude crystals of dimethyltin dichloride synthesized using an iodine compound as a catalyst is 50 to 99%, it needs to be purified. In the product obtained after purification, it is desirable that not only by-products but also catalyst remain. This is a characteristic that is naturally required when other compounds are synthesized using any catalyst. However, when an iodine compound is used as a catalyst, iodine content tends to remain even after a purification step. In particular, a large amount tends to remain when purification is performed by a commonly used distillation method. This is because the sublimation property of iodine is one of the causes, and iodine is also sublimated simultaneously when the product is distilled. If it does so, the problem that dimethyltin dichloride which is a product will color with a residual iodine content as days pass will arise. The colored dimethyltin dichloride is difficult to use as a raw material for the transparent conductive film SnO 2 .
[0003]
[Problems to be solved by the invention]
An object of the present invention is to provide a method for synthesizing dimethyltin dichloride which is economical and has high purity and is free from worry about coloring.
[0004]
[Means for Solving the Problems]
As a result of intensive studies on a method for synthesizing dimethyltin dichloride without using an iodine-containing compound as a catalyst, the present inventors have found that dimethyltin dichloride can be obtained by using an organophosphorus compound as a catalyst. It came to.
[0005]
That is, the present invention is a method for synthesizing dimethyltin dichloride in which metal tin and methyl chloride are reacted in the presence of a catalyst, wherein the catalyst is an organophosphorus compound represented by the following general formula (I): And dimethyltin dichloride synthesis method.
[0006]
[Chemical 2]
Figure 0003849837
[Wherein R 1 , R 2 , R 3 and R 4 are alkyl groups or aryl groups having 1 to 24 carbon atoms, and X is chlorine or bromine]
[0007]
The organophosphorus compound is preferably added in an amount of 0.001 to 0.05 mol per gram atom of tin.
[0008]
Furthermore, the reaction is preferably performed at a reaction temperature of 100 to 300 ° C. and a reaction pressure of 1 to 10 MPa.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
In the present invention, an organophosphorus compound represented by the following general formula (I) is used as a catalyst during the synthesis of dimethyltin dichloride.
[0010]
[Chemical 3]
Figure 0003849837
[Wherein R 1 , R 2 , R 3 and R 4 are alkyl groups or aryl groups having 1 to 24 carbon atoms, and X is chlorine or bromine]
[0011]
Specific examples of the organic phosphorus compound include trimethylphosphine, triisopropyl-, tributyl-, tris-butyl-, trioctyl-, dibutyldodecyl-, dimethyloctadecyl-, triphenyl-, dibutylphenylphosphine, tetramethylphosphonium chloride. , Tetramethylphosphonium bromide, tetraethylphosphonium chloride, tetraethylphosphonium bromide, tetraisopropylphosphonium chloride, tetraisopropylphosphonium bromide, tetrabutylphosphonium chloride, tetrabutylphosphonium bromide, tetraoctylphosphonium chloride, tetraoctylphosphonium bromide, tetraoctadecylphosphonium chloride, tetra Octadecylphosphonium bromide Id, tetraphenylphosphonium chloride, tetraphenylphosphonium bromide, methyltriphenylphosphonium chloride, and the like methyltriphenylphosphonium bromide. Preferred examples of the compound include triphenylphosphine.
[0012]
Since these organophosphorus compounds do not have sublimation properties like iodine, even if a distillation method is used during purification after synthesis of dimethyltin dichloride, it is difficult to remain in the product dimethyltin dichloride. Things are obtained.
[0013]
The amount of the organophosphorus compound added is preferably 0.001 to 0.05 mol, more preferably 0.01 to 0.03 mol, per gram atom of tin. If it is used in an amount of more than 0.05 mol, a large amount of phosphorus component tends to remain in dimethyltin dichloride, which is not preferable. Further, an extremely low concentration of less than 0.001 mol is not preferable because the conversion rate of tin is lowered, and unreacted raw materials remain to reduce the yield of dimethyltin dichloride.
[0014]
Moreover, as a reaction medium, organic ether or a mixture of these with an aromatic hydrocarbon solvent or an aliphatic hydrocarbon solvent can be used. Specific examples include diethyl ether, dibutyl ether, tetrahydrofuran, etc. as organic ethers, benzene, toluene, xylene, etc. as aromatic hydrocarbon solvents, and hexane, heptane, octane, etc. as aliphatic hydrocarbon solvents. . Of these, ether compounds are preferable, and tetrahydrofuran is more preferable. The amount of the solvent to be used may be 0.01 to 10 times by weight with respect to the metal tin, and can be set to an easy-to-handle amount within this range depending on the reaction vessel and the like.
[0015]
The amount of methyl chloride added is preferably in the range of 2.0 to 4.0 moles per gram atom of tin, particularly preferably 2.4 to 2.8 moles. The formation of by-products represented by Using in this range (CH 3) n SnCl 4- n (n = 0,1,3,4) can be suppressed.
[0016]
The reaction temperature is preferably 100 to 300 ° C, more preferably 150 to 250 ° C. If the reaction temperature is less than 100 ° C., the reaction is difficult to proceed, and if it exceeds 300 ° C., a by-product tends to be generated, which is not preferable. The pressure is preferably 1 to 10 MPa, more preferably 2 to 4.5 MPa. If the pressure is less than 1 MPa, the reaction hardly proceeds, and if it exceeds 10 MPa, a by-product is generated, which is not preferable.
[0017]
The shape of metallic tin does not affect the properties of the dimethyltin dichloride produced, so that any shape can be used, but metallic tin with a large surface area is preferred. If such metal tin is used, the reaction can be completed quickly, and the process time can be shortened.
[0018]
【Example】
The synthesis method of dimethyltin dichloride of the present invention will be described in detail in the examples. However, the examples shown below are merely examples for embodying the present invention and do not restrict the present invention.
[0019]
Example 1
A pressure-resistant reaction vessel with an internal volume of 20 L is charged with 1600 g of fine tin pieces, 35.4 g of triphenylphosphine (0.01 mol per gram atom of tin), 1900 g of methyl chloride, and 720 mL of tetrahydrofuran, and 8 at a pressure of 3.7 MPa and a temperature of 165 ° C. Stirring with heating for hours, dimethyltin dichloride was obtained. 2946.5 g of the obtained dimethyltin dichloride was dissolved in 8.9 L of xylene, refluxed for 1.0 hour while heating, and then filtered before the solution was cooled. After cooling to room temperature to precipitate crystals, the crystals were filtered and dried to obtain 2799.2 g (purification yield 94.5%) of dimethyltin dichloride of the present invention. The analytical value of phosphorus of the obtained dimethyltin dichloride was 6.5 ppm. The analysis was performed using ICP.
[0020]
(Example 2)
A pressure-resistant reaction vessel having an internal capacity of 20 L is charged with 1600 g of fine tin pieces, 3.5 g of triphenylphosphine (0.001 mol per gram atom of tin), 1958 g of methyl chloride, and 742 mL of tetrahydrofuran, and at a pressure of 3.8 MPa and a temperature of 170 ° C. Stirring with heating for hours, dimethyltin dichloride was obtained. 2724 g of the obtained dimethyltin chloride was dissolved in 8.3 L of xylene and refluxed for 1.0 hour while heating, and then filtered before the solution was cooled. After cooling to room temperature to precipitate crystals, the crystals were filtered and dried to obtain 2590 g of dimethyltin dichloride of the present invention (purification yield: 87.5%). The analytical value of phosphorus of the obtained dimethyltin dichloride was 2.4 ppm.
[0021]
(Comparative Example 1)
A pressure-resistant reaction vessel having an internal volume of 20 L is charged with 1600 g of fine tin pieces, 135 g of butyl iodide, 3.2 g of magnesium, 1635 g of methyl chloride and 750 mL of tetrahydrofuran as an iodine-containing catalyst, and heated for 7 hours at a pressure of 3.35 MPa and a temperature of 170 ° C. Upon stirring, dimethyltin dichloride was obtained. The obtained dimethyltin dichloride (3.6 kg) was dissolved in xylene (8.2 L), refluxed for 0.5 hours with heating, and then filtered before the solution was cooled. After cooling to room temperature to precipitate crystals, the crystals were filtered and dried to obtain 2580 g of dimethyltin dichloride (purified yield: 87.4%). The obtained dimethyltin dichloride was tested for the presence or absence of iodine using an aqueous starch solution, and as a result, the aqueous starch solution turned blue-purple. The analytical value of iodine was 20 ppm. In addition, 1 wt% starch aqueous solution was used for the qualification of the iodine content contained in dimethyltin dichloride. Specifically, 3 g of dimethyltin dichloride was dissolved in 3 mL of water, and 0.2 mL of 1 wt% starch aqueous solution was added to observe the color change. If it is colorless, iodine does not exist (detection limit 0.01 ppm), and if it turns blue-purple, iodine is contained. The iodine was quantified by titration with an aqueous sodium thiosulfate solution using a 1 wt% starch aqueous solution as an indicator.
[0022]
【The invention's effect】
As explained above, in the method for synthesizing dimethyltin dichloride of the present invention, an organic phosphorus compound is used as a catalyst. Therefore, compared to the conventional case where an iodine-containing compound is used as a catalyst, the organophosphorus compound itself is cheaper, and an additional step such as recovery of the catalyst is not necessary, so the process is shortened. Cost is low.

Claims (1)

触媒の存在下で金属スズと塩化メチルとを反応させる二塩化ジメチルスズの合成方法において、前記触媒としてトリフェニルホスフィンのみをスズ1グラム原子当り0.001〜0.05モル添加し、前記反応は、反応温度150〜250℃、反応圧力2〜4.5MPaで行われ、反応に使用する溶媒の量は金属スズに対して重量比で0.01〜10倍であることを特徴とする二塩化ジメチルスズの合成方法。In the synthesis method of dimethyltin dichloride in which metal tin and methyl chloride are reacted in the presence of a catalyst, 0.001 to 0.05 mol of triphenylphosphine alone is added as the catalyst per gram atom of tin, Dimethyltin dichloride characterized in that it is carried out at a reaction temperature of 150 to 250 ° C. and a reaction pressure of 2 to 4.5 MPa, and the amount of solvent used for the reaction is 0.01 to 10 times by weight with respect to metal tin. Synthesis method.
JP35257499A 1999-12-08 1999-12-13 Synthesis method of dimethyltin dichloride Expired - Fee Related JP3849837B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35257499A JP3849837B2 (en) 1999-12-08 1999-12-13 Synthesis method of dimethyltin dichloride

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP34851099 1999-12-08
JP11-348510 1999-12-08
JP35257499A JP3849837B2 (en) 1999-12-08 1999-12-13 Synthesis method of dimethyltin dichloride

Publications (2)

Publication Number Publication Date
JP2001226384A JP2001226384A (en) 2001-08-21
JP3849837B2 true JP3849837B2 (en) 2006-11-22

Family

ID=26578760

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35257499A Expired - Fee Related JP3849837B2 (en) 1999-12-08 1999-12-13 Synthesis method of dimethyltin dichloride

Country Status (1)

Country Link
JP (1) JP3849837B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101318974B (en) * 2008-07-18 2012-06-13 湖北犇星化工有限责任公司 Process for synthesizing methyl tin chloride

Also Published As

Publication number Publication date
JP2001226384A (en) 2001-08-21

Similar Documents

Publication Publication Date Title
JPH08253486A (en) Production of pentafluorophenyl compound
JP3849837B2 (en) Synthesis method of dimethyltin dichloride
US6114558A (en) Preparation of alkyl(amino)dialkoxysilanes
JP4584588B2 (en) Grignard production of unsaturated organic compounds
KR940000060B1 (en) Synthesis method of acyl cyanide
US6353126B1 (en) Process for the production of malononitrile
KR100371312B1 (en) Preparation of alkyl(amino) dialkoxysilanes
JP4667593B2 (en) Process for producing 2-alkyl-2-adamantyl (meth) acrylates
US20060247457A1 (en) Method for the synthesis of methyl-tri-oxo-rhenium
GB1571581A (en) Process for the preparation of 2-halocyclobutanones and cyclopropane carbolic acids derived therefrom
CN112047829B (en) Synthesis method of alcaine intermediate 2- (4-ethyl-3-iodophenyl) -2-methylpropanoic acid
JP2573521B2 (en) P-tert-butoxyphenylalkyl alcohol and method for producing the same
US3405155A (en) Process for the preparation of diphenylsilanediol
IL99378A (en) Synthesis of monhaloalkanoyl-ferrocenes
EP0015606B1 (en) Process for the preparation of bis-(cyanoethyl)tin dihalides
JP4493805B2 (en) Method for producing high-purity benzoic acid derivative
JP4810111B2 (en) Method for producing alcoholate compound
EP1211256B1 (en) Method for purifying fluoroaryl metal compound
JP3962467B2 (en) Process for producing 1,4-dihydroxy-2-naphthoic acid aryl esters
TW201305104A (en) Isopropyl 3-chloro-4-methylbenzoate and method for producing same
JPH029889A (en) Preparation of alkylhalodisilane
JPS62132893A (en) Method for producing tetraorganophosphonium tetraarylborate
CA1057305A (en) Process for the preparation of diaminomaleonitrile
US20020065426A1 (en) Method for producing fluoroaryl metal compound
JPH01275590A (en) Method for producing alkyl dihalogenophosphane

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050112

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050311

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060502

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060530

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20060721

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060810

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060823

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090908

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090908

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100908

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100908

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110908

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110908

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120908

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120908

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120908

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120908

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees