[go: up one dir, main page]

JP3845770B2 - Protection device for power system and protection relay device using it - Google Patents

Protection device for power system and protection relay device using it Download PDF

Info

Publication number
JP3845770B2
JP3845770B2 JP2003356056A JP2003356056A JP3845770B2 JP 3845770 B2 JP3845770 B2 JP 3845770B2 JP 2003356056 A JP2003356056 A JP 2003356056A JP 2003356056 A JP2003356056 A JP 2003356056A JP 3845770 B2 JP3845770 B2 JP 3845770B2
Authority
JP
Japan
Prior art keywords
accident
section
calculation means
power system
constant calculation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003356056A
Other languages
Japanese (ja)
Other versions
JP2005124297A (en
Inventor
浩一 辻
英行 栗林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2003356056A priority Critical patent/JP3845770B2/en
Publication of JP2005124297A publication Critical patent/JP2005124297A/en
Application granted granted Critical
Publication of JP3845770B2 publication Critical patent/JP3845770B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/50Systems or methods supporting the power network operation or management, involving a certain degree of interaction with the load-side end user applications
    • Y04S10/52Outage or fault management, e.g. fault detection or location

Landscapes

  • Locating Faults (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Emergency Protection Circuit Devices (AREA)

Description

この発明は、事故点位置の標定計算速度を一層高速化することができる電力系統用の保護装置と、それを使用する保護リレー装置に関する。   The present invention relates to a protection device for an electric power system that can further increase the location calculation speed of an accident point position, and a protection relay device that uses the protection device.

キルヒホッフの第一法則、第二法則から導かれる方程式により、事故標定計算を高精度に実行することができるコンピュータ方式の電力系統の保護リレー装置が知られている(特許文献1)。このものは、系統構成に基づいて固定マトリックスを事前計算し、データサンプリングによって収集される系統の運転データに基づき、固定マトリックスを使用して事故点位置を高精度に標定することにより、あらゆる系統のあらゆる事故に対し、適確な系統保護機能を実現することができる。   2. Description of the Related Art A computer-based power system protection relay device capable of executing accident localization calculation with high accuracy by an equation derived from Kirchhoff's first law and second law is known (Patent Document 1). This system pre-calculates a fixed matrix based on the system configuration, and based on the operation data of the system collected by data sampling, uses the fixed matrix to locate the accident point position with high accuracy. An appropriate system protection function can be realized against any accident.

なお、系統の構成変化を検出して対応する固定マトリックスを抽出し、抽出された固定マトリックスを使用することによって、系統の構成変化に追随してダイナミックな系統保護機能を実現することができる(特許文献2)。
特開2002−64926号公報 特開2003−143747号公報
It is possible to realize a dynamic system protection function following the system configuration change by detecting the system configuration change, extracting the corresponding fixed matrix, and using the extracted fixed matrix (patent) Reference 2).
JP 2002-64926 A JP 2003-143747 A

かかる従来技術によるときは、事故点位置の標定計算は、たとえばNewton−Raphson法による繰返し計算を使用しているため、計算時間が過大になることがあるという問題があった。   In the case of such a conventional technique, there is a problem that the calculation time may be excessive because the location calculation of the accident point position uses, for example, a repeated calculation by the Newton-Raphson method.

そこで、この発明の目的は、かかる従来技術の問題に鑑み、事故点位置の近似解を求める線形一次解法(LE法)と、事故点位置の近似解を使用する補間法(FK法)とを併用することによって、繰返し計算を使用することなく、事故点位置の標定計算速度を格段に高速化することができる電力系統用の保護装置と、それを使用する保護リレー装置を提供することにある。   Therefore, in view of the problems of the prior art, an object of the present invention is to provide a linear primary solution (LE method) for obtaining an approximate solution of an accident point position and an interpolation method (FK method) using the approximate solution of an accident point position. It is to provide a protection device for a power system capable of remarkably increasing the location calculation speed of an accident point position without using iterative calculation, and a protection relay device using the same. .

かかる目的を達成するためのこの出願に係る第1発明の構成は、系統の設備データに基づいて固定マトリックスを計算して記憶する事前計算手段と、データサンプリングごとに作動する常時計算手段とを備えてなり、事前計算手段は、区間の中間地点を含む複数地点における事故点電流計算用の中間マトリックスを計算して記憶し、常時計算手段は、データサンプリングによって収集される系統の運転データに基づき、事前計算手段により記憶される固定マトリックス、中間マトリックスを使用して、キルヒホッフの第一法則、第二法則から導かれる基本式に基づき、区間の中間地点における事故点電流から事故点位置の近似解を求め、近似解の近傍の複数地点における事故点電流から区間の事故点位置を特定することをその要旨とする。ただし、電力系統用の保護装置とは、事故点位置を標定するフォールトロケータ装置や、事故時の系統擾乱に関する事故データ収集用のオシログラフ装置をいう。   The configuration of the first invention according to this application for achieving the object includes pre-calculation means for calculating and storing a fixed matrix based on facility data of the system, and constant calculation means that operates every data sampling. The pre-calculation means calculates and stores an intermediate matrix for calculating the accident point current at a plurality of points including the intermediate point of the section, and the constant calculation means is based on the operation data of the system collected by data sampling, Based on the basic equations derived from Kirchhoff's first law and second law, using the fixed matrix and the intermediate matrix stored by the pre-calculation means, the approximate solution of the accident point position can be calculated from the current at the middle point of the section. The gist is to determine the location of the fault point in the section from the fault point current at a plurality of points near the approximate solution. However, the protection device for the power system means a fault locator device for locating the accident point position or an oscillograph device for collecting accident data related to the system disturbance at the time of the accident.

なお、常時計算手段は、事故前の負荷電流を推定して更新記憶することができる。   The constant calculation means can estimate and store the load current before the accident.

また、常時計算手段には、事故区間判定手段を付設し、事故区間判定手段は、常時計算手段により特定される各区間の事故点位置と、各区間の健全線の事故点電流とに基づいて事故区間を判定することができる。   In addition, the constant calculation means is provided with an accident section determination means, and the accident section determination means is based on the accident point position of each section specified by the constant calculation means and the fault point current of the sound line of each section. Accident section can be determined.

第2発明の構成は、第1発明に係る電力系統用の保護装置と、常時計算手段からのトリップ指令によりトリップ信号を出力するトリップ信号出力手段とを備えることをその要旨とする。   The gist of the configuration of the second invention is that it includes the protection device for the power system according to the first invention and trip signal output means for outputting a trip signal in response to a trip command from the constant calculation means.

かかる第1、第2発明の構成によるときは、事前計算手段は、系統のインピーダンスを含む設備データが入力されると、それに基づいて、事故点位置に依存しない固定マトリックスを計算して記憶し、さらに、区間の中間地点を含む複数地点における事故点電流計算用の中間マトリックスを計算して記憶する。そこで、常時計算手段は、事前計算手段によりあらかじめ記憶される固定マトリックス、中間マトリックスを使用し、線形一次解法(LE法)、補間法(FK法)を適用することによって、区間の事故点位置を十分高速に演算して特定することができる。常時計算手段は、多大な演算時間を要する繰返し計算を実行する必要がないからである。   According to the configuration of the first and second inventions, when the facility data including the system impedance is input, the pre-calculation means calculates and stores a fixed matrix that does not depend on the accident point position based on the facility data. Further, an intermediate matrix for calculating the fault point current at a plurality of points including the intermediate point of the section is calculated and stored. Therefore, the constant calculation means uses the fixed matrix and the intermediate matrix stored in advance by the pre-calculation means, and applies the linear primary solution method (LE method) and the interpolation method (FK method), thereby determining the accident point position of the section. It can be specified by calculating at a sufficiently high speed. This is because the constant calculation means does not need to perform repetitive calculation that requires a large amount of calculation time.

なお、常時計算手段は、事前計算手段により記憶される区間の中間地点における事故点電流計算用の中間マトリックスを使用して中間地点における事故点電流を計算し、この事故点電流から事故点位置の近似解を求め(線形一次解法(LE法))、近似解の近傍の複数地点における事故点電流計算用の中間マトリックスを使用して複数地点における事故点電流を求め、これらの事故点電流から区間の事故点位置を特定することができる(補間法(FK法))。   The constant calculation means calculates the accident point current at the intermediate point using the intermediate matrix for calculating the accident point current at the intermediate point of the section stored by the prior calculation means, and the accident point position is calculated from this accident point current. Find an approximate solution (linear linear solution (LE method)), use the intermediate matrix for calculating the fault current at multiple points in the vicinity of the approximate solution, find the fault point current at multiple points, and use these fault point currents as the interval Can be specified (interpolation method (FK method)).

常時計算手段は、事故前の負荷電流を推定して更新記憶することにより、高価なテレメータ装置などを使用する必要がなく、完全な片端計測形の保護リレー装置を構成することができる。ただし、ここでいう「事故前」とは、たとえば事故発生の1サイクル前をいうものとする。   The constant calculation means estimates and updates the load current before the accident, so that it is not necessary to use an expensive telemeter device and the like, and a complete one-end measurement type protective relay device can be configured. However, “pre-accident” here means, for example, one cycle before the occurrence of the accident.

常時計算手段に付設する事故区間判定手段は、複数の区間を包含する多端子送電線を保護対象とするとき、送電線の分岐点の近傍で事故が発生した場合であっても、各区間の健全線の事故点電流の大きさを評価することにより、実際に事故が発生した区間を適確に判定して事故復旧作業の能率向上に貢献することができる。なお、事故区間判定手段は、健全線の事故点電流が小さい区間から順に事故区間の優先順位を設け、判定確度の順位付けをしてもよい。   The accident section determination means that is always attached to the calculation means, when a multi-terminal transmission line including a plurality of sections is to be protected, even if an accident occurs near the branch point of the transmission line, By evaluating the magnitude of the fault point current on the sound line, it is possible to accurately determine the section where the accident actually occurred and contribute to improving the efficiency of the accident recovery work. The accident section determination means may prioritize the accident sections in order from the section where the fault point current of the sound line is small, and may rank the determination accuracy.

第2発明の構成によるときは、トリップ信号出力手段を設けることによって、事故線を速やかにしゃ断して切り離し、事故をクリアすることができる。   According to the configuration of the second invention, by providing the trip signal output means, the accident line can be quickly cut off and disconnected, and the accident can be cleared.

発明の実施の形態BEST MODE FOR CARRYING OUT THE INVENTION

以下、図面を以って発明の実施の形態を説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

電力系統用の保護リレー装置10は、事前計算手段11、常時計算手段13、トリップ信号出力手段14、出力手段16を備えてなる(図1)。ただし、保護リレー装置10は、たとえば電源Gを含む送電端と、定電流負荷Lを含む受電端とを連系する2回線送電線L1 、L2 の保護用として使用するものとする(図2)。   The power system protection relay device 10 includes a pre-calculation unit 11, a constant calculation unit 13, a trip signal output unit 14, and an output unit 16 (FIG. 1). However, the protection relay device 10 is used for protection of the two-line transmission lines L1 and L2 that link the power transmission end including the power source G and the power reception end including the constant current load L, for example (FIG. 2). .

Figure 0003845770
る。なお、図2には、その他の符号の説明が併せて表示されている。
Figure 0003845770
The In FIG. 2, explanations of other symbols are also displayed.

Figure 0003845770
0の事前計算手段11に入力される(図1)。また、事前計算手段11の出力は、事前データ記憶手段12を介して常時計算手段13に接続されており、常時計算手段13には、
Figure 0003845770
Figure 0003845770
0 is input to the prior calculation means 11 (FIG. 1). The output of the advance calculation means 11 is connected to the constant calculation means 13 via the advance data storage means 12.
Figure 0003845770

常時計算手段13の一方の出力は、トリップ指令S1 としてトリップ信号出力手段14に入力されており、トリップ信号出力手段14の出力は、トリップ信号Sとして、送電線L1 、L2 の各送電端側の図示しないしゃ断器に導かれている。また、常時計算手段13の別の出力は、事故データ記憶手段15を介し、たとえばプリンタ装置、ディスプレイ装置などの出力手段16に接続されている。   One output of the constant calculation means 13 is input to the trip signal output means 14 as a trip command S1, and the output of the trip signal output means 14 is supplied as a trip signal S to the power transmission end side of each of the transmission lines L1 and L2. It is led to a circuit breaker (not shown). Further, another output of the constant calculation means 13 is connected to an output means 16 such as a printer device or a display device via the accident data storage means 15.

事前計算手段11は、図示しないデータ入力機器を介して送電線L1 、L2 のインピー

Figure 0003845770
、プログラムは、まず、図5−2の(2.5)式、図5−3の(3.8)〜(3.10)
Figure 0003845770
BWを計算し、固定マトリックスとして事前データ記憶手段12に記憶する(図3のプログラムステップ(1)、以下、単に(1)のように記す)。なお、図5−1〜7は、事前計算手段11、常時計算手段13によって実行される一連の計算内容の技術的根拠を数式により説明しており、この説明における各式の番号は、図5−1〜7に記載の各式番号に対
Figure 0003845770
(行列)、ベクトル量、スカラ量を表わす。 The pre-calculation means 11 inputs the impedances of the transmission lines L1 and L2 via a data input device (not shown)
Figure 0003845770
First, the program is expressed by equation (2.5) in FIG. 5-2 and (3.8) to (3.10) in FIG. 5-3.
Figure 0003845770
BW is calculated and stored in the pre-data storage means 12 as a fixed matrix (program step (1) in FIG. 3, hereinafter simply referred to as (1)). 5A to 7 illustrate the technical basis of a series of calculation contents executed by the pre-calculation unit 11 and the constant calculation unit 13 by mathematical formulas. -1 to 7 for each formula number
Figure 0003845770
(Matrix), vector quantity, scalar quantity.

つづいて、プログラムは、送電線L1 、L2 の亘長をたとえば10等分し、事故点位置

Figure 0003845770
を計算し、事故点電流計算用の中間マトリックスとして事前データ記憶手段12に記憶して終了する(2)。なお、事故点電流計算用の中間マトリックスには、事故点位置k=0
Figure 0003845770
トリックスとして必ず含まれるものとする。 Subsequently, the program divides the length of the transmission lines L1 and L2 into, for example, 10 equal parts,
Figure 0003845770
Is stored in the preliminary data storage means 12 as an intermediate matrix for calculating the fault point current, and the process ends (2). Note that the fault point position k = 0 is included in the intermediate matrix for calculating the fault point current.
Figure 0003845770
It must be included as a trick.

一方、常時計算手段13は、たとえば系統電圧波形の30°ごと、すなわち系統周波数の10倍以上の高頻度に設定されるデータサンプリングごとに起動され、図4のプログラムフローチャートに従って作動する。すなわち、常時計算手段13は、直近にサンプリン

Figure 0003845770
On the other hand, the constant calculation means 13 is activated, for example, every 30 ° of the system voltage waveform, that is, every time data sampling is set at a high frequency of 10 times or more of the system frequency, and operates according to the program flowchart of FIG. In other words, the constant calculation means 13
Figure 0003845770

プログラムは、まず、事故が継続中でないことを確認して(図4のプログラムステップ

Figure 0003845770
るに代えて、図示しないテレメータ装置を介してデータを送信し、常時計算手段13のデータサンプリングの対象としてもよい。 The program first confirms that the accident is not ongoing (program steps in Figure 4).
Figure 0003845770
Instead of this, data may be transmitted via a telemeter device (not shown), and the data may be constantly sampled by the calculation means 13.

つづいて、プログラムは、事前データ記憶手段12に記憶されている区間の中間地点における事故点電流計算用の中間マトリックスを使用して、(2.8)式に従って、送電線

Figure 0003845770
とに計算する(3)。さらに、プログラムは、たとえば0.05p.u.のしきい値を超える
Figure 0003845770
を特定する(4)。なお、プログラムは、送電線L1 、L2 の各線に事故がなければ(5)、そのまま終了して次の作動まで待機する。 Subsequently, the program uses the intermediate matrix for calculating the fault current at the intermediate point of the section stored in the pre-data storage means 12 and transmits the transmission line according to the equation (2.8).
Figure 0003845770
(3). In addition, the program exceeds the threshold of 0.05 p.u., for example.
Figure 0003845770
(4). If there is no accident on each of the transmission lines L1 and L2 (5), the program ends and waits for the next operation.

プログラムは、送電線L1 、L2 のいずれかの線に発生した事故を検出すると(5)、

Figure 0003845770
(4.5)式に従って事故点位置kの近似解を求める(7)。次に、プログラムは、(5.1)〜(5.7)式に従って、事故点位置kの近似解の近傍で補間法(FK法)を適用し、事故点位置kを特定する(8)。 When the program detects an accident that occurred on either of the transmission lines L1 and L2 (5),
Figure 0003845770
An approximate solution of the accident point position k is obtained according to equation (4.5) (7). Next, the program applies the interpolation method (FK method) in the vicinity of the approximate solution of the accident point position k according to the equations (5.1) to (5.7), and specifies the accident point position k (8). .

このようにして、常時計算手段13のプログラムは、図5−1〜7に示される一連の計算手順を適用することにより、キルヒホッフの第一法則、第二法則に基づいて定立される(1.7)式、(1.1)〜(1.4)式をベースとし、これらの式から導かれる(2.6)式、(3.7)式を基本式として、線形一次解法(LE法)、補間法(FK法)の各計算を経て事故点位置kを特定することができる。   In this way, the program of the constant calculation means 13 is established based on Kirchhoff's first law and second law by applying a series of calculation procedures shown in FIGS. 7) Based on the equations (1.1) to (1.4), and using the equations (2.6) and (3.7) derived from these equations as basic equations, linear linear solution (LE method) ) And the accident point position k can be specified through each calculation of the interpolation method (FK method).

つづいて、プログラムは、特定された事故点位置kが保護対象とする送電線L1 、L2 の区間内にあるか否かを判定し(9)、区間外であるときは、そのまま終了する。一方、プログラムは、事故点位置kが区間内にあるときは(9)、トリップ信号出力手段14に対してトリップ指令S1 を出力し(10)、トリップ信号出力手段14は、送電線L1 、L2 のうち、事故線を含む回線の送電端側のしゃ断器にトリップ信号Sを送出してトリップさせる。   Subsequently, the program determines whether or not the specified accident point position k is within the section of the transmission lines L1 and L2 to be protected (9), and when it is outside the section, the program ends. On the other hand, when the accident point position k is in the section (9), the program outputs a trip command S1 to the trip signal output means 14 (10), and the trip signal output means 14 transmits the transmission lines L1, L2 Among them, a trip signal S is sent to the circuit breaker on the power transmission end side of the line including the accident line to cause a trip.

その後、プログラムは、(2.8)、(2.9)式により、特定された事故点位置kに

Figure 0003845770
プログラムは、事故がしゃ断されるまで、この動作をデータサンプリングごとに繰り返す
Figure 0003845770
事故データとして収集し、事故データ記憶手段15に記憶させることができる。 After that, the program moves to the specified accident point position k according to equations (2.8) and (2.9).
Figure 0003845770
The program repeats this action for each data sampling until the accident is cut off
Figure 0003845770
It can be collected as accident data and stored in the accident data storage means 15.

Figure 0003845770
タを出力手段16に出力して(13)、終了する。
Figure 0003845770
Is output to the output means 16 (13), and the process ends.

他の実施の形態Other embodiments

常時計算手段13には、事故区間判定手段17を付設することができる(図6)。   Accident section determination means 17 can be attached to the constant calculation means 13 (FIG. 6).

常時計算手段13は、たとえば図7のように、複数の区間を有する多端子送電線を保護対象とするとき、各区間ごとに順次図4のプログラムステップ(1)〜(12)を実行する。この場合、送電線の分岐点の近傍で事故が発生すると、内部事故と判定される区間が複数個発生し、事故区間が特定できないことが生じ得る。そこで、常時計算手段13は、全区間について事故がしゃ断されると(図4のプログラムステップ(12)、(13))、事故区間判定手段17を起動し、事故区間判定手段17は、図8のプログラムフローチャートに従って作動する。   When the multi-terminal power transmission line having a plurality of sections is to be protected, for example, as shown in FIG. 7, the constant calculation means 13 sequentially executes the program steps (1) to (12) of FIG. 4 for each section. In this case, if an accident occurs in the vicinity of the branch point of the transmission line, a plurality of sections determined to be internal accidents may occur, and the accident section may not be specified. Therefore, when the accident is interrupted for all the sections (program steps (12) and (13) in FIG. 4), the constant calculation means 13 activates the accident section determination means 17, and the accident section determination means 17 It operates according to the program flowchart.

プログラムは、図4のプログラムステップ(8)において特定される各区間の事故点位置kが0≦k≦1+Δの範囲にある区間を抽出し(図8のプログラムステップ(1)、以下、単に(1)のように記す)、図5−2の(2.8)、(2.9)式に従って、その区

Figure 0003845770
│を算出する(2)。ただし、Δは、事故点位置kの許容誤差であり、たとえばΔ=0.05に設定する。また、h、hm は、それぞれ健全線の番号、本数であり、各健全線は、図4のプログラムステップ(4)により、事故線でない線として特定することができる。
Figure 0003845770
発生から約1サイクル程度経過後のあらかじめ定めるタイミングにおけるデータを使用することが好ましい。 The program extracts a section in which the accident point position k of each section specified in the program step (8) in FIG. 4 is in the range of 0 ≦ k ≦ 1 + Δ (program step (1) in FIG. 8). 1)), and according to equations (2.8) and (2.9) in FIG.
Figure 0003845770
│ is calculated (2). However, Δ is an allowable error of the accident point position k, and is set to Δ = 0.05, for example. H and hm are the number and number of sound lines, respectively, and each sound line can be specified as a line that is not an accident line by the program step (4) in FIG.
Figure 0003845770
It is preferable to use data at a predetermined timing after about one cycle has elapsed since the occurrence.

つづいて、プログラムは、すべての区間についてチェックを完了すると(3)、平均値ifaが最も小さい区間を事故区間と判定し(4)、事故区間と、事故区間における事故点位置kとに関する情報を出力手段16に出力して(5)、終了する。実際の事故区間をほぼ確実に特定することができるので、事故復旧作業の能率を大きく向上させることができる。 Subsequently, when the program completes the check for all the sections (3), it determines that the section having the smallest average value i fa is the accident section (4), and information on the accident section and the accident point position k in the accident section. Is output to the output means 16 (5), and the process ends. Since the actual accident section can be identified almost certainly, the efficiency of accident recovery work can be greatly improved.

なお、この発明の作動原理は、事故点位置kを標定するフォールトロケータ装置や、事故時の系統擾乱に関する事故データ収集用のオシログラフ装置などの電力系統用の保護装置に対しても、そのまま適用可能である。ただし、これらの用途には、常時計算手段13のトリップ指令の出力機能(図4のプログラムステップ(10))や、トリップ信号出力

Figure 0003845770
.7)式または(4.1)式に従って算出することができる。 The operating principle of the present invention is also applied to power system protection devices such as a fault locator device for locating the accident point position k and an oscillograph device for collecting accident data related to system disturbance at the time of the accident. Is possible. However, for these applications, the trip command output function (program step (10) in FIG. 4) of the constant calculation means 13 or the trip signal output
Figure 0003845770
. It can be calculated according to the equation (7) or (4.1).

全体ブロック系統図Overall block diagram 適用系統説明図Application system diagram プログラムフローチャート(1)Program flow chart (1) プログラムフローチャート(2)Program flow chart (2) 計算手順説明図(1)Calculation procedure explanatory diagram (1) 計算手順説明図(2)Calculation procedure explanatory diagram (2) 計算手順説明図(3)Calculation procedure explanatory diagram (3) 計算手順説明図(4)Calculation procedure explanatory diagram (4) 計算手順説明図(5)Calculation procedure explanatory diagram (5) 計算手順説明図(6)Calculation procedure explanatory diagram (6) 計算手順説明図(7)Calculation procedure explanatory diagram (7) 他の実施の形態を示す要部ブロック系統図Main part block system diagram showing another embodiment 他の実施の形態を示す適用系統図Application system diagram showing another embodiment 他の実施の形態を示すプログラムフローチャートProgram flow chart showing another embodiment

符号の説明Explanation of symbols

k…事故点位置

Figure 0003845770
S1 …トリップ指令
S…トリップ信号
10…保護リレー装置
11…事前計算手段
13…常時計算手段
14…トリップ信号出力手段
17…事故区間判定手段

特許出願人 辻 浩 一
株式会社 キューキ
代理人 弁理士 松 田 忠 秋 k ... Accident point location
Figure 0003845770
DESCRIPTION OF SYMBOLS S1 ... Trip command S ... Trip signal 10 ... Protection relay apparatus 11 ... Prior calculation means 13 ... Constant calculation means 14 ... Trip signal output means 17 ... Accident section judgment means

Patent applicant Koichi Tsuji
Kuki Corporation
Attorney Tadaaki Matsuda, Attorney

Claims (4)

系統の設備データに基づいて固定マトリックスを計算して記憶する事前計算手段と、データサンプリングごとに作動する常時計算手段とを備えてなり、前記事前計算手段は、区間の中間地点を含む複数地点における事故点電流計算用の中間マトリックスを計算して記憶し、前記常時計算手段は、データサンプリングによって収集される系統の運転データに基づき、前記事前計算手段により記憶される固定マトリックス、中間マトリックスを使用して、キルヒホッフの第一法則、第二法則から導かれる基本式に基づき、区間の中間地点における事故点電流から事故点位置の近似解を求め、近似解の近傍の複数地点における事故点電流から区間の事故点位置を特定することを特徴とする電力系統用の保護装置。   A pre-calculation unit that calculates and stores a fixed matrix based on facility data of the system; and a constant calculation unit that operates every time data sampling is performed, and the pre-calculation unit includes a plurality of points including intermediate points of the section. An intermediate matrix for calculating the current at the fault point is calculated and stored, and the constant calculation means stores the fixed matrix and the intermediate matrix stored by the pre-calculation means based on the system operation data collected by data sampling. Based on the basic equations derived from Kirchhoff's first law and second law, an approximate solution of the accident point position is obtained from the accident point current at the middle point of the section, and the accident point currents at multiple points near the approximate solution are used. A device for protecting a power system, characterized in that the position of an accident point in a section is specified. 前記常時計算手段は、事故前の負荷電流を推定して更新記憶することを特徴とする請求項1記載の電力系統用の保護装置。   2. The power system protection device according to claim 1, wherein the constant calculation means estimates and updates a load current before an accident. 前記常時計算手段には、事故区間判定手段を付設し、該事故区間判定手段は、前記常時計算手段により特定される各区間の事故点位置と、各区間の健全線の事故点電流とに基づいて事故区間を判定することを特徴とする請求項1または請求項2記載の電力系統用の保護装置。   The constant calculation means is provided with accident section determination means, and the accident section determination means is based on the fault point position of each section specified by the constant calculation means and the fault point current of the healthy line of each section. 3. The power system protection device according to claim 1, wherein an accident section is determined. 請求項1ないし請求項3のいずれか記載の電力系統用の保護装置と、前記常時計算手段からのトリップ指令によりトリップ信号を出力するトリップ信号出力手段とを備えてなる電力系統用の保護リレー装置。   4. A power system protection relay device comprising: the power system protection device according to claim 1; and trip signal output means for outputting a trip signal in response to a trip command from the constant calculation means. .
JP2003356056A 2003-10-16 2003-10-16 Protection device for power system and protection relay device using it Expired - Fee Related JP3845770B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003356056A JP3845770B2 (en) 2003-10-16 2003-10-16 Protection device for power system and protection relay device using it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003356056A JP3845770B2 (en) 2003-10-16 2003-10-16 Protection device for power system and protection relay device using it

Publications (2)

Publication Number Publication Date
JP2005124297A JP2005124297A (en) 2005-05-12
JP3845770B2 true JP3845770B2 (en) 2006-11-15

Family

ID=34613421

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003356056A Expired - Fee Related JP3845770B2 (en) 2003-10-16 2003-10-16 Protection device for power system and protection relay device using it

Country Status (1)

Country Link
JP (1) JP3845770B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4490758B2 (en) * 2004-08-12 2010-06-30 浩一 辻 Accident identification device for power transmission system
JP4700461B2 (en) * 2005-09-27 2011-06-15 浩一 辻 Accident identification device for power distribution system
JP2013031332A (en) * 2011-07-29 2013-02-07 Kyuden Technosystems Corp Accident identification device for power transmission system
CN104332971A (en) * 2014-11-12 2015-02-04 国家电网公司 Grid line wide-area backup protection method applicable to double-line tripping
CN104332972A (en) * 2014-11-12 2015-02-04 国家电网公司 Grid line wide-area backup protection method applicable to single-line tripping

Also Published As

Publication number Publication date
JP2005124297A (en) 2005-05-12

Similar Documents

Publication Publication Date Title
EP3539032A1 (en) Traveling wave based single end fault location
US7283915B2 (en) Method and device of fault location
CN106199329B (en) Fault location for DC distribution systems
CN101539607B (en) Method for grounding and selecting lines of low-current grounding system and device
Aurangzeb et al. Fault location using the high frequency travelling waves measured at a single location on a transmission line
CN108139432B (en) Method for correcting saturation effect in current transformer and intelligent electronic equipment thereof
EP3093675A1 (en) Improvements in or relating to direct current protection schemes
JP6767478B2 (en) Improvements to the DC distance protection controller or related improvements
EP0459522A2 (en) Fault location method for a parallel two-circuit transmission line with N terminals
EP2682768B1 (en) Method and apparatus for determining the distance to phase-to-earth fault
JP3845770B2 (en) Protection device for power system and protection relay device using it
CA2446876A1 (en) Protection of an electric power transmission network
JP2012198134A (en) Fault point locating device and program
CN113655343B (en) Power distribution network single-phase earth fault positioning method, device, equipment and storage medium
EP2544014A1 (en) A method of selecting between faulted and healthy circuits in parallel lines using one-end measurements
JPWO2017141430A1 (en) Accident waveform recorder
JP2009165235A (en) Digital current differential protective relay
JP2008154362A (en) Power system state estimation apparatus and method
JP2009216587A (en) Transmission line failure location indicating method, apparatus and program
JP5089142B2 (en) Accident determination device, method and program
JP3451552B2 (en) Protection relay device for power system
CN113671309B (en) Fault point detection and location method for distribution network
JP4490758B2 (en) Accident identification device for power transmission system
CN103248021B (en) A Lossy Transmission Line Voltage Traveling Wave Protection Method
JP4058738B2 (en) Accident identification device for power distribution system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050411

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060721

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060801

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060807

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100901

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100901

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110901

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110901

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120901

Year of fee payment: 6

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120901

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120901

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130901

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees