JP3844577B2 - 回転機 - Google Patents
回転機 Download PDFInfo
- Publication number
- JP3844577B2 JP3844577B2 JP33581097A JP33581097A JP3844577B2 JP 3844577 B2 JP3844577 B2 JP 3844577B2 JP 33581097 A JP33581097 A JP 33581097A JP 33581097 A JP33581097 A JP 33581097A JP 3844577 B2 JP3844577 B2 JP 3844577B2
- Authority
- JP
- Japan
- Prior art keywords
- stator
- rotor
- rotating machine
- poles
- width
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/64—Electric machine technologies in electromobility
Landscapes
- Brushless Motors (AREA)
- Permanent Magnet Type Synchronous Machine (AREA)
Description
【発明の属する技術分野】
本発明は、モータあるいはジェネレータとして用いられる3相同期式の回転機に関し、とくに、電気自動車用のモータあるいはジェネレータに好適な回転機に関するものである。
【0002】
【従来の技術】
回転機であるモータやジェネレータは幅広い産業分野で使用されている。そのなかで、とくに電気自動車では、充電一回あたりの走行距離を延ばす必要性から高効率のモータやジェネレータが要求されている。また、主動力にエンジンを使用し、補助動力にモータを使用することによって燃費の向上などを図ったハイブリッド電気自動車の開発も進められており、そこで要求されるモータやジェネレータも高効率なものである。電気自動車用のモータとしては、例えば永久磁石式同期モータが開発されており、運転領域によっては効率90%以上が達成されている。
【0003】
また、電気自動車に用いるモータやジェネレータは、高効率ばかりでなくコンパクトで軽いことも重要である。コンパクト化を達成するにはステータの巻線を分布巻から集中巻にする技術があり、一部のモータやジェネレータでは既に採用されている。さらに、磁場解析を使ったステータやロータの最適形状の追求もなされており、このほか、磁石適用技術の開発、鉄損の解析、銅損の解析および熱の解析等も追求されている。
【0004】
上記したような各技術は、97磁気応用技術シンポジウム(1997年4月社団法人・日本能率協会開催)のP.6−2−1三浦徹也,『EV用PMモータ』および97モータ技術シンポジウム(1997年4月社団法人・日本能率協会開催)のP.A−2−1−1武田洋次,『リラクタンストルク併用PMモータの動向』や、竹内学他,『ACサーボモータ“MINAS“シリーズ』National Technical Report,vol.40,No.5,Oct.1994,P.541(松下電器産業株式会社発行)に記載されている。
【0005】
従来における回転機の具体例としては、図7(a),(b)に示すようなモータ100があった。モータ100は、環状のステータ101とその中心に配置されたロータ102を備えている。ステータ101は、バックヨーク部103の内側に6つの極A1〜A6を等間隔に備えている。各極A1〜A6は、図示しない集中巻の巻線が施される胴部104と、胴部104の先端に設けた歯部105で構成してある。他方、ロータ102は、表面磁石型と呼ばれるものであって、中心のロータヨーク部106の外周に、N極とS極を交互に配置した4つの磁極B1〜B4を備えている。このモータ100は、ステータ101の各極A1〜A6とロータ102との隙間であるギャップの幅Lが一様になっている。
【0006】
【発明が解決しようとする課題】
ところで、上記したようなモータ100には、例えばNd−Fe−B磁石が用いられている。この磁石の場合、熱減磁の問題があることから、100℃を目安としてそれ以上の温度にならない設計および使い方をしている。また、モータ100のトルクの増大を図るには、モータの軸方向の長さを増大させることが挙げられるが、この場合には熱的により厳しいものとなる。つまり、この種のモータ100にあっては、熱的な設計および使い方に対する配慮が重要である。
【0007】
さらに、上記したようなモータ100では、高回転を実現するためには周波数の高い駆動電源回路が必要であり、これによりコスト的にも高いものとなる。しかも、従来のモータ100にあっては、ステータ101とロータ102のギャップの幅Lが一様であり、且つ低速でのトルクも必要であるためにギャップの幅Lを0.1〜1.0mmと小さくしている。このため、回転数が上がったときの誘導起電力が高くなるので、駆動電圧を高くする必要があり、これにより駆動電源回路の耐電圧対策も必要となることから、かなり高級な駆動電源回路となっており、場合によっては、最高回転数や定格出力が小さく制限されるといった不具合も生じていた。
【0008】
【発明の目的】
本発明は、上記従来の状況に鑑みて成されたもので、3相同期式の回転機において、冷却効率の向上を実現することができると共に、高回転および低回転のいずれにも対処可能であるうえにコストの低下なども実現することができる回転機を提供することを目的としている。
【0009】
【課題を解決するための手段】
本発明に係わる回転機は、請求項1として、集中巻の巻線を有するステータと磁石を有するロータを備えた3相同期式の回転機において、ステータとロータのギャップの幅がステータの各極によって大小に異なり、全ての極に通電する機能と、ギャップの幅が大きい極のみに通電する機能とを有する構成とし、請求項2として、小さいギャップの幅L1が0.1〜1.0mmであると共に、大きいギャップの幅L2がL1×2である構成とし、請求項3として、大小の幅のギャップを軸回りに各々均等に配置した構成とし、請求項4として、ステータの極数が6の倍数であると共に、ロータの磁極数がステータの極数の3分の2である構成とし、請求項5として、ロータの端面に空気撹拌用のフィンを設けた構成とし、請求項6として、ロータに相対向するステータの極の先端面に、軸方向一端部の角から軸方向他端部に至る傾斜線を境にしてロータに対して後退する段部が形成された回転機であって、この段部の軸方向他端部における軸回り方向の長さが、軸方向に連続的に変化している構成とし、請求項7として、ロータに相対向するステータの極の先端面に、軸方向一端部の角から軸方向他端部へ至る傾斜線を境にしてロータに対して小さいギャップの幅L1分後退する段部を設けると共に、先端面の軸回り方向の長さtwに対して軸方向他端部における段部の軸回り方向の長さを1/2tw〜twとした構成とし、請求項8として、傾斜線の傾斜方向をステータの隣接する極同士で逆向きにした構成としており、上記の構成を課題を解決するための手段としている。
【0010】
【発明の作用】
本発明の請求項1に係わる回転機では、集中巻の巻線を有するステータと磁石を有するロータを備えた3相同期式の回転機において、ステータとロータのギャップの幅をステータの各極によって大小に異ならせているので、これにより通風性が良好なものになり、また、当該回転機では、全ての極に通電する機能と、ギャップの幅が大きい極のみに通電する機能とを有しており、ステータの全ての極に通電をすることによりロータを低回転させ、また、ギャップの幅が大きい極のみに通電することによりロータを高回転させる。すなわち、モータの回転数N(rpm)は、駆動電源回路の最高周波数をfo(Hz)とし、ステータの極数をPとすると、N=120fo/Pの関係にある。したがって、ギャップの幅が大きい極のみへの通電つまり励磁する極の数を減らすことにより、駆動電源回路の最高周波数foを変えることなく回転数Nが増加する。しかも、当該回転機では、高回転の際には、極数が減ることによりトルクも減少するが、大きい幅のギャップによって冷却効率が高められるので定格電流を増すことが可能となり、結果としてトルクの減少は防止される。さらに、高回転の際にギャップの幅が大きい極を用いることから、誘導起電力の増加が抑制され、これにより駆動電圧を増加させる必要がなくなるので、駆動電源回路の耐電圧対策も容易なものとなる。
【0011】
本発明の請求項2に係わる回転機では、小さいギャップの幅L1を0.1〜1.0mmにすると共に、大きいギャップの幅L2をL1×2としているので、性能を低下させることのない適切な幅のギャップとなり、しかも、良好な通風性が得られる。
【0012】
本発明の請求項3に係わる回転機では、大小の幅のギャップを軸回りに各々均等に配置しているので、通風性が良好なものになると共に、ステータの各極への通電制御による低回転および高回転の実施により適した構造となる。
【0013】
本発明の請求項4に係わる回転機では、ステータの極数を6の倍数にすると共に、ロータの磁極数をステータの極数の3分の2としたので、ステータの各極への通電制御による低回転および高回転の実施により一層適した構造となる。
【0014】
本発明の請求項5に係わる回転機では、ロータの端面に空気撹拌用のフィンを設けたので、ロータの回転に伴ってフィンでモータ内の空気が撹拌され、これにより冷却効率がより高められる。
【0016】
本発明の請求項6に係わる回転機では、ロータとステータの極のギャップが軸方向に連続的に変化しているので、これにより誘導起電力波形が改善される。すなわち、起電力波形には高調波が含まれており、この高調波成分は小さい方が良い。このとき、3相方式の回路では、Y結線することから3次高調波は消すことができるが、5,7次高調波は消すことができない。そこで、当該回転機では、ロータとステータの極のギャップを軸方向に連続的に変化させ、これにより5,7次高調波成分を減少させる。
【0017】
本発明の請求項7に係わる回転機では、ロータに相対向するステータの極の先端面に、軸方向一端部の角から軸方向他端部へ至る傾斜線を境にしてロータに対して小さいギャップの幅L1分後退する段部を設けることにより、ロータとステータの極のギャップが軸方向に連続的に変化することとなり、これにより誘導起電力波形が改善される。また、ステータの極において、先端面の軸回り方向の長さtwに対して軸方向他端部における段部の軸回り方向の長さを1/2tw〜twとしたことにより、5,7次高調波成分が大幅に減少する。
【0018】
本発明の請求項8に係わる回転機では、傾斜線の傾斜方向をステータの隣接する極同士で逆向きにしたことにより、請求項8と同様に、ロータとステータの極のギャップが軸方向に連続的に変化することとなり、これにより誘導起電力波形が改善される。
【0019】
【発明の効果】
本発明の請求項1に係わる回転機によれば、ステータとロータのギャップの幅をステータの各極によって大小に異ならせたことから、通風性が良好なものとなって冷却効率を大幅に向上させることができ、熱的に楽になるので、例えば、定格出力の制限を緩和したり、トルク増大のために軸方向長さの増大を図ったりすることもできる。また、ステータの全ての極に通電をすることによるロータの低回転と、ギャップの幅が大きい極のみに通電することによるロータの高回転とを行うことができ、しかも、駆動電源回路の最高周波数を変えることなく高回転を行うことができる。また、当該回転機によれば、高回転の際には、大きい幅のギャップによる冷却効率の向上と相俟って定格電流を増すことができるので、これによりトルクの減少を防止することができ、さらに、高回転の際にギャップの幅が大きい極を用いることから、誘導起電力の増加を抑制するとともに駆動電圧の増加を不要にし、駆動電源回路の耐電圧対策や熱対策を容易にすることができ、これにより駆動電源回路の大幅な高級化を不要にして、コストの大幅な低下なども実現することができる。
【0020】
本発明の請求項2に係わる回転機によれば、請求項1と同様の効果を得ることができるうえに、小さいギャップの幅L1を0.1〜1.0mmにすると共に、大きいギャップの幅L2をL1×2としたことから、性能を低下させることのない適切な幅のギャップを得ることができる。
【0021】
本発明の請求項3に係わる回転機によれば、請求項1および2と同様の効果を得ることができるうえに、大小の幅のギャップを軸回りに各々均等に配置したことから、通風性をより良好なものにすることができると共に、ステータの各極への通電制御による低回転および高回転の実施により適した構造を得ることができる。
【0022】
本発明の請求項4に係わる回転機によれば、請求項1〜3と同様の効果を得ることができるうえに、ステータの各極への通電制御による低回転および高回転の実施により一層適した構造を得ることができる。
【0023】
本発明の請求項5に係わる回転機によれば、請求項1〜4と同様の効果を得ることができるうえに、ロータの端面に設けた空気撹拌用のフィンにより、ロータの回転時における冷却効率をより一層高めることができる。
【0025】
本発明の請求項6に係わる回転機によれば、請求項1〜5と同様の効果を得ることができるうえに、起電力波形に含まれる5,7次高調波成分を減少させることができ、これにより誘導起電力波形を改善して作動時のロスを軽減することができる。
【0026】
本発明の請求項7に係わる回転機によれば、請求項6と同様に、起電力波形に含まれる5,7次高調波成分を大幅に減少させることができ、これにより誘導起電力波形を改善して作動時のロスを大幅に軽減することができる。
【0027】
本発明の請求項8に係わる回転機によれば、請求項6と同様に、起電力波形に含まれる5,7次高調波成分を大幅に減少させることができ、これにより誘導起電力波形を改善して作動時のロスを大幅に軽減することができる。
【0028】
【実施例】
図1および図2は、本発明の請求項1〜5に係わる回転機の一実施例を説明する図である。この実施例の回転機は3相同期式のモータであって、図1はそのモータを展開した状態で示している。したがって、実際には、中心Cが点であると共に、左右の端部Z,Zが連続した状態となる。
【0029】
モータ1は、環状のステータ2と、その中心に配置されたロータ3を備えている。ステータ2は、外周を構成するバックヨーク部4の内側に、6の倍数分の極を突出状態に備えたものであって、この実施例の場合には12の極A1〜A12を備えている。各極A1〜A12は、図示しない集中巻の巻線が施される胴部5と、胴部5の先端に設けた歯部6で構成してある。
【0030】
他方、ロータ3は、表面磁石型と呼ばれるものであって、回転自在に支持される中心のロータヨーク部7の外周に、ステータ2の極数の3分の2に相当する磁極数つまりN極とS極を交互に配置した8つの磁極B1〜B8を備えている。
【0031】
上記モータ1は、ステータ2とロータ3のギャップの幅がステータ2の各極A1〜A12によって大小2種類に異なっており、このとき、小さいギャップの幅L1を0.1〜1.0mmとすると共に、大きいギャップの幅L2をL1×2としている。図1ではギャップの幅L1,L2を誇張して表している。なお、ギャップの小さい幅L1を0.1〜1.0mmとしたのは、0.1mmよりも小さくすると、例えば、ロータ3のアラインメントなどの関係により寸法精度を維持するのが難しくなり、コスト的にも高いものとなるからであり、また、1.0mmよりも大きくすると、低回転時における性能の低下が生じる恐れがあるからである。
【0032】
また、モータ1は、上記した大小の幅L1,L2のギャップを軸回りに各々均等に配置した構成にしてあり、この実施例では、大小の幅L1,L2のギャップが交互に配置してある。つまり、ステータ2の各極A1〜A12の突出長さが軸回りに交互に異なっている。
【0033】
さらに、モータ1は、図1中に仮想線で示す如く、ロータ3の端面に空気撹拌用のフィン8が設けてある。この実施例では、ロータ3のロータヨーク部7の端面に、90度間隔で4枚のフィン8を放射状に設けている。なお、フィン8は、ロータ3の図示しない反対側の端面に設けてもよい。また、フィン8をロータ3の両端面に設けることもできる。
【0034】
モータ1は、上記構成のほか、モータケース、出力軸および駆動電源回路などを備えており、ギャップの幅が小さい極A1,A3,A5,A7,A9,A11への通電機能と、ギャップの幅が大きい極A2,A4,A6,A8,A10,A12への通電機能を有している。
【0035】
上記の構成を備えたモータ1は、ステータ2とロータ3のギャップの幅L1,L2をステータ2の各極A1〜A12によって大小に異ならせ且つこれを交互に配置しているので、これにより通風性が良好なものとなっており、しかも、ロータ3の端面に設けたフィン8によりモータ1内の空気の撹拌が行われるので、大きい幅L2のギャップとフィン8とによって冷却効率が大幅に高められる。
【0036】
また、上記モータ1は、ステータ2の全ての極A1〜A12に通電をすることによりロータ3を低回転させ、また、ギャップの幅が大きい極A2,A4,A6,A8,A10,A12のみに通電することによりロータ3を高回転させる。
【0037】
すなわち、モータ1の回転数N(rpm)は、駆動電源回路の最高周波数をfo(Hz)とし、ステータ2の極数をPとすると、N=120fo/Pの関係にある。したがって、全ての極A1〜A12に通電をした場合には、P=12であるから、モータ1の回転数Nは10・fo(rpm)であり、ギャップの幅が大きい極A2,A4,A6,A8,A10,A12のみへの通電つまり励磁する極の数を半分(P=6)にすることにより、モータ1の回転数は20・fo(rpm)となる。このように、当該モータ1では、最高周波数foを変えることなく回転数Nを2倍にし得ることとなる。
【0038】
さらに、モータ1では、高回転の際には、極数が半分になることによりトルクも減少するが、大きい幅L2のギャップおよびフィン8によって冷却効率が高められているので定格電流を増すことが可能となり、結果としてトルクの減少は防止される。また、高回転の際にギャップの幅が大きい極A2,A4,A6,A8,A10,A12を用いることから、誘導起電力の増加が抑制され、これにより駆動電圧を増加させる必要がなくなるので、駆動電源回路の耐電圧対策も容易なものとなる。
【0039】
ここで、上記構成のモータ1を以下の要領で作成して、試験を行った。
【0040】
ステータ2は、分割コアとして作成した。まず、厚さ0.35mmの無方向性ケイ素鋼板をワイヤカットして、図2に示すように、ヨーク形成部10a、胴形成部10bおよび歯形成部10cを有するプレート10を形成した。なお、大小のギャップの幅に対応して、胴形成部の長さが大小2種類に異なるプレート10を所定枚数作成した。
【0041】
次に、上記のプレート10を130枚重ねて、ヨーク形成部10aの外周側中央部W1および歯形成部10cの内周側中央部W2にYAGレーザを用いたスポット溶接を施すことにより、全プレート10を固定してバックヨーク部4、胴部5および歯部6を有する1極分のコアを作成した。コアは、胴部5の長さが大小に異なるものを6個ずつ作成した。その後、各コアにおいて、歯部6および胴部5に、絶縁紙を介して、直径1.2mmのマグネットワイヤを150回巻いてコイルを形成した。そして、胴部5の長さが異なるコアを円周方向に交互に配置して、各バックヨーク部4をスポット溶接で連結することにより、ステータ2を作成した。
【0042】
ステータ2は、外径が159mm、胴部5の短い極の内径が75mm、胴部5の長い極の内径が74mm、軸方向の長さが45.6mm、バックヨーク部4の直径方向の幅が9.5mm、胴部5の円周方向の幅が9mmである。
【0043】
上記ステータ2に対して、ロータ3は、S40Cの生材を円筒状に加工して、外径67mmおよび軸方向の長さ46mmのロータヨーク部7を形成した。磁石(B1〜B8)は、Nd−Fe−B磁石であって、外径73mm、内径67mmおよび軸方向長さ23mmの焼結リング磁石を2個用い、これらの磁石をロータヨーク部7の外周に接着剤で固定した後、着磁して8つの磁極B1〜B8とした。
【0044】
これにより、ステータ2とロータ3との間に形成されるギャップは、小さい幅L1を0.5mmとし、大きい幅L2を1.0mmとした。
【0045】
なお、2次元の磁場解析の結果、ステータ2は、歯部6における胴部5側の面を傾斜させた形状が良いことが判明したため、図2に示す形態のプレート10を用いて作成した。
【0046】
また、同磁場解析により磁石の動作点を決定した。磁石の残留磁束密度Brが10.6kG、リコイル透磁率が1.05であったので、これらの値を用いて解析を行った。その結果、全ての極A1〜A12への通電による低回転運転時のトルク係数の設計値は0.57kgf・cm/Aとなり、回転数Nが1200rpmで24Aの電流を供給したときの出力は約168Wと見積もられた。このとき、電流24Aはモータ1に流す総電流の値である。
【0047】
なお、比較のために、ステータとロータのギャップの幅を全て0.75mmとして、他の部位を全て同一としたモータを作成した。このモータのトルク定数の設計値も0.57kgf・cm/Aであり、回転数Nが1200rpmで24Aの電流を供給したときの出力は約168Wと見積もられた。
【0048】
実施例のモータ1と比較例のモータについて、フィン8の無いものと有るものとについて、低回転試験を行った。その結果、いずれのモータもトルク定数はほぼ設計値通りであった。また、温度上昇の飽和値を調べるためにステータの温度を測定した。その結果を次の表に示す。
【0049】
【0050】
上記の試験結果および表から明らかなように、実施例のモータ1は、ステータ2の各極A1〜A12によりギャップに大小の幅を設けたことにより、ギャップの幅が一様である比較例のモータと同様のトルク定数および出力を得ることができるうえに、フィン8が無い場合でもフィンが有る比較例のモータよりも温度上昇が小さく、フィン8を設ければさらに温度上昇が小さくなる。つまり、大きい幅L2のギャップおよびフィン8により冷却効率が高められており、さらには比較例よりも定格の大きいモータであることが確認できた。
【0051】
次に、実施例のモータ1において、ギャップの大きい幅L2の極A2,A4,A6,A8,A10,A12のみに通電をすることにより高回転運転の試験を行った。その結果、低回転運転時と同じ駆動電源の周波数fo(120Hz)により、回転数Nが倍の2400rpmとなり、出力が337Wとなり、その際のトルク定数は0.26kgf・cm/Aであった。
【0052】
すなわち、実施例のモータ1は、ステータ2の各極A1〜A12への通電制御を行い、回転数が1200rpm以下ではステータ2の12の極A1〜A12を用いて運転し、回転数が1200rpm以上ではギャップの大きい幅の極A2,A4,A6,A8,A10,A12を用いて運転すれば良く、高回転時にはトルク定数が低回転時の約2分の1になるが、先述したように冷却効率が高められており、表に示されるように温度上昇には余裕があるので、低回転時の約2倍の電流を供給することが可能であり、これにより高回転時のトルク定数を低回転時とほぼ同一にし得ることとなる。
【0053】
なお、一般に、電流を2倍にすると銅損が4倍になるが、この実施例のモータ1では電流を2倍にする高回転時にはステータ2の極数が半分になるので、銅損を2倍に抑えることができる。
【0054】
図3および図4は、本発明の請求項6〜8に係わる回転機の一実施例を説明する図である。なお、回転機は先の実施例と同様のモータ(図1参照)であり、主要な構成は同一である。
【0055】
この実施例のモータは、ロータとステータの極のギャップが軸方向に連続的に変化した状態になっている。つまり、モータを作動させる起電力の波形には高調波が含まれており、この高調波成分は小さい方が良い。このとき、3相方式の回路では、Y結線することから3次高調波は消すことができるが、5,7次高調波は消すことができない。そこで、当該回転機では、ギャップを軸方向に連続的に変化させ、これにより5,7次高調波成分を減少させている。
【0056】
ギャップを軸方向に連続的に変化させるには、図3および図4(a)に示すように、ロータに相対向するステータ2の極の先端面つまり歯部6の先端面に、軸方向一端部(図3(b)では上端部)の角から軸方向他端部へ至る傾斜線Kを境にしてロータに対して後退する段部9を形成している。
【0057】
段部9の段差寸法L3は、先の実施例で説明した小さいギャップの幅L1と同一である。また、段部9は、極の先端面の軸回り方向の長さをtwとしたとき、軸方向他端部における軸回り方向の長さL4を1/2tw〜twの範囲をとしており、この実施例では同長さL4を1/2twとしている。これにより、モータは、ギャップが軸方向に連続的に変化している状態となっている。
【0058】
上記の段部9を有するモータを2次元の磁場解析で検討した結果、起電力波形における5,7次高調波成分が10%未満にできることが判明し、試験を行った結果、5,7次高調波成分が5%程度であることが確認できた。
【0059】
また、図4(b)に示すように、傾斜線Kの傾斜方向ならびに段部9をステータの隣接する極A1〜A12同士で逆向きにした構成とし、同様の解析および試験を行ったところ、上記実施例と同様の効果が得られることを確認した。
【0060】
図5は、本発明の請求項1〜5に係わる回転機の他の実施例を説明する図である。なお、回転機は先の実施例と同様にモータである。
【0061】
この実施例のモータ11は、ステータ2の極数およびロータ3の磁極数は先の実施例と同様であるが、大小の幅のギャップを軸回りに各々均等に配置した構成として、先の実施例では大小の幅のギャップを交互に配置していたのに対し、この実施例では、大小の幅のギャップを3極ずつ連続させた構成になっている。つまり、図の左から、大きいギャップ幅L2の3極A1〜A3、小さいギャップ幅L1の3極A4〜A6、大きいギャップ幅L2の3極A7〜A9、および小さいギャップ幅L1の3極A10〜A12としている。このとき、小さいギャップ幅L1は0.5mm、大きいギャップ幅は1.0mmである。
【0062】
上記のモータ11にあっても、先の実施例と同様の解析ならびに試験を行ったところ、同様の性能が得られることが確認でき、しかも、冷却性能が先の実施例のモータよりも若干優れていることを確認した。
【0063】
なお、上記各実施例では、ステータの極数を12とし且つロータの磁極数を8としたが、ステータの極数が6の倍数であり、且つロータの磁極数がステータの極数の3分の2であれば、低回転および高回転の両方の確実な動作が可能であると共に、同様の効果を得ることができ、例えば、ステータの極数を6とし、ロータの磁極数を4としても良い。このほか、フィン8の数や形態が上記実施例のものに限定されることもない。また、上記各実施例では、比較的容量の小さいモータを例示しているが、電気自動車に用いられるkW級のモータにも当然適用できる。
【0064】
さらに、上記各実施例では、外側に磁石を備えた表面磁石型のロータを説明したが、内部に磁石を備えた内部磁石型のロータであっても良い。なお、上記各実施例では、起電力波形を改善するためにロータとステータの極のギャップを軸方向に連続的に変化させる状態とし、具体的にはステータの極に段部9を設けた構成としたが、リング型の磁石を用いた例であることから、ロータ側において着磁の方法を工夫することも可能である。すなわち、ロータ3を着磁する際に、図6に示す如くスキューを設けて着磁する方法もあることは言うまでもない。また、上記各実施例では回転機としてモータを例示したが、当該発明に係わる回転機はジェネレータにも当然適用することが可能である。
【0065】
また、同じ周波数で倍の回転速度を実現するために、図1に示すモータ1では、低速時には全ステータ極A1〜A12をu,v,w…(A1,A2,A3…)の相順(時計回転方向)で励磁し、高速時には大きいギャップのステータ極A2,A4,A6,A8,A10,A12をu,w,v…(A4,A2,A6…)の相順で励磁する必要がある。このような励磁ロジックの組変えは比較的容易であり、特に難しくはない。図5に示すモータ11では、低速時には全ステータ極A1〜A12をu,v,w…(A1,A2,A3…)の相順(時計回転方向)で励磁し、高速時には大きいギャップのステータ極A1〜A3,A7〜A9をu,w,v…(A1,A2,A3…)の相順で励磁する。
【図面の簡単な説明】
【図1】 本発明の請求項1〜5に係わる回転機の一実施例におけるモータのステータおよびロータを展開状態にしてステータ極の励磁相順とともに示す平面説明図である。
【図2】 ステータの極を構成するプレートを説明する平面図である。
【図3】 本発明の請求項6〜8に係わる回転機の一実施例におけるステータを説明する平面断面図(a)および先端面の下側面図(b)である。
【図4】 図3とともに本発明の請求項6および7に係わる回転機の一実施例におけるステータの各極を説明する正面図(a)、および請求項8に係わる回転機の一実施例におけるステータの各極を説明する正面図(b)である。
【図5】 本発明の請求項1〜5に係わる回転機の他の実施例におけるモータのステータおよびロータを展開状態にしてステータ極の励磁相順とともに示す平面説明図である。
【図6】 ロータに傾けスキューをつけて着磁する方法を説明する斜視図である。
【図7】 従来における3相同期着磁式のモータを説明する平面図である。
Claims (8)
- 集中巻の巻線を有するステータと磁石を有するロータを備えた3相同期式の回転機において、ステータとロータのギャップの幅がステータの各極によって大小に異なり、全ての極に通電する機能と、ギャップの幅が大きい極にのみ通電する機能とを有することを特徴とする回転機。
- 小さいギャップの幅L1が0.1〜1.0mmであると共に、大きいギャップの幅L2がL1×2であることを特徴とする請求項1に記載の回転機。
- 大小の幅のギャップを軸回りに各々均等に配置したことを特徴とする請求項1または2に記載の回転機。
- ステータの極数が6の倍数であると共に、ロータの磁極数がステータの極数の3分の2であることを特徴とする請求項1〜3のいずれかに記載の回転機。
- ロータの端面に空気攪拌用のフィンを設けたことを特徴とする請求項1〜4のいずれかに記載の回転機。
- ロータに相対向するステータの極の先端面に、軸方向一端部の角から軸方向他端部に至る傾斜線を境にしてロータに対して後退する段部が形成された回転機であって、この段部の軸方向他端部における軸回り方向の長さが、軸方向に連続的に変化していることを特徴とする請求項1〜5のいずれかに記載の回転機。
- ロータに相対向するステータの極の先端面に、軸方向一端部の角から軸方向他端部へ至る傾斜線を境にしてロータに対して小さいギャップの幅L1分後退する段部を設けると共に、先端面の軸回り方向の長さtwに対して軸方向他端部における段部の軸回り方向の長さを1/2tw〜twとしたことを特徴とする請求項6に記載の回転機。
- 傾斜線の傾斜方向をステータの隣接する極同士で逆向きにしたことを特徴とする請求項7に記載の回転機。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP33581097A JP3844577B2 (ja) | 1997-12-05 | 1997-12-05 | 回転機 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP33581097A JP3844577B2 (ja) | 1997-12-05 | 1997-12-05 | 回転機 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH11178297A JPH11178297A (ja) | 1999-07-02 |
JP3844577B2 true JP3844577B2 (ja) | 2006-11-15 |
Family
ID=18292682
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP33581097A Expired - Fee Related JP3844577B2 (ja) | 1997-12-05 | 1997-12-05 | 回転機 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3844577B2 (ja) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPWO2004010562A1 (ja) * | 2002-07-22 | 2005-11-17 | 日本精工株式会社 | モータ、モータの製造方法及びモータの駆動制御装置 |
DE102008000624A1 (de) * | 2008-03-12 | 2009-09-17 | Robert Bosch Gmbh | Elektrische Maschine mit einem Rotor, sowie Verfahren zum Betreiben der elektrischen Maschine |
DE102023108906A1 (de) * | 2023-04-06 | 2024-10-10 | Dr. Fritz Faulhaber GmbH & Co.KG | "Motor mit definiertem Rastmoment" |
-
1997
- 1997-12-05 JP JP33581097A patent/JP3844577B2/ja not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH11178297A (ja) | 1999-07-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8067871B2 (en) | Permanent magnet rotating electric machine and electric car using the same | |
JP3071064B2 (ja) | 永久磁石式ステッピングモ−タ | |
US6495941B1 (en) | Dynamo-electric machine | |
JP5477161B2 (ja) | ダブルステータ型モータ | |
JP5513608B2 (ja) | クローポール型交流電気モータ | |
US6703744B2 (en) | Generator-motor for vehicle | |
JP3785982B2 (ja) | 回転電機 | |
JP2007124755A (ja) | ハイブリッド励磁回転電機、及びハイブリッド励磁回転電機を備えた車両 | |
US6922000B2 (en) | Rotary electric machine | |
CN108964396B (zh) | 定子分区式交替极混合励磁电机 | |
JP3267763B2 (ja) | 磁石発電機 | |
KR20050010804A (ko) | 회전 전기 기계 | |
CN1208888C (zh) | 轴向励磁混合式磁阻电机 | |
JP3844577B2 (ja) | 回転機 | |
JP2013236412A (ja) | 横磁束機械装置 | |
JP3829742B2 (ja) | 回転電機 | |
JP2987938B2 (ja) | 車両用ブラシレス回転電機 | |
JP2005094978A (ja) | クローポール形回転機 | |
Ahmad et al. | Performance analysis of outer rotor flux reversal machine at different rotor poles | |
JPH1141887A (ja) | 永久磁石併用同期回転機 | |
US10923970B2 (en) | Rotary electric machine having magnetic flux supplied from a field coil | |
JP2013039020A (ja) | 横磁束機械 | |
JP4206322B2 (ja) | 3相ブラシレスモータ | |
JP2013013304A (ja) | 横磁束機械 | |
JP2019080475A (ja) | 回転電機の回転子 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20040120 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20040319 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20040723 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20040922 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060724 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20060816 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |