[go: up one dir, main page]

JP3840061B2 - Four-wheel drive vehicle - Google Patents

Four-wheel drive vehicle Download PDF

Info

Publication number
JP3840061B2
JP3840061B2 JP2001117149A JP2001117149A JP3840061B2 JP 3840061 B2 JP3840061 B2 JP 3840061B2 JP 2001117149 A JP2001117149 A JP 2001117149A JP 2001117149 A JP2001117149 A JP 2001117149A JP 3840061 B2 JP3840061 B2 JP 3840061B2
Authority
JP
Japan
Prior art keywords
vehicle
wheel
driving force
power distribution
grip state
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001117149A
Other languages
Japanese (ja)
Other versions
JP2002307985A (en
Inventor
良平 繁田
功 伊藤
俊明 津山
俊雄 安武
博久 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
JTEKT Corp
Sumitomo Electric Industries Ltd
Original Assignee
Mazda Motor Corp
JTEKT Corp
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp, JTEKT Corp, Sumitomo Electric Industries Ltd filed Critical Mazda Motor Corp
Priority to JP2001117149A priority Critical patent/JP3840061B2/en
Publication of JP2002307985A publication Critical patent/JP2002307985A/en
Application granted granted Critical
Publication of JP3840061B2 publication Critical patent/JP3840061B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Arrangement And Driving Of Transmission Devices (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Regulating Braking Force (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a four-wheel drive vehicle capable of ensuring traveling stability of the vehicle after vehicle stability control completes. SOLUTION: After braking control by a braking force control device 41 completes, driving force transmitted to a rear wheel 21 side is increased as a first torque increase grade A if respective wheels 16, 21 grip. If the respective wheels 16, 21 slip, the driving force transmitted to the rear wheel 21 side is increased as a second torque increase grade B which is smoother than a first torque increase grade A. Therefore, rapid changes in vehicle motion can be restrained, and traction required by the vehicle can be given according to a vehicle running condition and a road surface condition. It is thus possible to improve accuracy of constraint force control between the front and rear wheels 16, 21 after the vehicle stability control completes, and ensure running stability of the vehicle.

Description

【0001】
【発明の属する技術分野】
本発明は、車両のコーナリング等の際に、制動力を適切な車輪に加えて車両安定性を向上させる車両安定性制御システムを備えた四輪駆動車に関するものである。
【0002】
【従来の技術】
近来、障害物回避等の急激なハンドル操作をしたとき、又は滑りやすい路面においてカーブに進入したとき等に発生する横滑りを抑制するために、エンジン出力と各車輪のブレーキ力とを自動的に制御して車両の走行安定性を確保する車両安定性制御システムが知られている。この車両安定性制御システムを搭載した四輪駆動車としては、例えば特開平11−115719号公報に示されるような構成が知られている。
【0003】
この四輪駆動車は、エンジンからの駆動力を有効に利用して安定して優れた走行性能を実現するために、前輪側と後輪側との差動を適切に制限しながら保ち、前輪側と後輪側との駆動力配分を制御する動力配分制御装置を備えている。動力配分制御装置としては、例えばフルタイム方式の四輪駆動車に用いられるセンターディファレンシャル装置等の可変駆動力配分クラッチ(トランスファクラッチ)を締結制御するものがある。
【0004】
しかしながら、このような動力配分制御装置を備えた四輪駆動車に、前述した車両安定性制御システムを適応させて、車両の走行安定性を向上させるために各車輪個別に制動力を付加する場合、次のような問題があった。即ち、トランスファクラッチの締結力(前輪と後輪との拘束力)が強いと各車輪が機械的に連結された状態となって各車輪が自由に回転することができなくなり、目標通りの制動力を付加することが困難になる。どれか一つの車輪に制動力を付加しても四輪が連結状態にあるため他の車輪に影響がでる。このため、車両安定性制御システムにより各車輪に制動力を付加する際、動力配分制御装置は前輪側又は後輪側に伝達する駆動力を通常より小さな値又は0にして駆動力配分する。
【0005】
【発明が解決しようとする課題】
車両安定性制御が終了すると、動力配分制御装置は、通常の四輪駆動状態に、即ち前輪側又は後輪側に伝達する駆動力を通常の値に戻す。このとき、急激な車両の挙動変化が発生するおそれがあった。例えば、車両安定性制御の終了後においても車輪がスリップ状態にある場合、前後輪間の拘束力を車両の要求する所定の値まで一気に上げると、車輪に伝達される駆動力に急激な変化が生じ、再スリップ及び再スピン(コーナリングの途中)のおそれがある。
【0006】
本発明は前記問題点を解決するためになされたものであって、その目的は、車両安定性制御の終了後、車両の走行安定性を確保することができる四輪駆動車を提供することにある。
【0007】
【課題を解決するための手段】
請求項1に記載の発明は、車両挙動を制御する制動力を車両の運動状態から演算して前記制動力を付加する車輪を選択し制動制御する制動力制御手段と、前輪側と後輪側との駆動力配分を可変制御する動力配分制御手段とを備え、前記制動力制御手段で前記車輪に制動力を付加する際に前記動力配分制御手段で前輪側又は後輪側に伝達する駆動力を通常より小さな値に制御して駆動力配分するようにした四輪駆動車において、各車輪のグリップ状態を判定するグリップ状態判定手段を備え、前記制動力制御手段による制動制御の終了後、前記動力配分制御手段は、前輪側又は後輪側に伝達する駆動力を、前記グリップ状態判定手段にて判定した各車輪のグリップ状態に応じて非グリップ状態ではグリップ状態よりも緩やかなトルク増大勾配で通常値に制御して駆動力配分するようにしたことをその要旨とする。
【0008】
請求項2に記載の発明は、請求項1に記載の発明において、前記制動力制御手段による制動制御の終了後、前記動力配分制御手段は、予め設定した複数のトルク増大勾配の中から最適なトルク増大勾配を選択し、この選択したトルク増大勾配で前輪側又は後輪側に伝達する駆動力を通常値に制御して駆動力配分するようにしたことをその要旨とする。
【0009】
請求項3に記載の発明は、請求項1又は請求項2に記載の発明において、前記制動力制御手段による制動制御の終了後、前記グリップ状態判定手段にて各車輪がグリップ状態であると判定された場合には、前記動力配分制御手段は、前輪側又は後輪側に伝達する駆動力を第1のトルク増大勾配にて通常値に制御して駆動力配分し、前記グリップ状態判定手段にて各車輪が非グリップ状態であると判定された場合には、前記動力配分制御手段は、前輪側又は後輪側に伝達する駆動力を前記第1のトルク増大勾配よりも緩やかな第2のトルク増大勾配にて通常値に制御して駆動力配分するようにしたことをその要旨とする。
【0010】
請求項4に記載の発明は、請求項1〜請求項3のいずれか一項に記載の発明において、前記動力配分制御手段にて制御されると共に前後輪間のトルク配分比が可変になるよう前後輪間の拘束力を調整する駆動力伝達装置を備え、前記トルク増大勾配は、前後輪間の拘束力の増大速度に基づいて決定されることをその要旨とする。
【0011】
請求項5に記載の発明は、請求項1〜請求項4のうちいずれか一項に記載の発明において、前記グリップ状態判定手段は、操舵角及び各車輪速に基づいて演算した目標ヨーレート及び左右方向の目標加速度をヨーレートセンサ及び左右Gセンサの検出値と比較し、この比較結果に基づいてグリップ状態を判定するようにしたことをその要旨とする。
(作用)
請求項1に記載の発明においては、制動制御の終了後、前輪側又は後輪側に伝達する駆動力は、車両の走行状態に応じた所定のトルク増大勾配で通常値に制御されて駆動力配分される。このため、制動制御の終了後における急激な車両挙動の変化が抑制され、車両の走行安定性が確保される。
特に、制動制御の終了後、各車輪が非グリップ状態であると判定された場合、前輪側又は後輪側に伝達する駆動力は、各車輪がグリップ状態であると判定された場合よりも緩やかなトルク増大勾配で通常値に制御され駆動力配分される。
【0012】
請求項2に記載の発明においては、請求項1に記載の発明の作用に加えて、制動制御の終了後、少なくとも各車輪のグリップ状態に基づいて、予め設定した複数のトルク増大勾配の中から最適なトルク増大勾配が選択される。そして、この選択されたトルク増大勾配で前輪側又は後輪側に伝達する駆動力が通常値に制御され駆動力配分される。
【0014】
請求項に記載の発明は、請求項1又は請求項2に記載の発明の作用に加えて、制動制御の終了後、各車輪がグリップ状態である場合には、前輪側又は後輪側に伝達する駆動力は第1のトルク増大勾配にて通常値に制御され駆動力配分される。一方、各車輪が非グリップ状態である場合には、前輪側又は後輪側に伝達する駆動力は前記第1のトルク増大勾配よりも緩やかな第2のトルク増大勾配にて通常値に制御され駆動力配分される。
【0015】
請求項に記載の発明によれは、請求項1〜請求項3のいずれか一項に記載の発明の作用に加えて、前記トルク増大勾配は、前後輪間の拘束力の増大速度に基づいて決定される。
請求項5に記載の発明によれば、請求項1〜請求項4のいずれか一項に記載の発明の作用に加えて、操舵角及び各車輪速に基づいて演算した目標ヨーレート及び左右方向の目標加速度をヨーレートセンサ及び左右Gセンサの検出値と比較し、この比較結果に基づいてグリップ状態を判定することができる。
【0016】
【発明の実施の形態】
以下、本発明を前輪駆動ベースの四輪駆動車に具体化した一実施形態を図1〜図4に従って説明する。
【0017】
(全体構成)
図1に示すように、四輪駆動車11は、エンジン12及びトランスアクスル13を備えている。トランスアクスルはトランスミッション及びトランスファ等を有している。トランスアクスル13には一対のフロントアクスル14, 14及びプロペラシャフト15が連結されている。両フロントアクスル14, 14にはそれぞれ前輪16, 16が連結されている。プロペラシャフト15には駆動力伝達装置(カップリング)17が連結されており、同駆動力伝達装置17にはドライブピニオンシャフト(図示略)を介してリヤディファレンシャル19が連結されている。リヤディファレンシャル19には一対のリヤアクスル20, 20を介して後輪21, 21が連結されている。
【0018】
エンジン12の駆動力はトランスアクスル13及び両フロントアクスル14, 14を介して両前輪16, 16に伝達される。また、プロペラシャフト15とドライブピニオンシャフトとが駆動力伝達装置17にてトルク伝達可能に連結された場合、エンジン12の駆動力はプロペラシャフト15、ドライブピニオンシャフト、リヤディファレンシャル19及び両リヤアクスル20, 20を介して両後輪21, 21に伝達される。
【0019】
(駆動力伝達装置)
駆動力伝達装置17は湿式多板式の電磁クラッチ機構18を備えており、同電磁クラッチ機構18は互いに摩擦係合又は離間する複数のクラッチ板(図示略)を有している。電磁クラッチ機構18に内蔵された電磁コイル(図示略)に電流を供給すると各クラッチ板は互いに摩擦係合し、前後輪16,21間においてトルクの伝達が行われる。電磁クラッチ機構18への電流の供給を遮断すると各クラッチ板は互いに離間し、前後輪16,21間におけるトルクの伝達も遮断される。
【0020】
また、各クラッチ板の摩擦係合力は電磁クラッチ機構18の電磁コイルへ供給する電流の量(電流の強さ)に応じて増減し、これにより前後輪16,21間の伝達トルク、即ち前後輪16,21間の拘束力(電磁クラッチ機構18の摩擦係合力)を任意に調整可能となっている。電磁クラッチ機構18の電磁コイルへの電流の供給、遮断及び電流供給量の調整は後述の動力配分制御装置42により制御される。言い換えると、動力配分制御装置42は、四輪駆動状態又は二輪駆動状態のいずれかを選択すると共に、四輪駆動状態において前後輪16,21間の動力配分率(トルク配分率)を制御する。
【0021】
(ブレーキ駆動部)
四輪駆動車11はブレーキ駆動部31を備えている。ブレーキ駆動部31の入力側にはブレーキペダル32に連動するマスターシリンダ33が接続されている。ブレーキ駆動部31の出力側には4本のブレーキ管路34を介して各車輪16,21のホイールシリンダ35がそれぞれ接続されている。そして、運転者によりブレーキペダル32が踏込操作されると、マスターシリンダ33に生じたブレーキ圧が各ブレーキ管路34を介して各ホイールシリンダ35に導入され、これにより各車輪16,21に制動力が付加される。
【0022】
また、ブレーキ駆動部31は加圧源、減圧弁及び増圧弁等(図示略)を有しており、減圧弁及び増圧弁を開閉して加圧源の油圧を各ホイールシリンダ35にそれぞれ導入することにより、各車輪16,21のブレーキ圧(各車輪16,21に付加する制動力)を自動的に増圧、保持又は減圧制御可能になっている。
【0023】
(電気的構成)
次に、四輪駆動車11の電気的構成を図2に従って説明する。
図2に示すように、四輪駆動車11は、制動力制御装置(VSC−ECU)41及び動力配分制御装置(4WD−ECU)42を備えている。
【0024】
両制御装置41,42はそれぞれCPU、RAM、ROM及びI/Oインターフェイス等を備えたマイクロコンピュータを中心として構成されている。ROMには両制御装置41,42がそれぞれ実行する各種の制御プログラム、各種のデータ及び各種のマップ等が格納されている。マップは車両モデルによる実験データ及び周知の理論計算等によって予め求められたものである。RAMはROMに書き込まれた制御プログラムを展開して両制御装置のCPUが各種の演算処理を実行するためのデータ作業領域である。
【0025】
制動力制御装置41の入力側(I/Oインターフェイスの入力端子)には各車輪速センサ43、操舵角センサ44、左右Gセンサ(左右加速度センサ)45、ヨーレートセンサ46及びスロットル開度センサ47がそれぞれ接続されている。制動力制御装置41の出力側(I/Oインターフェイスの出力端子)にはブレーキ駆動部31及びエンジン制御装置(図示略)が接続されている。
【0026】
また、動力配分制御装置42の入力側(I/Oインターフェイスの入力端子)には各車輪速センサ43、操舵角センサ44、左右Gセンサ45、ヨーレートセンサ46及びスロットル開度センサ47がそれぞれ接続されている。動力配分制御装置42の出力側(I/Oインターフェイスの出力端子)には駆動力伝達装置17及びエンジン制御装置が接続されている。
【0027】
車輪速センサ43は各車輪16,21毎にそれぞれ設けられており、各車輪16,21の速度を各別に検出する。操舵角センサ44はハンドル部に設けられており、ハンドルの回転角を検出する。左右Gセンサ45は車両の左右方向の加速度を検出し、これに基づいて車両のコーナリングの状況が判定される。ヨーレートセンサ46は、車両重心を通る鉛直軸を中心とする回転運動(ヨーイング)の角速度であるヨーレートを検出する。スロットル開度センサ47は、スロットルバルブ(図示略)に接続されており、スロットルバルブの開度、即ち運転者のアクセルペダル(図示略)の踏込操作を検出する。
【0028】
そして、制動力制御装置41は、車両の走行姿勢を目標の姿勢にする制動力を車両の運動状態から演算して前記制動力を付加する車輪を選択しブレーキ駆動部31を介して制動制御する。具体的には、制動力制御装置41は各センサ43〜47からの検出信号に基づいて車両の横滑りを検出し、エンジン出力及び各車輪16,21のブレーキ力の制御を行う。また、動力配分制御装置42は、各センサ43〜47からの検出信号に基づいて、各車輪16,21のグリップ状態(スリップ状態)を判定し、電磁クラッチ機構18の電磁コイルへ供給する電流の量を制御することにより、前輪側と後輪側との駆動力配分を可変制御する。
【0029】
(情報共有)
両制御装置41,42はそれぞれ各種の演算処理結果に基づいて各種の制御を実行する。これらの演算処理結果及び前述した各種センサ43〜47にて検出されたデータは、両制御装置41,42間で相互にデータ通信可能となっており、両制御装置41,42は必要に応じてデータを交換して相互に連動して制御を実行する。両制御装置41,42は、それぞれ制動力制御のための演算及び駆動力配分制御のための演算のいずれの演算も実行可能となっている。
【0030】
通常走行時及び車両安定性制御時、動力配分制御装置42は、各種センサ43〜47の検出データ及び各検出データ等から演算推定された車両挙動及び路面μ(路面摩擦係数)等の情報を制動力制御装置41と共有して、駆動力配分制御を行う。即ち、動力配分制御装置42は制動力制御装置41から演算結果データ(車両挙動及び路面μ等の情報)をもらい、この結果データに基づいて、駆動力配分制御を行う。
【0031】
尚、制動力制御装置41は、車両の走行姿勢を目標の姿勢にする制動力を車両の運動状態から演算して制動力を付加する車輪を選択し制動制御する制動力制御手段を構成する。動力配分制御装置42は、電磁クラッチ機構18の摩擦係合力を制御することにより、前輪16側と後輪21側との駆動力配分を可変制御する動力配分制御手段を構成する。制動力制御装置41又は動力配分制御装置42、車輪速センサ43、操舵角センサ44、左右Gセンサ45、ヨーレートセンサ46及びスロットル開度センサ47は、各車輪のグリップ状態を少なくとも各車輪速から判定するグリップ状態判定手段を構成する。
【0032】
(実施形態の作用)
次に、前述のように構成した四輪駆動車の作用を通常の四輪駆動制御時、車両安定性制御時、車両安定性制御終了時の順に説明する。
【0033】
(通常の四輪駆動制御)
まず、通常の四輪駆動制御時における四輪駆動車の作用を説明する。
車両安定性制御システムの非作動時である通常の走行時において、動力配分制御装置42は電磁クラッチ機構18の摩擦係合力を差動制限トルクマップ(図示略)から求める。差動制限トルクマップは、各車輪速センサ43の検出信号に基づいて演算した前後輪16,21の差動回転数、スロットル開度及び速度をパラメータとしたデューティ比のテーブルマップであり、前記ROMに予め記憶されている。
【0034】
動力配分制御装置42はスロットル開度センサ47及び各車輪速センサ43からの検出データから車両の走行状態を判定し差動制限トルクマップ値(目標トルク)を検索し、駆動力伝達装置17を制御する。そして、前後輪16,21の差動回転数が予め設定された所定値よりも大きい場合、動力配分制御装置42はぬかるみや雪道等の低μ路であると判断して電磁クラッチ機構18の摩擦係合力を高める。
【0035】
また、動力配分制御装置42は、車速センサ(図示略)にて検出された車速に応じて電磁クラッチ機構18の摩擦係合力の補正係数(補正量)を予めROMに格納されたマップ(図示略)から割り出す。即ち、車速が予め設定された所定値よりも小さい場合には、動力配分制御装置42は走行安定性を向上させるため電磁クラッチ機構18の摩擦係合力を高めるように補正係数を割り出す。車速が予め設定された所定値よりも大きい場合には、動力配分制御装置42は操縦性を高めるため電磁クラッチ機構18の摩擦係合力を弱めるように補正係数を割り出す。尚、車速は、従動輪である後輪21の車輪速センサ43の検出値の平均値を使用してもよい。
【0036】
また、動力配分制御装置42は、スロットル開度センサ47にて検出されたスロットル開度に応じて電磁クラッチ機構18の摩擦係合力の補正係数を予めROMに格納された前述とは別のマップ(図示略)から求める。即ち、動力配分制御装置42は、スロットル開度が大きくなる程、電磁クラッチ機構18の摩擦係合力を高めるように補正係数を割り出して発進性及び加速性を向上させる。
【0037】
この後、動力配分制御装置42は、前述の車速及びスロットル開度に応じてそれぞれ割り出した補正係数に基づいて、電磁クラッチ機構18の摩擦係合力を決定し、電磁クラッチ機構18の電磁コイルへの電流を制御する。このように、動力配分制御装置42は、電磁クラッチ機構18による伝達トルクの制御量を、前後輪16,21の差動回転数、車速、及び加速操作量(スロットルバルブ開度)に応じて変化させることにより、車両の走行状態に合わせて前後輪16,21間の伝達トルクを最適に制御する。
【0038】
(車両安定性制御)
次に、車両安定性制御の開始時における四輪駆動車の作用を説明する。
例えばコーナリング時(急操舵時)において、各車輪速センサ43、操舵角センサ44、左右Gセンサ45及びヨーレートセンサ46にて車両の横滑りが検出されると、制動力制御装置41は車両安定性制御を行う。即ち、制動力制御装置41は目標ヨーレートと実際のヨーレートとを比較し、車両の運動状態が目標ヨーレートに対してアンダーステアの傾向かオーバーステアの傾向かを求める。そして、制動力制御装置41は、実ヨーレートと目標ヨーレートとが一致するようにブレーキ制御する。即ち、アンダーステア傾向の場合には内側の前輪16に制動力を加えて補正して車両の回頭性を増加させる。オーバーステア傾向の場合には外側の後輪21に制動力を加えて補正して車両の回頭性を減少させる。この結果、車両の走行安定性が向上する。
【0039】
具体的には、アンダステア傾向で車両が外に飛び出すような場合、ハンドルの切り具合と速度とから演算決定されたヨーレート(目標ヨーレート)よりも実際のヨーレートが少なく検出される。この場合、制動力制御装置41は前記エンジン制御装置を介してエンジン12の出力を抑えると共に前輪(特に内側)16にブレーキをかけて前輪16の駆動力を弱くし、コースからのずれを低減させる。また、オーバステア傾向で車両がスピンするような場合、遠心力と速度とから演算決定されたヨーレート(目標ヨーレート)よりも多くのヨーレートが検出される。この場合、制動力制御装置41は後輪(特に外側)に強めのブレーキをかけることでスピンを抑制する。
【0040】
一方、動力配分制御装置42には、各制御パラメータ及び制動力制御の実行の有無信号(前後輪16,21間のトルク低減指令を含む)が入力され、同動力配分制御装置42は各信号に基づいて電磁クラッチ機構18を制御してトルク配分制御する。即ち、制動力制御装置41により選択車輪に制動力を付加する際、動力配分制御装置42は通常よりも小さい所定値に電磁クラッチの摩擦係合力(圧着力)を設定する。このため、前後輪16,21間の拘束力が通常よりも弱まると共に、各車輪16,21の回転が自由になり、制動力制御装置41による目標通りの制動制御が行われる。このとき、図3に示すように、動力配分制御装置42は電磁クラッチ機構18の摩擦係合力を所定のトルク減少勾配(本実施形態では傾き−A又は−B)に基づいて弱める。
【0041】
(車両安定性制御の終了時)
次に、車両安定性制御が終了し、弱められていた前後輪間の拘束力を通常走行時の拘束力に戻す場合の四輪駆動車の作用を図4に示すフローチャートに従って説明する。両フローチャートは予めROMに格納された各種の制御プログラムに基づいて実行される。尚、本実施形態では、個々の処理内容に対応するフローチャート中のステップを「S」と略記する。
【0042】
図4に示すように、車両安定性制御の制御終了信号(トルク低減指令終了信号)が入力されると(S110)、動力配分制御装置42は、まず各車輪16,21のグリップ状態判定処理を行う。即ち、動力配分制御装置42は各車輪速センサ43にて検出された各車輪速データを同動力配分制御装置42内のRAMの作業領域に読み込み、各車輪速が幾何学的に正しいか否かを判断する(S120)。具体的には、動力配分制御装置42は各車輪速センサ43にて検出した各車輪速に基づいて両前輪16,16の左右の車輪速の比を演算すると共に、両後輪21,21の左右の車輪速の比を演算する。そして、動力配分制御装置42は両前輪16,16の左右の車輪速の比と両後輪21,21の左右の車輪速の比とを比較して、その差が予め設定された所定値(しきい値)よりも大きいか否かを判断する。
【0043】
各車輪速が幾何学的に正しい場合(S120で「YES」)、動力配分制御装置42は処理をS130に移行する。各車輪速が幾何学的に正しくない場合(S120で「NO」)、動力配分制御装置42は各車輪16,21のうち少なくとも1つがスリップ状態であると判定し(S140)、S150へ処理を移行する。
【0044】
一方、S130では、動力配分制御装置42は操舵角センサ44、各車輪速センサ43、ヨーレートセンサ46及び左右Gセンサ45にて検出された操舵角データ、各車輪速データ、ヨーレートデータ及び左右Gデータとを同動力配分制御装置42内のRAMの作業領域に読み込む。そして、操舵角と、各車輪速と、ヨーレートと、左右Gとが幾何学的に正しいか否かを判断する。即ち、動力配分制御装置42は操舵角及び各車輪速から、目標ヨーレート及び左右方向の目標加速度(本来発生するヨーレート及び左右加速度)を演算推定し、これらの目標値とヨーレートセンサ46及び左右Gセンサ45の検出値とをそれぞれ比較し、そのうちのいずれか一つでも予め設定された所定値(しきい値)よりも大きいか否かを判断する。
【0045】
操舵角と、各車輪速と、ヨーレートと、左右Gとが幾何学的に正しい場合、即ち前記両目標値と両センサ検出値との差がいずれもしきい値よりも小さければ(S130で「YES」)、動力配分制御装置42は4輪グリップ状態と判定し(S160)、S170へ処理を移行する。操舵角と、各車輪速と、ヨーレートと、左右Gとが幾何学的に正しくない場合、即ち前記両目標値と両センサ検出値との差のうちいずれか1つでもしきい値を越えていれば(S130で「YES」)、動力配分制御装置42は各車輪16,21をスリップ状態と判定し(S140)、S150へ処理を移行する。このため、グリップ状態判定処理の判定精度が向上する。
【0046】
図4に示すように、S170では、動力配分制御装置42は前後輪16,21間の拘束力が第1のトルク増大勾配A(図3参照)にて増大するように駆動力伝達装置17の電磁クラッチ機構18を制御する。即ち、動力配分制御装置42は前後輪16,21間の拘束力を一気に車両の要求する目標値まで上げる。各車輪16,21はグリップ状態であることから、前後輪16,21間の拘束力を一気に上げても車両の安定性は損なわれない。
【0047】
尚、前記車両の要求するトルクは、アクセルペダルの踏込量(スロットル開度)に基づく運転者が要求するトルクと、そのときの車両の走行状態及び路面μ等に基づいてROMに格納されたマップから割り出されたトルクとに基づいて求められる。通常走行時及び車両安定性制御時において、車両の要求するトルク(図3における目標値)は、図3に矢印及び二点鎖線で示すように、状況に応じて変化する。このため、第2のトルク増大勾配Bにてトルクが増大される場合、その傾きが一定であることから、トルク(目標値)の増減に伴って同トルクに達するまでの時間も増減する。
【0048】
一方、S150では、動力配分制御装置42は、前後輪16,21間の拘束力が第2のトルク増大勾配B(図3参照)にて増大するように駆動力伝達装置17の電磁クラッチ機構18を制御する。この第2のトルク増大勾配Bは第1のトルク増大勾配Aよりも傾きが緩やかであり、前後輪16,21間の拘束力は徐々に車両の要求する目標値まで増大される。このため、車両安定性制御の終了後における急激な駆動力の変化の発生が抑制され、車両の安定性が損なわれない。
【0049】
ちなみに、各車輪16,21がスリップ状態(1輪スリップを含む)であるにもかかわらず第1のトルク増大勾配Aにて前後輪16,21間の拘束力を増大させると、急激な駆動力の変化が生じる。このため、例えばコーナリングの途中においては車両安定性制御の終了時、車両は挙動不安定になる。
【0050】
次に、動力配分制御装置42は、前後輪16,21間の拘束力が車両の要求する目標値に達したか否かを判断する(S180)。前後輪16,21間の拘束力が車両の要求する目標値に達すると(S180で「YES」)、動力配分制御装置42はこのフローチャートに係る処理を終了し、通常の四輪駆動制御を行う。一方、前後輪16,21間の拘束力が車両の要求する目標値に達していない場合(S180で「NO」)、動力配分制御装置42はS170又はS150からの処理を繰り返す。
【0051】
このように、車両安定性制御の終了時、各車輪16,21がグリップ状態であるか否かによって、弱められていた前後輪16,21間の拘束力を車両の要求する所定値(目標値)まで一気に大きくするか、徐々に大きくするかが決定される。即ち、車両安定性制御の終了後、前後輪16,21間の拘束力を車両の要求する所定値(目標トルク値)までなるべく早く到達させた方がよい場合には、拘束力を目標トルク値まで一気に到達させる。車両安定性を損なうおそれのある場合には、前後輪16,21間の拘束力を所定の時間をかけて徐々に目標トルク値に到達させる。従って、車両安定性制御の終了後における前後輪16,21間の拘束力制御の正確性が向上し、車両の走行安定性が確保される。
【0052】
ちなみに、車両安定性制御の終了後、前後輪の拘束力を車両の要求する所定値までなるべく早くに到達させた方がよい場合としては、各車輪がグリップ状態にある場合である。例えば、車両安定性制御の終了後、まっすぐ加速する場合には、前後輪間の拘束力を大きくして四輪に駆動力をかけた方が加速しやすく、走行も安定する。また、コーナリングの途中においても、各車輪がグリップしていれば、四輪に駆動力をかけているので横に滑る力も四輪に分配される。このため、前後輪間の拘束力を大きくして四輪駆動とした方が、コーナリング性能がよくなる。
【0053】
また、車両安定性制御の終了後、前後輪16,21間の拘束力を所定の時間をかけて徐々に所定値に到達させた方がよい場合としては、各車輪がスリップ状態にある場合である。例えば、車両安定性制御の終了後、スリップ状態で加速する場合には、前後輪間の拘束力を所定の時間をかけて徐々に大きくしていく。この結果、車輪に伝達される駆動力の変化が緩やかになり、再スリップ及びコーナリングの途中における再スピンが防止される。
【0054】
(実施形態の効果)
従って、本実施形態によれば、以下の効果を得ることができる。
(1)制動力制御装置41による制動制御の終了後、動力配分制御装置42は、車両の走行状態及び路面状態に応じて、後輪21側に伝達する駆動力を所定のトルク増大勾配で通常値に制御して駆動力配分するようにした。具体的には、制動力制御装置41による制動制御の終了後、グリップ状態判定手段にて各車輪16,21がグリップ状態であると判定された場合には、動力配分制御装置42は、後輪21側に伝達する駆動力を第1のトルク増大勾配Aにて通常値に制御して駆動力配分するようにした。また、グリップ状態判定手段にて各車輪16,21がスリップ状態であると判定された場合には、動力配分制御装置42は、後輪21側に伝達する駆動力を第1のトルク増大勾配Aよりも緩やかな第2のトルク増大勾配Bにて通常値に制御して駆動力配分するようにした。
【0055】
このため、前後輪16,21間の拘束力を車両の要求する所定値までなるべく早く到達させた方がよい場合であっても、車両安定性制御の終了後、前後輪16,21間の拘束力が常に一定のトルク増大勾配にて徐々に大きくされることはない。そして、急激な車両挙動の変化が抑制され、車両が要求するトラクション(牽引力又は各車輪16,21と路面との粘着摩擦力)が車両走行状態及び路面状態に応じて与えられる。従って、車両安定性制御の終了後における前後輪16,21間の拘束力制御の正確性が向上する。即ち、車両安定性制御と四輪駆動制御(駆動力配分制御)との協調制御がより正確に行われる。そして、車両の走行安定性を向上させることができる。
【0056】
(2)第1のトルク増大勾配A及び第2のトルク増大勾配Bは、前後輪16,21間の拘束力の増大速度に基づいて決定されるようにした。即ち、駆動力伝達装置17の電磁クラッチ機構18の摩擦係合力を強弱制御することにより、前後輪16,21間の伝達トルクが制御される。このため、構成を簡単にすることができる。
【0057】
(3)通常走行時及び車両安定性制御時、車両挙動情報や路面μ情報は制動力制御装置41により演算推定され、この演算推定結果データが動力配分制御装置42にデータ通信されるようにした。即ち、制動力制御装置41が車両安定性制御を実行するために行った各種の演算結果を利用して動力配分制御するようにした。このため、動力配分制御装置42では車両挙動や路面μを把握するための複雑な計算をすること必要がない。従って、動力配分制御装置42の計算量が減ると共に、同動力配分制御装置42のコストダウン及び小型化が図れる。
【0058】
(別例)
尚、前記実施形態は以下のように変更して実施してもよい。
・図4に示すフローチャートにおいて、スリップ判定処理をS120のみ、又はS130のみとしてもよい。このようにしても、各車輪16,21がグリップ状態かスリップ状態かを判定することができる。また、別のスリップ判定処理方法にてグリップ状態を判定するようにしてもよい。
【0059】
・車両安定性制御の終了後、動力配分制御装置42は、各車輪16,21のグリップ状態に基づいて、予め設定した複数のトルク増大勾配の中から最適なトルク増大勾配を選択し、この選択したトルク増大勾配で後輪21側に伝達する駆動力を通常値に制御して駆動力配分するようにしてもよい。即ち、本実施形態では、第1及び第2の2つのトルク増大勾配A, Bを予め設定したが、トルク増大勾配を3つ以上設け、車両の走行状態及び路面状態に応じて、いずれかのトルク増大勾配が選択されるようにしてもよい。このようにすれば、車両挙動を変化させることなく、車両が要求するトラクションを車両走行状態及び路面状態に応じてより正確に与えることができる。
【0060】
・また、第1のトルク増大勾配Aと第2のトルク増大勾配Bとの間において、トルク増大勾配を任意に変更するようにしてもよい。即ち、車両安定性制御の終了後、動力配分制御装置42は、各車輪16,21のグリップ状態に基づいて、予め設定したトルク増大勾配変更可能領域(図3において、第1のトルク増大勾配Aと第2のトルク増大勾配Bとの間の領域)の中から最適なトルク増大勾配を演算推定し、この演算推定したトルク増大勾配で前輪16側又は後輪21側に伝達する駆動力を通常値に制御して駆動力配分する。動力配分制御装置42はトルク増大勾配をある関数にて示し、この関数に基づいてトルク増大勾配を演算推定する。このようにすれば、車両挙動を変化させることなく、さらに正確なトラクションを与えることができる。
【0061】
・本実施形態では、駆動力伝達装置17の差動制御装置として電磁クラッチ機構18を使用したが、例えば油圧クラッチ機構等の各種の伝達トルク変更可能な機構を使用するようにしてもよい。
【0062】
・差動制御装置としてのセンタディファレンシャルを備えた四輪駆動車に応用してもよい。
・後輪駆動(FR)ベースの四輪駆動車に応用してもよい。この場合、エンジン12の駆動力は後輪21側から前輪16側に伝達される。
【0063】
(付記)
次に前記実施形態及び別例から把握できる技術的思想を以下に追記する。
・各車輪のグリップ状態を各車輪速から判定するグリップ状態判定手段を備え、前記制動力制御手段による制動制御の終了後、前記動力配分制御手段は、前記グリップ状態判定手段にて判定した各車輪のグリップ状態に基づいて、予め設定したトルク増大勾配変更可能領域の中から最適なトルク増大勾配を演算推定し、このトルク増大勾配で前輪側又は後輪側に伝達する駆動力を通常値に制御して駆動力配分するようにした請求項1に記載の四輪駆動車。
【0064】
【発明の効果】
本発明によれば、車両安定性制御の終了後、前後輪間の拘束力を各車輪のグリップ状態に応じて制御することにより、車両の走行安定性を確保することができる。
【図面の簡単な説明】
【図1】 本実施形態における4輪駆動車の概略構成図。
【図2】 本実施形態における4輪駆動車の電気的接続を示すブロック図。
【図3】 本実施形態における前後輪間の拘束力制御の一例を示すタイムチャート。
【図4】 本実施形態における車両安定性制御終了時におけるトルク制御のフローチャート。
【符号の説明】
11…四輪駆動車(車両)、16…前輪、17…駆動力伝達装置、
18…電磁クラッチ機構、21…後輪、31…ブレーキ駆動部、
41…グリップ状態判定手段を構成する制動力制御装置(制動力制御手段)、
42…グリップ状態判定手段を構成する動力配分制御装置(動力配分制御手段)、43…グリップ状態判定手段を構成する車輪速センサ、
44…グリップ状態判定手段を構成する操舵角センサ、
45…グリップ状態判定手段を構成する左右加速度センサ(左右Gセンサ)、
46…グリップ状態判定手段を構成するヨーレートセンサ、
47…グリップ状態判定手段を構成するスロットル開度センサ、
A…第1のトルク増大勾配、B…第2のトルク増大勾配。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a four-wheel drive vehicle equipped with a vehicle stability control system that improves vehicle stability by applying braking force to appropriate wheels during cornering of the vehicle.
[0002]
[Prior art]
The engine output and the braking force of each wheel are automatically controlled to suppress the side slip that occurs when a sudden steering operation such as obstacle avoidance is entered recently or when entering a curve on a slippery road surface. Thus, a vehicle stability control system that ensures the running stability of the vehicle is known. As a four-wheel drive vehicle equipped with this vehicle stability control system, for example, a configuration as disclosed in Japanese Patent Application Laid-Open No. 11-115719 is known.
[0003]
This four-wheel drive vehicle keeps the front wheel side and the rear wheel side properly limited while properly limiting the difference between the front wheel side and the front wheel side in order to effectively use the driving force from the engine and realize excellent running performance. A power distribution control device for controlling the driving force distribution between the side and the rear wheel side is provided. As a power distribution control device, for example, there is a device that controls engagement of a variable driving force distribution clutch (transfer clutch) such as a center differential device used in a full-time four-wheel drive vehicle.
[0004]
However, when the vehicle stability control system described above is applied to a four-wheel drive vehicle equipped with such a power distribution control device, braking force is individually applied to each wheel in order to improve the running stability of the vehicle. There were the following problems. In other words, if the fastening force of the transfer clutch (restraint force between the front wheels and the rear wheels) is strong, the wheels are mechanically connected and the wheels cannot rotate freely, and the braking force as desired. It becomes difficult to add. Even if braking force is applied to any one of the wheels, the other wheels are affected because the four wheels are connected. For this reason, when a braking force is applied to each wheel by the vehicle stability control system, the power distribution control device distributes the driving force by setting the driving force transmitted to the front wheel side or the rear wheel side to a value smaller than normal or zero.
[0005]
[Problems to be solved by the invention]
When the vehicle stability control is finished, the power distribution control device returns the driving force transmitted to the normal four-wheel drive state, that is, the front wheel side or the rear wheel side to the normal value. At this time, there is a possibility that a sudden change in the behavior of the vehicle may occur. For example, if the wheels are in a slip state even after the vehicle stability control is finished, if the restraining force between the front and rear wheels is increased to a predetermined value required by the vehicle at once, a sudden change in the driving force transmitted to the wheels occurs. There is a risk of re-slip and re-spin (in the middle of cornering).
[0006]
The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a four-wheel drive vehicle that can ensure the running stability of the vehicle after the end of the vehicle stability control. is there.
[0007]
[Means for Solving the Problems]
  According to the first aspect of the present invention, there is provided braking force control means for calculating a braking force for controlling a vehicle behavior from a motion state of a vehicle and selecting a wheel to which the braking force is applied to perform braking control, a front wheel side and a rear wheel side. Power distribution control means for variably controlling the driving force distribution to the wheel, and the driving force transmitted to the front wheel side or the rear wheel side by the power distribution control means when the braking force is applied to the wheel by the braking force control means. In a four-wheel drive vehicle that controls the power to a value smaller than usual and distributes the driving force,Grip state determination means for determining the grip state of each wheel is provided,After the braking control by the braking force control means is completed, the power distribution control means transmits the driving force transmitted to the front wheel side or the rear wheel side,According to the grip state of each wheel determined by the grip state determination means, the non-grip state is more gradual than the grip state.The gist is that the driving force is distributed by controlling the torque increase gradient to a normal value.
[0008]
  The invention according to claim 2 is the invention according to claim 1.,in frontAfter the braking control by the braking force control means, the power distribution control means,The optimum torque increase gradient is selected from the set torque increase gradients, and the driving force transmitted to the front wheel side or the rear wheel side is controlled to the normal value with the selected torque increase gradient to distribute the driving force. The gist of this is
[0009]
  The invention according to claim 3In the invention according to claim 1 or 2, when each of the wheels is determined to be in the grip state by the grip state determination unit after the braking control by the braking force control unit is finished, the power distribution is performed. The control means distributes the driving force by controlling the driving force transmitted to the front wheel side or the rear wheel side to a normal value with the first torque increase gradient, and each wheel is in a non-grip state by the grip state determination means. If it is determined, the power distribution control means controls the driving force transmitted to the front wheel side or the rear wheel side to a normal value with a second torque increase gradient that is gentler than the first torque increase gradient. To distribute the driving forceThis is the gist.
[0010]
  The invention according to claim 4In the invention according to any one of claims 1 to 3, the restraint force between the front and rear wheels is adjusted so that the torque distribution ratio between the front and rear wheels is variable while being controlled by the power distribution control means. Provided with a driving force transmission device, wherein the torque increase gradient is determined based on an increasing speed of the restraining force between the front and rear wheels.This is the gist.
[0011]
  The invention described in claim 5The invention according to any one of claims 1 to 4, wherein the grip state determination means calculates a target yaw rate calculated based on a steering angle and each wheel speed and a target acceleration in the left-right direction with a yaw rate sensor and a left-right target. Compared with the detection value of the G sensor, the grip state is determined based on the comparison result.This is the gist.
(Function)
  In the first aspect of the present invention, after the braking control is finished, the driving force transmitted to the front wheel side or the rear wheel side is controlled to a normal value with a predetermined torque increase gradient according to the running state of the vehicle. Distributed. For this reason, a sudden change in the vehicle behavior after the end of the braking control is suppressed, and the running stability of the vehicle is ensured.
In particular,When it is determined that each wheel is in the non-grip state after the braking control is finished, the driving force transmitted to the front wheel side or the rear wheel side is in the grip state.Is controlled to a normal value with a gentler torque increase gradient than when it is determined that the driving force is distributed.
[0012]
In the invention according to claim 2, in addition to the action of the invention according to claim 1, after the end of the braking control, at least based on the grip state of each wheel, a plurality of preset torque increasing gradients are selected. An optimal torque increase gradient is selected. Then, the driving force transmitted to the front wheel side or the rear wheel side with the selected torque increase gradient is controlled to a normal value and is distributed.
[0014]
  Claim3The invention described in claim1 or claim 2In addition to the operation of the invention described in (3), when each wheel is in the grip state after the braking control is finished, the driving force transmitted to the front wheel side or the rear wheel side is set to the normal value at the first torque increase gradient. It is controlled and the driving force is distributed. On the other hand, when each wheel is in a non-grip state, the driving force transmitted to the front wheel side or the rear wheel side is controlled to a normal value with a second torque increase gradient that is gentler than the first torque increase gradient. Drive power is distributed.
[0015]
  Claim4According to the invention described inAny one of Claims 1-3In addition to the operation of the invention described in (1), the torque increase gradient is determined based on the increasing speed of the restraining force between the front and rear wheels.
According to the invention described in claim 5, in addition to the operation of the invention described in any one of claims 1-4, the target yaw rate and the left-right direction calculated based on the steering angle and each wheel speed are calculated. The target acceleration can be compared with the detection values of the yaw rate sensor and the left and right G sensors, and the grip state can be determined based on the comparison result.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an embodiment in which the present invention is embodied in a front wheel drive-based four-wheel drive vehicle will be described with reference to FIGS.
[0017]
(overall structure)
As shown in FIG. 1, the four-wheel drive vehicle 11 includes an engine 12 and a transaxle 13. The transaxle has a transmission and a transfer. A pair of front axles 14 and 14 and a propeller shaft 15 are connected to the transaxle 13. Front wheels 16 and 16 are connected to both front axles 14 and 14, respectively. A driving force transmission device (coupling) 17 is connected to the propeller shaft 15, and a rear differential 19 is connected to the driving force transmission device 17 via a drive pinion shaft (not shown). Rear wheels 21 and 21 are connected to the rear differential 19 via a pair of rear axles 20 and 20.
[0018]
The driving force of the engine 12 is transmitted to the front wheels 16 and 16 via the transaxle 13 and the front axles 14 and 14. Further, when the propeller shaft 15 and the drive pinion shaft are connected so that torque can be transmitted by the driving force transmission device 17, the driving force of the engine 12 is the propeller shaft 15, the drive pinion shaft, the rear differential 19, and both the rear axles 20, 20. Is transmitted to both rear wheels 21, 21 via.
[0019]
(Driving force transmission device)
The driving force transmission device 17 includes a wet multi-plate electromagnetic clutch mechanism 18, and the electromagnetic clutch mechanism 18 includes a plurality of clutch plates (not shown) that are frictionally engaged with or separated from each other. When a current is supplied to an electromagnetic coil (not shown) built in the electromagnetic clutch mechanism 18, the clutch plates are frictionally engaged with each other, and torque is transmitted between the front and rear wheels 16 and 21. When the supply of current to the electromagnetic clutch mechanism 18 is cut off, the clutch plates are separated from each other, and the transmission of torque between the front and rear wheels 16 and 21 is also cut off.
[0020]
Further, the frictional engagement force of each clutch plate increases or decreases in accordance with the amount of current (intensity of current) supplied to the electromagnetic coil of the electromagnetic clutch mechanism 18, thereby transmitting torque between the front and rear wheels 16, 21, that is, the front and rear wheels. The binding force between 16 and 21 (the frictional engagement force of the electromagnetic clutch mechanism 18) can be arbitrarily adjusted. Supply and interruption of current to the electromagnetic coil of the electromagnetic clutch mechanism 18 and adjustment of the current supply amount are controlled by a power distribution control device 42 described later. In other words, the power distribution control device 42 selects either the four-wheel drive state or the two-wheel drive state, and controls the power distribution ratio (torque distribution ratio) between the front and rear wheels 16 and 21 in the four-wheel drive state.
[0021]
(Brake drive)
The four-wheel drive vehicle 11 includes a brake drive unit 31. A master cylinder 33 that is linked to the brake pedal 32 is connected to the input side of the brake drive unit 31. The wheel cylinders 35 of the wheels 16 and 21 are connected to the output side of the brake drive unit 31 via four brake pipes 34, respectively. When the driver depresses the brake pedal 32, the brake pressure generated in the master cylinder 33 is introduced into each wheel cylinder 35 via each brake pipe 34, whereby the braking force is applied to each wheel 16, 21. Is added.
[0022]
The brake drive unit 31 includes a pressurizing source, a pressure reducing valve, a pressure increasing valve, and the like (not shown), and opens and closes the pressure reducing valve and the pressure increasing valve to introduce the hydraulic pressure of the pressure source into each wheel cylinder 35. As a result, the brake pressure of each of the wheels 16 and 21 (the braking force applied to each of the wheels 16 and 21) can be automatically increased, held or reduced.
[0023]
(Electrical configuration)
Next, the electrical configuration of the four-wheel drive vehicle 11 will be described with reference to FIG.
As shown in FIG. 2, the four-wheel drive vehicle 11 includes a braking force control device (VSC-ECU) 41 and a power distribution control device (4WD-ECU) 42.
[0024]
Both the control devices 41 and 42 are mainly configured by a microcomputer provided with a CPU, a RAM, a ROM, an I / O interface, and the like. The ROM stores various control programs executed by the control devices 41 and 42, various data, various maps, and the like. The map is obtained in advance by experimental data based on a vehicle model and well-known theoretical calculations. The RAM is a data work area where the control programs written in the ROM are expanded and the CPUs of both control devices execute various arithmetic processes.
[0025]
Each wheel speed sensor 43, steering angle sensor 44, left / right G sensor (left / right acceleration sensor) 45, yaw rate sensor 46, and throttle opening sensor 47 are provided on the input side (input terminal of the I / O interface) of the braking force control device 41. Each is connected. A brake drive unit 31 and an engine control device (not shown) are connected to the output side (output terminal of the I / O interface) of the braking force control device 41.
[0026]
Further, each wheel speed sensor 43, steering angle sensor 44, left and right G sensor 45, yaw rate sensor 46, and throttle opening sensor 47 are connected to the input side of the power distribution control device 42 (input terminal of the I / O interface). ing. The driving force transmission device 17 and the engine control device are connected to the output side (output terminal of the I / O interface) of the power distribution control device 42.
[0027]
The wheel speed sensor 43 is provided for each of the wheels 16 and 21, and detects the speed of each of the wheels 16 and 21, respectively. The steering angle sensor 44 is provided in the handle portion and detects the rotation angle of the handle. The left / right G sensor 45 detects the acceleration in the left / right direction of the vehicle, and based on this, the situation of cornering of the vehicle is determined. The yaw rate sensor 46 detects a yaw rate that is an angular velocity of a rotational motion (yawing) about a vertical axis passing through the center of gravity of the vehicle. The throttle opening sensor 47 is connected to a throttle valve (not shown), and detects the opening of the throttle valve, that is, the depression operation of the driver's accelerator pedal (not shown).
[0028]
The braking force control device 41 calculates a braking force for setting the traveling posture of the vehicle to the target posture from the motion state of the vehicle, selects a wheel to which the braking force is applied, and performs braking control via the brake driving unit 31. . Specifically, the braking force control device 41 detects a side slip of the vehicle based on detection signals from the sensors 43 to 47, and controls the engine output and the braking force of the wheels 16 and 21. Further, the power distribution control device 42 determines the grip state (slip state) of the wheels 16 and 21 based on the detection signals from the sensors 43 to 47, and determines the current supplied to the electromagnetic coil of the electromagnetic clutch mechanism 18. By controlling the amount, the driving force distribution between the front wheel side and the rear wheel side is variably controlled.
[0029]
(Information sharing)
Both the control devices 41 and 42 execute various controls based on various arithmetic processing results, respectively. These calculation processing results and the data detected by the various sensors 43 to 47 described above can be communicated with each other between the two control devices 41 and 42, and the two control devices 41 and 42 can be used as necessary. Exchange data and execute control in conjunction with each other. Both the control devices 41 and 42 are capable of executing either a calculation for braking force control or a calculation for driving force distribution control.
[0030]
During normal running and vehicle stability control, the power distribution control device 42 controls information such as vehicle behavior and road surface μ (road friction coefficient) calculated and estimated from the detection data of the various sensors 43 to 47 and each detection data. In common with the power control device 41, drive force distribution control is performed. That is, the power distribution control device 42 receives calculation result data (information such as vehicle behavior and road surface μ) from the braking force control device 41, and performs driving force distribution control based on the result data.
[0031]
The braking force control device 41 constitutes a braking force control unit that calculates a braking force for setting the vehicle running posture to a target posture from the motion state of the vehicle, selects a wheel to which the braking force is applied, and performs braking control. The power distribution control device 42 constitutes a power distribution control unit that variably controls the driving force distribution between the front wheel 16 side and the rear wheel 21 side by controlling the frictional engagement force of the electromagnetic clutch mechanism 18. The braking force control device 41 or the power distribution control device 42, the wheel speed sensor 43, the steering angle sensor 44, the left / right G sensor 45, the yaw rate sensor 46, and the throttle opening sensor 47 determine the grip state of each wheel from at least each wheel speed. Grip state determination means is configured.
[0032]
(Operation of the embodiment)
Next, the operation of the four-wheel drive vehicle configured as described above will be described in the order of normal four-wheel drive control, vehicle stability control, and vehicle stability control end.
[0033]
(Normal four-wheel drive control)
First, the operation of the four-wheel drive vehicle during normal four-wheel drive control will be described.
During normal travel, which is when the vehicle stability control system is not operating, the power distribution control device 42 obtains the friction engagement force of the electromagnetic clutch mechanism 18 from a differential limit torque map (not shown). The differential limiting torque map is a table map of duty ratios using the differential rotation speed, throttle opening and speed of the front and rear wheels 16, 21 calculated based on the detection signals of the respective wheel speed sensors 43 as parameters. Is stored in advance.
[0034]
The power distribution control device 42 controls the driving force transmission device 17 by determining the running state of the vehicle from the detection data from the throttle opening sensor 47 and each wheel speed sensor 43 and searching for the differential limit torque map value (target torque). To do. When the differential rotational speed of the front and rear wheels 16 and 21 is larger than a predetermined value set in advance, the power distribution control device 42 determines that the road is a low μ road such as a muddy road or a snowy road, and the electromagnetic clutch mechanism 18 Increase frictional engagement force.
[0035]
Further, the power distribution control device 42 is a map (not shown) in which a correction coefficient (correction amount) of the frictional engagement force of the electromagnetic clutch mechanism 18 is stored in advance in the ROM in accordance with the vehicle speed detected by a vehicle speed sensor (not shown). ). That is, when the vehicle speed is smaller than a predetermined value set in advance, the power distribution control device 42 calculates a correction coefficient so as to increase the friction engagement force of the electromagnetic clutch mechanism 18 in order to improve running stability. When the vehicle speed is larger than a predetermined value set in advance, the power distribution control device 42 calculates a correction coefficient so as to weaken the frictional engagement force of the electromagnetic clutch mechanism 18 in order to improve the maneuverability. The vehicle speed may be an average value detected by the wheel speed sensor 43 of the rear wheel 21 that is a driven wheel.
[0036]
Further, the power distribution control device 42 has a map different from that described above in which the correction coefficient of the frictional engagement force of the electromagnetic clutch mechanism 18 is stored in advance in the ROM in accordance with the throttle opening detected by the throttle opening sensor 47 ( (Not shown). That is, the power distribution control device 42 determines the correction coefficient so as to increase the friction engagement force of the electromagnetic clutch mechanism 18 as the throttle opening increases, thereby improving the startability and acceleration.
[0037]
Thereafter, the power distribution control device 42 determines the frictional engagement force of the electromagnetic clutch mechanism 18 based on the correction coefficients determined according to the vehicle speed and the throttle opening, respectively, and applies the electromagnetic clutch mechanism 18 to the electromagnetic coil. Control the current. As described above, the power distribution control device 42 changes the control amount of the transmission torque by the electromagnetic clutch mechanism 18 in accordance with the differential rotational speeds of the front and rear wheels 16 and 21, the vehicle speed, and the acceleration operation amount (throttle valve opening). By doing so, the transmission torque between the front and rear wheels 16, 21 is optimally controlled in accordance with the running state of the vehicle.
[0038]
(Vehicle stability control)
Next, the operation of the four-wheel drive vehicle at the start of vehicle stability control will be described.
For example, during cornering (during sudden steering), if a side slip of the vehicle is detected by each wheel speed sensor 43, steering angle sensor 44, left / right G sensor 45, and yaw rate sensor 46, the braking force control device 41 controls the vehicle stability. I do. In other words, the braking force control device 41 compares the target yaw rate with the actual yaw rate to determine whether the vehicle motion state tends to be understeer or oversteer with respect to the target yaw rate. Then, the braking force control device 41 performs brake control so that the actual yaw rate matches the target yaw rate. That is, in the case of an understeer tendency, a braking force is applied to the inner front wheel 16 for correction to increase the turning ability of the vehicle. In the case of an oversteer tendency, a braking force is applied to the outer rear wheel 21 for correction to reduce the turning ability of the vehicle. As a result, the running stability of the vehicle is improved.
[0039]
Specifically, when the vehicle jumps out due to an understeer tendency, the actual yaw rate is detected to be less than the yaw rate (target yaw rate) calculated and determined from the degree of turning of the steering wheel and the speed. In this case, the braking force control device 41 suppresses the output of the engine 12 via the engine control device and brakes the front wheels (particularly the inner side) 16 to weaken the driving force of the front wheels 16 and reduce the deviation from the course. . Further, when the vehicle spins due to an oversteer tendency, more yaw rate is detected than the yaw rate (target yaw rate) calculated and determined from centrifugal force and speed. In this case, the braking force control device 41 suppresses spin by applying a strong brake to the rear wheels (especially outside).
[0040]
On the other hand, the power distribution control device 42 is input with each control parameter and a signal indicating whether or not the braking force control is executed (including a torque reduction command between the front and rear wheels 16 and 21). The power distribution control device 42 receives each signal. Based on this, the electromagnetic clutch mechanism 18 is controlled to control torque distribution. That is, when a braking force is applied to the selected wheel by the braking force control device 41, the power distribution control device 42 sets the frictional engagement force (crimping force) of the electromagnetic clutch to a predetermined value smaller than usual. For this reason, the restraining force between the front and rear wheels 16 and 21 becomes weaker than usual, and the rotation of the wheels 16 and 21 becomes free, and the braking control as per the target by the braking force control device 41 is performed. At this time, as shown in FIG. 3, the power distribution control device 42 weakens the friction engagement force of the electromagnetic clutch mechanism 18 based on a predetermined torque decrease gradient (inclination −A or −B in this embodiment).
[0041]
(At the end of vehicle stability control)
Next, the operation of the four-wheel drive vehicle when the vehicle stability control is finished and the restrained force between the front and rear wheels returned to the restraint force during normal travel will be described with reference to the flowchart shown in FIG. Both flowcharts are executed based on various control programs stored in the ROM in advance. In the present embodiment, a step in the flowchart corresponding to each processing content is abbreviated as “S”.
[0042]
As shown in FIG. 4, when a control end signal (torque reduction command end signal) for vehicle stability control is input (S110), the power distribution control device 42 first performs a grip state determination process for each of the wheels 16, 21. Do. That is, the power distribution control device 42 reads each wheel speed data detected by each wheel speed sensor 43 into the work area of the RAM in the power distribution control device 42 and determines whether each wheel speed is geometrically correct. Is determined (S120). Specifically, the power distribution control device 42 calculates the ratio of the left and right wheel speeds of both front wheels 16 and 16 based on the respective wheel speeds detected by the respective wheel speed sensors 43, and the both rear wheels 21 and 21. Calculate the ratio of the left and right wheel speeds. The power distribution control device 42 compares the ratio of the left and right wheel speeds of the front wheels 16 and 16 with the ratio of the left and right wheel speeds of the rear wheels 21 and 21, and the difference is set to a predetermined value ( It is determined whether it is larger than (threshold).
[0043]
When each wheel speed is geometrically correct (“YES” in S120), the power distribution control device 42 shifts the process to S130. If each wheel speed is not geometrically correct (“NO” in S120), the power distribution control device 42 determines that at least one of the wheels 16, 21 is in a slip state (S140), and the process proceeds to S150. Transition.
[0044]
On the other hand, in S130, the power distribution control device 42 determines the steering angle data detected by the steering angle sensor 44, each wheel speed sensor 43, the yaw rate sensor 46, and the left and right G sensor 45, each wheel speed data, yaw rate data, and left and right G data. Are read into the RAM work area in the power distribution control device 42. Then, it is determined whether or not the steering angle, each wheel speed, the yaw rate, and the left and right G are geometrically correct. That is, the power distribution control device 42 calculates and estimates the target yaw rate and the target acceleration in the left and right direction (originally generated yaw rate and left and right acceleration) from the steering angle and each wheel speed, and these target values, the yaw rate sensor 46 and the left and right G sensor. Each of the 45 detection values is compared, and it is determined whether any one of them is larger than a predetermined value (threshold value) set in advance.
[0045]
If the steering angle, each wheel speed, the yaw rate, and the left and right G are geometrically correct, that is, if the difference between the both target values and the sensor detection values is smaller than the threshold value ("YES" in S130) The power distribution control device 42 determines that the vehicle is in the four-wheel grip state (S160), and proceeds to S170. When the steering angle, each wheel speed, the yaw rate, and the left and right G are not geometrically correct, that is, any one of the differences between the both target values and the sensor detection values exceeds the threshold value. If so ("YES" in S130), the power distribution control device 42 determines that the wheels 16 and 21 are in the slip state (S140), and the process proceeds to S150. For this reason, the determination accuracy of the grip state determination process is improved.
[0046]
As shown in FIG. 4, in S170, the power distribution control device 42 controls the driving force transmission device 17 so that the restraining force between the front and rear wheels 16, 21 increases at the first torque increase gradient A (see FIG. 3). The electromagnetic clutch mechanism 18 is controlled. That is, the power distribution control device 42 increases the binding force between the front and rear wheels 16 and 21 at a stretch to the target value required by the vehicle. Since the wheels 16 and 21 are in the grip state, the stability of the vehicle is not impaired even if the restraining force between the front and rear wheels 16 and 21 is increased at a stroke.
[0047]
Note that the torque required by the vehicle is a map stored in the ROM based on the torque required by the driver based on the accelerator pedal depression amount (throttle opening), the vehicle running condition at that time, the road surface μ, and the like. It is calculated based on the torque calculated from. During normal traveling and vehicle stability control, the torque required by the vehicle (target value in FIG. 3) varies depending on the situation, as indicated by arrows and two-dot chain lines in FIG. For this reason, when the torque is increased at the second torque increase gradient B, since the inclination is constant, the time until the torque is reached also increases and decreases as the torque (target value) increases and decreases.
[0048]
On the other hand, in S150, the power distribution control device 42 causes the electromagnetic clutch mechanism 18 of the driving force transmission device 17 so that the restraining force between the front and rear wheels 16, 21 increases at the second torque increase gradient B (see FIG. 3). To control. The second torque increase gradient B has a gentler slope than the first torque increase gradient A, and the binding force between the front and rear wheels 16 and 21 is gradually increased to a target value required by the vehicle. For this reason, generation | occurrence | production of the rapid change of a driving force after completion | finish of vehicle stability control is suppressed, and stability of a vehicle is not impaired.
[0049]
Incidentally, if the restraining force between the front and rear wheels 16 and 21 is increased at the first torque increasing gradient A even though the wheels 16 and 21 are in a slip state (including one-wheel slip), a sudden driving force Changes occur. For this reason, for example, during cornering, the vehicle becomes unstable in behavior at the end of vehicle stability control.
[0050]
Next, the power distribution control device 42 determines whether or not the binding force between the front and rear wheels 16 and 21 has reached a target value required by the vehicle (S180). When the binding force between the front and rear wheels 16 and 21 reaches the target value required by the vehicle (“YES” in S180), the power distribution control device 42 ends the processing according to this flowchart and performs normal four-wheel drive control. . On the other hand, when the binding force between the front and rear wheels 16 and 21 has not reached the target value required by the vehicle (“NO” in S180), the power distribution control device 42 repeats the processing from S170 or S150.
[0051]
Thus, at the end of the vehicle stability control, a predetermined value (target value) required by the vehicle for the restraining force between the front and rear wheels 16 and 21 that has been weakened is determined depending on whether or not the wheels 16 and 21 are in the grip state. ) Until it is increased at once or gradually. That is, after the vehicle stability control is finished, if it is better to reach the restraining force between the front and rear wheels 16 and 21 to the predetermined value (target torque value) required by the vehicle as soon as possible, the restraining force is set to the target torque value. To reach at once. When there is a possibility of impairing the vehicle stability, the binding force between the front and rear wheels 16 and 21 is gradually reached the target torque value over a predetermined time. Therefore, the accuracy of the restraint force control between the front and rear wheels 16 and 21 after the vehicle stability control is finished is improved, and the running stability of the vehicle is ensured.
[0052]
By the way, when it is better to make the front and rear wheel restraining force reach the predetermined value required by the vehicle as soon as possible after the end of the vehicle stability control, the respective wheels are in the grip state. For example, in the case of accelerating straight after the vehicle stability control is finished, it is easier to accelerate and the traveling is also stabilized by increasing the restraining force between the front and rear wheels and applying driving force to the four wheels. Further, even during the cornering, if each wheel is gripping, the driving force is applied to the four wheels, so that the sliding force is also distributed to the four wheels. For this reason, the cornering performance is better when the restraining force between the front and rear wheels is increased to achieve four-wheel drive.
[0053]
In addition, after the vehicle stability control is finished, it is preferable that the restraining force between the front and rear wheels 16 and 21 is gradually reached a predetermined value over a predetermined time when each wheel is in a slip state. is there. For example, when accelerating in a slip state after the vehicle stability control is finished, the restraining force between the front and rear wheels is gradually increased over a predetermined time. As a result, the change in the driving force transmitted to the wheels becomes gradual and re-slip and re-spin in the middle of cornering are prevented.
[0054]
(Effect of embodiment)
Therefore, according to the present embodiment, the following effects can be obtained.
(1) After the braking control by the braking force control device 41 is completed, the power distribution control device 42 normally supplies the driving force transmitted to the rear wheel 21 side with a predetermined torque increasing gradient according to the traveling state and road surface state of the vehicle. The driving force is distributed by controlling the value. Specifically, after the braking control by the braking force control device 41 is finished, when the grip state determining means determines that the wheels 16 and 21 are in the grip state, the power distribution control device 42 The driving force transmitted to the 21 side is controlled to the normal value by the first torque increase gradient A, and the driving force is distributed. When the grip state determination means determines that the wheels 16 and 21 are in the slip state, the power distribution control device 42 transmits the driving force transmitted to the rear wheel 21 side to the first torque increase gradient A. The driving force is distributed by controlling to a normal value at the second torque increase gradient B that is gentler.
[0055]
For this reason, even if it is better to make the restraining force between the front and rear wheels 16 and 21 reach the predetermined value required by the vehicle as soon as possible, the restraint between the front and rear wheels 16 and 21 is terminated after the vehicle stability control is finished. The force is not always gradually increased with a constant torque increase gradient. Then, sudden changes in vehicle behavior are suppressed, and traction (traction force or adhesive frictional force between the wheels 16, 21 and the road surface) required by the vehicle is given according to the vehicle running state and the road surface state. Therefore, the accuracy of the restraint force control between the front and rear wheels 16 and 21 after the end of the vehicle stability control is improved. That is, cooperative control of vehicle stability control and four-wheel drive control (drive force distribution control) is performed more accurately. And the running stability of the vehicle can be improved.
[0056]
(2) The first torque increase gradient A and the second torque increase gradient B are determined based on the increasing speed of the restraining force between the front and rear wheels 16 and 21. That is, the transmission torque between the front and rear wheels 16 and 21 is controlled by controlling the frictional engagement force of the electromagnetic clutch mechanism 18 of the driving force transmission device 17. For this reason, a structure can be simplified.
[0057]
(3) During normal driving and vehicle stability control, vehicle behavior information and road surface μ information are calculated and estimated by the braking force control device 41, and this calculation estimation result data is communicated to the power distribution control device 42. . That is, the power distribution control is performed using various calculation results performed by the braking force control device 41 to execute the vehicle stability control. For this reason, the power distribution control device 42 does not need to perform complicated calculations for grasping the vehicle behavior and the road surface μ. Therefore, the calculation amount of the power distribution control device 42 is reduced, and the power distribution control device 42 can be reduced in cost and size.
[0058]
(Another example)
In addition, you may implement the said embodiment as follows.
In the flowchart shown in FIG. 4, the slip determination process may be only S120 or only S130. Even in this way, it is possible to determine whether each of the wheels 16 and 21 is in a grip state or a slip state. Moreover, you may make it determine a grip state with another slip determination processing method.
[0059]
After the vehicle stability control is completed, the power distribution control device 42 selects an optimal torque increase gradient from a plurality of preset torque increase gradients based on the grip state of the wheels 16 and 21, and this selection is performed. The driving force transmitted to the rear wheel 21 side with the increased torque gradient may be controlled to a normal value to distribute the driving force. That is, in the present embodiment, the first and second torque increase gradients A and B are set in advance, but three or more torque increase gradients are provided, and either one of the torque increase gradients A and B is set according to the traveling state and road surface state of the vehicle. A torque increase gradient may be selected. In this way, the traction required by the vehicle can be given more accurately according to the vehicle running state and the road surface state without changing the vehicle behavior.
[0060]
Further, the torque increase gradient may be arbitrarily changed between the first torque increase gradient A and the second torque increase gradient B. In other words, after the vehicle stability control is completed, the power distribution control device 42 determines the torque increase gradient changeable region (the first torque increase gradient A in FIG. 3) based on the grip state of the wheels 16 and 21. And the second torque increase gradient B) is calculated and estimated, and the driving force transmitted to the front wheel 16 side or the rear wheel 21 side with the calculated torque increase gradient is normally calculated. Control the value to distribute the driving force. The power distribution control device 42 indicates the torque increase gradient by a certain function, and calculates and estimates the torque increase gradient based on this function. In this way, more accurate traction can be given without changing the vehicle behavior.
[0061]
In the present embodiment, the electromagnetic clutch mechanism 18 is used as the differential control device of the driving force transmission device 17. However, a mechanism capable of changing various transmission torques such as a hydraulic clutch mechanism may be used.
[0062]
-You may apply to the four-wheel drive vehicle provided with the center differential as a differential control apparatus.
-You may apply to a rear-wheel drive (FR) based four-wheel drive vehicle. In this case, the driving force of the engine 12 is transmitted from the rear wheel 21 side to the front wheel 16 side.
[0063]
(Appendix)
Next, a technical idea that can be grasped from the embodiment and another example will be added below.
A grip state determination unit that determines the grip state of each wheel from each wheel speed is provided, and after the braking control by the braking force control unit is finished, the power distribution control unit is configured to determine each wheel determined by the grip state determination unit. Based on the grip state, the optimal torque increase gradient is calculated from the preset torque increase gradient changeable region, and the driving force transmitted to the front wheel side or rear wheel side is controlled to the normal value using this torque increase gradient. The four-wheel drive vehicle according to claim 1, wherein the driving force is distributed.
[0064]
【The invention's effect】
According to the present invention, after the vehicle stability control is finished, the running stability of the vehicle can be ensured by controlling the restraining force between the front and rear wheels in accordance with the grip state of each wheel.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram of a four-wheel drive vehicle in the present embodiment.
FIG. 2 is a block diagram showing electrical connection of the four-wheel drive vehicle in the present embodiment.
FIG. 3 is a time chart showing an example of restraint force control between front and rear wheels in the present embodiment.
FIG. 4 is a flowchart of torque control at the end of vehicle stability control in the present embodiment.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 11 ... Four-wheel drive vehicle (vehicle), 16 ... Front wheel, 17 ... Driving force transmission device,
18 ... Electromagnetic clutch mechanism, 21 ... Rear wheel, 31 ... Brake drive unit,
41 ... Braking force control device (braking force control means) constituting grip state determination means,
42... Power distribution control device (power distribution control means) constituting grip state determination means, 43... Wheel speed sensor constituting grip state determination means,
44... Steering angle sensor constituting grip state determination means,
45. Left / right acceleration sensor (left / right G sensor) constituting grip state determination means,
46 ... Yaw rate sensor constituting grip state determination means,
47. Throttle opening sensor constituting grip state determination means,
A ... 1st torque increase gradient, B ... 2nd torque increase gradient.

Claims (5)

車両挙動を制御する制動力を車両の運動状態から演算して前記制動力を付加する車輪を選択し制動制御する制動力制御手段と、前輪側と後輪側との駆動力配分を可変制御する動力配分制御手段とを備え、前記制動力制御手段で前記車輪に制動力を付加する際に前記動力配分制御手段で前輪側又は後輪側に伝達する駆動力を通常より小さな値に制御して駆動力配分するようにした四輪駆動車において、
各車輪のグリップ状態を判定するグリップ状態判定手段を備え、
前記制動力制御手段による制動制御の終了後、前記動力配分制御手段は、前輪側又は後輪側に伝達する駆動力を、前記グリップ状態判定手段にて判定した各車輪のグリップ状態に応じて非グリップ状態ではグリップ状態よりも緩やかなトルク増大勾配で通常値に制御して駆動力配分するようにした四輪駆動車。
A braking force for controlling the vehicle behavior is calculated from the motion state of the vehicle, and the braking force control means for selecting and controlling the wheel to which the braking force is applied, and the driving force distribution between the front wheel side and the rear wheel side are variably controlled. Power distribution control means, and when the braking force control means applies braking force to the wheel, the power distribution control means controls the driving force transmitted to the front wheel side or the rear wheel side to a value smaller than usual. In a four-wheel drive vehicle that distributes driving force,
Grip state determination means for determining the grip state of each wheel is provided,
After the braking control by the braking force control means is completed, the power distribution control means determines the driving force transmitted to the front wheel side or the rear wheel side according to the grip state of each wheel determined by the grip state determination means. A four-wheel drive vehicle in which the driving force is distributed by controlling to a normal value with a gentler torque increase gradient in the grip state than in the grip state .
記動力配分制御手段は、予め設定した複数のトルク増大勾配の中から最適なトルク増大勾配を選択し、この選択したトルク増大勾配で前輪側又は後輪側に伝達する駆動力を通常値に制御して駆動力配分するようにした請求項1に記載の四輪駆動車。 Before SL power distribution control means selects an optimal torque increase slope from the plurality of torque increase gradient preset, the driving force transmitted to the front wheel side or the rear wheels at the selected torque increase gradient to the normal value The four-wheel drive vehicle according to claim 1, wherein the driving force is distributed by control. 前記制動力制御手段による制動制御の終了後、After completion of the braking control by the braking force control means,
前記グリップ状態判定手段にて各車輪がグリップ状態であると判定された場合には、前記動力配分制御手段は、前輪側又は後輪側に伝達する駆動力を第1のトルク増大勾配にて通常値に制御して駆動力配分し、  When each of the wheels is determined to be in the grip state by the grip state determination unit, the power distribution control unit normally transmits the driving force transmitted to the front wheel side or the rear wheel side with the first torque increase gradient. Control the value to distribute the driving force,
前記グリップ状態判定手段にて各車輪が非グリップ状態であると判定された場合には、前記動力配分制御手段は、前輪側又は後輪側に伝達する駆動力を前記第1のトルク増大勾配よりも緩やかな第2のトルク増大勾配にて通常値に制御して駆動力配分するようにした請求項1又は請求項2に記載の四輪駆動車。  When it is determined by the grip state determination means that each wheel is in a non-grip state, the power distribution control means transmits the driving force transmitted to the front wheel side or the rear wheel side from the first torque increase gradient. The four-wheel drive vehicle according to claim 1 or 2, wherein the driving force is distributed by controlling to a normal value with a gentle second torque increase gradient.
前記動力配分制御手段にて制御されると共に前後輪間のトルク配分比が可変になるよう前後輪間の拘束力を調整する駆動力伝達装置を備え、A driving force transmission device that is controlled by the power distribution control means and adjusts the binding force between the front and rear wheels so that the torque distribution ratio between the front and rear wheels is variable;
前記トルク増大勾配は、前後輪間の拘束力の増大速度に基づいて決定される請求項1〜請求項3のいずれか一項に記載の四輪駆動車。  The four-wheel drive vehicle according to any one of claims 1 to 3, wherein the torque increase gradient is determined based on an increasing speed of a binding force between front and rear wheels.
前記グリップ状態判定手段は、操舵角及び各車輪速に基づいて演算した目標ヨーレート及び左右方向の目標加速度をヨーレートセンサ及び左右Gセンサの検出値と比較し、この比較結果に基づいてグリップ状態を判定するようにした請求項1〜請求項4のいずれか一項に記載の四輪駆動車。The grip state determination means compares the target yaw rate calculated in accordance with the steering angle and each wheel speed and the target acceleration in the left / right direction with the detection values of the yaw rate sensor and the left / right G sensor, and determines the grip state based on the comparison result. The four-wheel drive vehicle as described in any one of Claims 1-4 which made it do.
JP2001117149A 2001-04-16 2001-04-16 Four-wheel drive vehicle Expired - Lifetime JP3840061B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001117149A JP3840061B2 (en) 2001-04-16 2001-04-16 Four-wheel drive vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001117149A JP3840061B2 (en) 2001-04-16 2001-04-16 Four-wheel drive vehicle

Publications (2)

Publication Number Publication Date
JP2002307985A JP2002307985A (en) 2002-10-23
JP3840061B2 true JP3840061B2 (en) 2006-11-01

Family

ID=18967769

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001117149A Expired - Lifetime JP3840061B2 (en) 2001-04-16 2001-04-16 Four-wheel drive vehicle

Country Status (1)

Country Link
JP (1) JP3840061B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7634342B2 (en) * 2005-03-18 2009-12-15 Honda Motor Co., Ltd. Method for deploying a torque reduction and torque limitation command through per wheel torque control of a controllable 4-wheel-drive system
JP4600126B2 (en) * 2005-04-05 2010-12-15 株式会社アドヴィックス Vehicle attitude control device
CN101786452B (en) * 2010-03-25 2013-01-30 清华大学 Axle drive electric vehicle drive antiskid control system
JP4998758B2 (en) * 2010-05-28 2012-08-15 日立オートモティブシステムズ株式会社 Vehicle integrated control device
JP5663368B2 (en) * 2011-03-30 2015-02-04 富士重工業株式会社 Vehicle driving support control device
US8332112B2 (en) * 2011-03-30 2012-12-11 Nissin Kogyo Co., Ltd. Control device for controlling drive force that operates on vehicle
FR2982205B1 (en) * 2011-11-08 2014-04-11 Renault Sa ADAPTING A SIMULATED ENGINE BRAKE SET
JP6212286B2 (en) * 2013-05-30 2017-10-11 株式会社Subaru Vehicle control device
JP7307571B2 (en) * 2019-03-26 2023-07-12 株式会社Subaru vehicle controller
JP7705971B1 (en) 2024-02-14 2025-07-10 本田技研工業株式会社 Vehicle control device

Also Published As

Publication number Publication date
JP2002307985A (en) 2002-10-23

Similar Documents

Publication Publication Date Title
JP4456748B2 (en) Power distribution control device for four-wheel drive vehicles
JP3617680B2 (en) 4-wheel drive traction control system
JP6653085B2 (en) Vehicle driving force control device
JP4264503B2 (en) Vehicle behavior control device
US20090018742A1 (en) Device operable to control turning of vehicle
JP2019194060A (en) Method of controlling implementation of drift driving state of vehicle
JP6504223B2 (en) Vehicle driving force control method
KR102805124B1 (en) Wheel slip control method for vehicle
JP2002234355A (en) Control device for four-wheel drive vehicle
JPH10138785A (en) Vehicle yaw moment control device
JP2004106649A (en) Power distribution control device for four-wheel drive vehicle
JP3840061B2 (en) Four-wheel drive vehicle
KR20210071133A (en) Electronic stability control method for vehicle
JP4215861B2 (en) Power distribution control device for four-wheel drive vehicles
JP3871550B2 (en) Driving force distribution control device for four-wheel drive vehicle
JP5018051B2 (en) Vehicle driving force control device
JP5706732B2 (en) Tow vehicle control device
JP5663368B2 (en) Vehicle driving support control device
JP2008094214A (en) Vehicle motion control device
JP2004017721A (en) Control device for four-wheel drive vehicle
JP2002219958A (en) Vehicle yaw rate control device
KR20250040164A (en) Control method of drift driving for vehicle
EP2591934B1 (en) Device for controlling torque distribution to left and right wheels on a vehicle
JP5125669B2 (en) Vehicle speed estimation device for four-wheel drive vehicles
JP4600126B2 (en) Vehicle attitude control device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040317

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20050920

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050929

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050920

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050929

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060214

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20060413

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060414

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060725

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060804

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3840061

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090811

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090811

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090811

Year of fee payment: 3

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090811

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090811

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090811

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100811

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110811

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120811

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130811

Year of fee payment: 7

EXPY Cancellation because of completion of term