[go: up one dir, main page]

JP3837858B2 - Conductive adhesive and method of using the same - Google Patents

Conductive adhesive and method of using the same Download PDF

Info

Publication number
JP3837858B2
JP3837858B2 JP22683197A JP22683197A JP3837858B2 JP 3837858 B2 JP3837858 B2 JP 3837858B2 JP 22683197 A JP22683197 A JP 22683197A JP 22683197 A JP22683197 A JP 22683197A JP 3837858 B2 JP3837858 B2 JP 3837858B2
Authority
JP
Japan
Prior art keywords
silver powder
conductive adhesive
conductive
resin
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP22683197A
Other languages
Japanese (ja)
Other versions
JPH1166953A (en
Inventor
政史 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP22683197A priority Critical patent/JP3837858B2/en
Publication of JPH1166953A publication Critical patent/JPH1166953A/en
Application granted granted Critical
Publication of JP3837858B2 publication Critical patent/JP3837858B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L24/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/2919Material with a principal constituent of the material being a polymer, e.g. polyester, phenolic based polymer, epoxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29199Material of the matrix
    • H01L2224/2929Material of the matrix with a principal constituent of the material being a polymer, e.g. polyester, phenolic based polymer, epoxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/293Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29338Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/29339Silver [Ag] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8319Arrangement of the layer connectors prior to mounting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • H01L2224/8384Sintering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01004Beryllium [Be]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01005Boron [B]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01006Carbon [C]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01019Potassium [K]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01029Copper [Cu]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01033Arsenic [As]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01045Rhodium [Rh]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01047Silver [Ag]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0105Tin [Sn]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01082Lead [Pb]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/0132Binary Alloys
    • H01L2924/01322Eutectic Alloys, i.e. obtained by a liquid transforming into two solid phases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/014Solder alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/06Polymers
    • H01L2924/0665Epoxy resin
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/10251Elemental semiconductors, i.e. Group IV
    • H01L2924/10253Silicon [Si]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/156Material
    • H01L2924/157Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2924/15738Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950 C and less than 1550 C
    • H01L2924/15747Copper [Cu] as principal constituent
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/321Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by conductive adhesives

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Conductive Materials (AREA)

Description

【0001】
【発明の属する技術分野】
本発明はIC等の半導体素子およびチップ抵抗、チップLED等のチップ部品をリ−ドフレ−ムや放熱板等に接着する際に使用されるもので、作業性、接着性、導電性、耐熱性、熱伝導性に優れた導電性接着剤に関するものである。
【0002】
【従来の技術】
近年IC、LSI、LED等をはじめとする半導体素子は著しい発展をしており、大量生産が行われている。それに伴い、その量産における作業性の向上、および製造費の削減が重要な問題となっている。
【0003】
従来、これらの半導体素子をリ−ドフレ−ムや基板等に接着する方法としては金−シリコン共晶ハンダや錫−鉛ハンダ等のハンダを用いることが主流であった。しかし、今までの方法は、金が高価であること、半導体素子とリ−ドフレ−ムや基板の熱膨張の差を吸収しきれず、半導体素子やハンダ類にクラックが発生すること、耐熱性に欠けること、作業温度が比較的高温であること、半導体素子の電極を汚染しやすいことなどから、導電性接着剤を使用する方法が主流となってきている。
【0004】
一般に使用されている導電性接着剤は、導電性粉体、有機樹脂、溶剤、触媒等から構成され、導電性粉体には、金、銀、銅、カ−ボン等が用いられ、特にフレ−ク状の銀粉が導電性に優れているため多く使用されている。また、有機樹脂にはエポキシ樹脂、フェノ−ル樹脂等の熱硬化性樹脂が多く使用されている。これらの導電性接着剤は前述のハンダの欠点を克服する一方、熱伝導を比べた場合、金属の固体であるハンダ類には劣ることがわかっている。
【0005】
【発明が解決しようとする課題】
半導体素子やチップ部品は、近年、小型化、高精度化、高性能化が求められている。中でも半導体素子であるICやLSIは多ピン化、小型化、高周波数化の要求が高まり、それに伴い発生する熱は数年前に比べ数倍の熱量となっている。また同様に、LEDにおいても高輝度化が求められ、熱の発生量はますます増大してきている。
【0006】
すなわち、高い発熱を生じる半導体素子の接続には、高熱伝導性を有する材料が要求されるために、導電性接着剤は使用せず、熱伝導に優れているハンダ類が使用されているのが一般的である。しかし、ハンダ類の使用には、前述の欠点が存在しており、高熱伝導性を有する導電性接着剤が強く望まれている。
【0007】
本発明の目的は、ハンダ類と同等の熱伝導を有し、なおかつ今までの導電性接着剤の利点を併せ持つ導電性接着剤を提供することにある。
【0008】
【課題を解決するための手段】
上記の目的を達成するために鋭意努力した結果、導電性粉体と有機樹脂とを含有する導電性接着剤において、該導電性粉体として最大粒径が1μm以下でかつ平均粒径が0.2μm以下の球状銀粉のみを含有し、該有機樹脂としてエポキシ樹脂あるいはポリイミド樹脂を含有し、かつ、導電性粉体を50〜90質量%、有機樹脂を4〜36質量%を含有させことにより、高い熱伝導性が得られることを見出したのである。
【0009】
あるいは、少なくとも導電性粉体と有機樹脂とを含有する導電性接着剤において、該導電性粉体として最大粒径が1μm以下でかつ平均粒径が0.2μm以下の球状銀粉と、最大粒径が50μm以下のフレ−ク状銀粉との混合物を含有し、該有機樹脂としてエポキシ樹脂あるいはポリイミド樹脂を含有し、球状銀粉に対するフレ−ク状銀粉の質量混合比(=フレ−ク状銀粉の質量/球状銀粉の質量)が0.1以上1.33未満の範囲であり、かつ、該導電性粉体が50〜90質量%、該有機樹脂が4〜36質量%含有されることにより、接触により高導電性が得られるフレーク状銀粉利点も併せ持たせることができる。
【0010】
また、本発明の導電性接着剤を使用する際、塗布された導電性接着剤を200〜350℃に加熱することにより、球状銀粉の焼結が生じ、導電性と熱伝導性が向上することを見出した。
【0011】
【発明の実施の形態】
本発明の導電性接着剤には、最大粒径が1μm以下でかつ平均粒径が0.2μm以下の球状銀粉を導電性粉体として用いている。一般に導電性接着剤の導電性粉体の多くには銀粉が用いられ、なおかつフレ−ク状銀粉かフレーク状銀粉と球状銀粉の混合物がよく用いられていた。これは今までの導電性接着剤がフレーク状銀粉の接触によって高導電性を得ており、球状銀粉だけでは高い導電性が得られなかったことによる。しかし、フレーク状銀粉を用いたのでは高熱伝導は得られなかった。
【0012】
本発明で使用する最大粒径が1μm以下でかつ平均粒径が0.2μm以下の球状銀粉は、非常に細かい銀粉であるため焼結し易い。そのため本発明の導電性接着剤では、銀粉が焼結し、金属固体に近づくため、熱伝導性、導電性が向上するのである。
【0013】
特に本発明の導電性接着剤は200℃〜350℃に加熱することにより、高熱伝導性、高導電性が得られる。銀粉の焼結は150℃程度でも生じるが、150℃では焼結が不十分であり、得られる導電性および熱伝導性の向上も十分とは言えない。200℃〜350℃に加熱することで銀粉の焼結が促進し、より高い導電性および熱伝導性が得られるのである。また、この温度範囲であれば導電性接着剤に用いる有機樹脂の変質も生じない。
【0014】
本発明に用いる銀粉は様々な方法で製造できるが、上記の条件を満たせばどのような銀粉でもよい。一例としては、水酸化ナトリウムと硝酸銀を同当量づつ攪拌しながら反応させ、酸化銀を生成させ、得られた酸化銀を良く洗浄し、75℃に保温しながらロジンとトリエタノ−ルアミンを加え酸化銀を完全に還元し、得られた銀粉を吸引ろ過しながら水で良く洗浄することにより得られる。また、銀粉は細かいほど焼結開始温度が低くなるのでより細かい粉の方が好ましく、望むべくは最大粒径0.2μm以下で、平均粒径0.1μm以下が望ましい。
【0015】
本発明においては、上記球状銀粉とフレ−ク状銀粉を混合して用いてもよい。これにより焼結によって高導電性、高熱伝導性が得られる球状銀粉と、接触によって高導電性が得られるフレ−ク状銀粉の利点を得ることができる。その場合、フレ−ク状銀粉は最大粒径が50μm以下であることが望ましい。
【0016】
細かい球状銀粉を用いるとチクソ比が上昇し、印刷には適しているが、ディスペンスやスタンピングなどには不向きである。しかし、フレ−ク状銀粉を混合するとチクソ比は適度に下がり、ディスペンスやスタンピングに適した導電性接着剤になる。フレ−ク状銀粉を適量混合しても高導電性や高熱伝導性においては球状銀粉のみからなる導電性接着剤と同程度の性能が得られる。
【0017】
また、球状銀粉に対するフレ−ク状銀粉の質量混合比(=フレ−ク銀粉の質量/球状銀粉の質量)を0.1以上1.33未満の範囲で配合しているが、これは0.1未満だとフレ−ク状銀粉の効果が全く得られず、1.33以上では球状銀粉の効果が得られず、熱伝導性が低下するためである。
【0018】
本発明に用いる有機樹脂としては、ポリイミド樹脂あるいはエポキシ樹脂が用いられる。また、ポリイミド樹脂とエポキシ樹脂の混合物を有機樹脂に用いても構わない。
【0019】
本発明に用いるポリイミド樹脂としては、公知のポリイミド樹脂全てが使用でき、特に制限は無いが、使用方法を勘案すると液体か、溶剤に溶けうる固体が望ましい。公知のポリイミド樹脂として市販品の例を挙げると宇部興産株式会社製のUPAシリ−ズやユピコ−トシリ−ズ、東レ株式会社製のセミコファインシリ−ズ、丸善石油化学株式会社製のビスアルケニル置換ナジイミド等が挙げられる。ポリイミド樹脂をエポキシ樹脂と混合して使用する場合は、エポキシ樹脂と相溶性があることが望ましい。
【0020】
ポリイミド樹脂に対して溶剤を加える場合は、ポリイミド樹脂に希釈効果があるものを使用する。例えば、N−メチル−2−ピロリドン、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、トルエン、キシレン、石油エ−テル等が挙げられる。これらは単独でも複数種を混合して用いてもよい。また一部のポリイミド樹脂ではエチレングリコ−ルジグリシジルエ−テルや、フェニルグリシジルエ−テル、3−アミノプロピルトリエトキシシラン、3−グリシドキシプロピルトリメトキシシラン、3−グリシドキシプロピルメチルジメトキシシラン、2−(3,4−エポキシシクロヘキシル)エチルトリメトキシシランなど使用しても差し支えない。
【0021】
本発明に用いられるエポキシ樹脂としては、公知のエポキシ樹脂全てが使用でき、特に制限はない。公知のエポキシ樹脂の例を挙げると、主に電子材料の注形や接着に使用されているビスフェノ−ルAジグリシジルエ−テルをはじめに、ビスフェノ−ルFジグリシジルエ−テル、ノボラックグリシジルエ−テル、エポキシ化大豆油、3,4エポキシ−6メチルシクロヘキシルメチルカルボキシレ−ト、3,4エポキシシクロヘキシルメチルカルボキシレ−ト、テトラグリシジルジアミノジフェニルメタン等が挙げられる。使用用途を考えると液状のものが望ましく、また、電子材料に使われることを考えると、塩素イオンをはじめとするイオン性不純物が800ppm以下であることが望ましい。また、これらのエポキシ樹脂は単独でも複数種を混合して用いても差し支えない。
【0022】
エポキシ樹脂の硬化剤としては、加熱時(60〜300℃)にエポキシ樹脂と速やかに硬化反応を生じ、かつ室温で長期間の貯蔵安定性を満足できるものであれば特に制限はない。一般にはイミダゾ−ル類の2−エチル−4−メチルイミダゾ−ル、2−フェニル−4,5−ジヒドロキシメチルイミダゾ−ル、2−フェニル−4−メチル−5−ヒドロキシメチルイミダゾ−ル、2−ヘプタデシルイミダゾ−ルや、フェノ−ルノボラック化合物、ジシアンジアミド、酸無水物系のテトラヒドロメチル無水フタル酸、ヘキサヒドロ無水フタル酸、メチル無水ハイミック酸、ルイス酸錯体のBF3塩などが考えられる。これらは単独でも複数種混合して用いても良い。これらの硬化剤は種類によって添加量が異なるので、特に量の規定はしないが、エポキシ樹脂と化学両論組成にあった量が望ましい。この他に、本発明では硬化促進作用が認められるもの、例えば、アミン塩、ブロックイソシアネ−ト等も使用できる。
【0023】
また、本発明では特に規定しないが、エポキシ樹脂に溶剤を加える場合は、エポキシ樹脂と相溶性があり、硬化後には液体として存在しないものを使用することが望ましい。一般にはエポキシ樹脂、硬化剤と反応しない、2,2,4−トリメチル3−ヒドロキシジペンタンイソブチレ−ト、2,2,4−トリメチルペンタン1,3−イソブチレ−ト、イソブチルブチレ−ト、ジエチレングリコ−ルモノブチルエ−テル、エチレングリコ−ルモノブチルエ−テル等が挙げられる。また、加熱時にエポキシ樹脂および硬化剤と反応し得る、フェニルグリシジルエ−テル、エチレングリコ−ルジグリシジルエ−テルや、3−アミノプロピルトリエトキシシラン、3−グリシドキシプロピルトリメトキシシラン、3−グリシドキシプロピルメチルジメトキシシラン、2−(3,4−エポキシシクロヘキシル)エチルトリメトキシシランなどが挙げられる。
【0024】
本発明において導電性接着剤中に導電性粉体を50〜90質量%としているのは、50質量%以下だと満足のいく電気導電性、熱伝導性が得られず、90質量%以上だと接着力弱く、接着剤としての機能を持ち合わせないからである。また、樹脂成分を4〜36質量%としているのは、4質量%未満であると接着強度が著しく低下し、36質量%を超えると導電性、熱伝導性が低下するためである。
【0025】
【実施例】
[試料の作製]
以下、実施例により本発明を更に詳細に説明する。表1に実施例1〜13と表2に比較例1〜7を示す。なお、表1、2中における組成は重量%で示している。
【0026】
表1および表2において、銀粉末には、球状銀粉Aとして平均粒径0.05μm、最大粒径が0.10μmの微細球状銀粉、球状銀粉Bとして平均粒径0.12μm、最大粒径が0.50μmの微細球状銀粉、球状銀粉Cとして平均粒径が0.30μm、最大粒径が1.12μmの球状銀粉を使用した。また、フレ−ク状銀粉Dとして平均粒径が1.45μm、最大粒径が37μmのフレ−ク状銀粉を使用した。
【0027】
ポリイミド樹脂には、ポリイミド樹脂AとしてN,N−ヘキサメチレン−ビス(アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、ポリイミド樹脂Bとしてビス[4−(アリルビシクロ[2,2,1]ヘプト−5−エン−2,3−ジカルボキシイミド)フェニル]メタンを使用した。
【0028】
エポキシ樹脂には、エポキシ樹脂Aとしてビスフェノ−ルAジグリシジルエ−テル、エポキシ樹脂Bとしてノボラックグリシジルエ−テルを使用した。また、エポキシ樹脂の硬化剤には、硬化剤Aとしてフェノ−ルノボラック、硬化剤Bとしてジシアンジアミドを使用し、その他に硬化促進剤として2−フェニル−4,5ジヒドロキシメチルイミダゾ−ルを使用した。
【0029】
希釈剤は、希釈剤AとしてN−メチル−2−ピロリドン、希釈剤Bとしてフェニルグリシジルエ−テル、希釈剤Cとしてジエチレングリコ−ルモノブチルエ−テルを使用した。
【0030】
表1および表2中の質量割合に従って上記原料を配合し、3本ロ−ル型混練機で混練することにより、導電性接着剤の試料を作製した。得られた導電性接着剤試料については下記の各項目について測定用の試料を作製し、各評価を行った。
【0031】
[試料の評価]
(1)シ−ト抵抗値の測定
アルミナ基板上の2mm離れた電極間に、該電極に重ねて幅2mm、長さ5mmの長方形状に導電性接着剤を印刷し、200℃のオ−ブン中に30分間放置して樹脂を乾燥もしくは硬化させ、300℃のホットプレ−トにのせ15分間放置し焼結および樹脂の本硬化をさせた後、室温まで冷却し電極間の抵抗値を測定した。
【0032】
(2)接着強度の測定
銀メッキを施した2.5cm角の銅基板上に導電性接着剤を滴下し、1.5mm角のシリコンチップを載せ、200℃のオ−ブン中に30分間放置して樹脂を乾燥もしくは硬化させ、300℃のホットプレ−トにのせ15分間放置して焼結および樹脂の本硬化をさせた。室温まで冷却した後、上記基板に対し、水平方向から上記シリコンチップに力を加え、該シリコンチップがはがれたときの力を接着強度として測定した。
【0033】
(3)耐熱強度の測定
銀メッキを施した2.5cm角の銅基板上に導電性接着剤を滴下し、1.5mm角のシリコンチップを載せ、200℃のオ−ブン中に30分間放置して樹脂を乾燥もしくは硬化させ、300℃のホットプレ−トにのせ15分間放置して焼結および樹脂の本硬化をさせた。室温まで冷却した後、250℃に加熱してあるホットプレ−ト上に上記基板を30秒間放置し、その後加熱しながら該基板に対し、水平方向から上記シリコンチップに力を加え、該シリコンチップが剥がれたときの力を耐熱強度として測定した。
【0034】
(4)耐熱耐湿性の評価
上記(1)で作製したシ−ト抵抗値の測定試料を、温度85℃、湿度85%RHで100時間保持した後、室温まで冷却し、(1)と同様にしてシ−ト抵抗値を測定した。(1)で求めたシ−ト抵抗値をもとに、ここで求めたシ−ト抵抗値の倍率を求めた。
【0035】
また、上記(2)で作製した接着強度の測定試料と同様に作製した試料を温度85℃、湿度85%RHで100時間保持した後、室温まで冷却し、(2)と同様にして接着強度を測定した。(2)で求めた接着強度をもとに、ここで求めた接着強度の倍率を求めた。
【0036】
これら求められたシ−ト抵抗値と接着強度の倍率に対し、シ−ト抵抗値の倍率が1.2倍以内、かつ接着強度に対する倍率が0.5倍以上であれば良(○)とし、それ以外であれば不可(×)とした。
【0037】
(5)作業性の評価
得られた導電性接着剤を、250メッシュのスクリ−ンを用い0.3mm幅の線を0.5mm間隔で銅基板上に印刷した。この際、印刷された基板上に印刷かすれがないかを目視にて確認した。
【0038】
また、導電性接着剤をシリンジ中に充填し、空気圧によって導電性接着剤を押出し、銅板上に吐出し(ディスペンス)、その形状を観察した。
【0039】
以上の作業性評価において、印刷時にかすれがあり、かつディスペンス時に糸が引き、横に倒れたり、高さが1mm以上あるものは不可(×)、印刷もしくはディスペンスのどちらかで使用できる場合、または両方とも可能な場合は良(○)とした。
【0040】
(6)熱伝導性の評価
リ−ドフレ−ム上に導電性接着剤を滴下し、半導体チップをマウントし、200℃のオ−ブン中で30分間放置し樹脂を乾燥もしくは硬化させたのち、300℃のホットプレ−ト上に15分間放置し焼結および樹脂の本硬化をさせた。室温に冷却後、リ−ドフレ−ムおよび半導体チップの電極部にマイクロプロ−ブをあて、最初5mAの電流を3mS間流し、電圧を測定する。この時の電圧値をV1とする。続けて300mAの電流を50mS間流し、半導体チップを発熱させ、その後再び5mAの電流を3mS流し電圧を測定する。この時の電圧値をV2とし、V1−V2の値が30mV以下であれば熱伝導性は良(○)、それ以外は不可(×)とした。
【0041】
(7)総合評価
上記の6項目において、シ−ト抵抗値は200mΩ以下、接着強度は40N以上、耐熱強度は5N以上、耐熱耐湿性、作業性、熱伝導性については良(○)の条件を満たしたもののみ良(○)とし、1つでも条件が満たさないものは不可(×)とした。
【0042】
[評価結果]
表1から明らかなように、実施例1〜13の導電性接着剤は、導電性、接着性、耐熱性、作業性、熱伝導性に優れた性能を有している。
【0043】
【表1】

Figure 0003837858
【0044】
一方、表2に示す本発明の組成範囲外の比較例1〜7は全ての条件を満足していない。
【0045】
比較例1および2は、球状銀粉の平均粒径が0.2μmより大きく、最大粒径が1.0μmより大きい銀粉を使用した場合の例である。このような銀粉を使用すると銀粉の焼結が生じず、また、球状銀粉であるため銀粉同士の接触も少なく、シ−ト抵抗値が非常に高くなり熱伝導性も悪くなってしまった。
【0046】
比較例3および4は、銀粉量が本発明の組成範囲の上限より多く、樹脂成分が組成範囲の下限より少ない場合である。比較例3、4では、樹脂量が少ないため、接着強度、耐熱強度が弱くなり、耐熱耐湿性も悪くなっている。また銀粉量が多すぎるために印刷、ディスペンスともにできず作業性も悪くなった。
【0047】
比較例5および6は、銀粉量が本発明の組成範囲の下限より少なく、樹脂成分が組成範囲の上限より大きい場合である。比較例5,6では、銀粉量が足りないためシ−ト抵抗値が高くなり、熱伝導性も悪くなっている。
【0048】
比較例7は、銀粉がフレ−ク状銀粉のみの場合であり、市場に出ている一般的な導電性接着剤の組成である。比較例7はフレーク状銀粉同士の接触により高導電性は確保できるが、熱伝導性が悪い結果となっている。
【0049】
【表2】
Figure 0003837858
【0050】
【発明の効果】
本発明の導電性接着剤は、従来の銀粉の接触により導電性を得る導電性接着剤と異なり、銀粉を焼結させて導電性を得るため、高導電性が得られるとともに、熱伝導性も飛躍的に向上したものとなった。[0001]
BACKGROUND OF THE INVENTION
The present invention is used when bonding a semiconductor element such as an IC and a chip component such as a chip resistor or a chip LED to a lead frame or a heat radiating plate. The workability, adhesion, conductivity, heat resistance The present invention relates to a conductive adhesive excellent in thermal conductivity.
[0002]
[Prior art]
In recent years, semiconductor elements such as IC, LSI, LED, etc. have been remarkably developed, and mass production has been carried out. Accordingly, improvement of workability in mass production and reduction of manufacturing costs are important issues.
[0003]
Conventionally, as a method for adhering these semiconductor elements to a lead frame, a substrate or the like, it has been the mainstream to use solder such as gold-silicon eutectic solder or tin-lead solder. However, the conventional methods are expensive in gold, cannot absorb the difference in thermal expansion between the semiconductor element and the lead frame or the substrate, the semiconductor element and solder are cracked, and the heat resistance is improved. A method using a conductive adhesive has become mainstream because it lacks, the working temperature is relatively high, and the electrodes of the semiconductor element are easily contaminated.
[0004]
Commonly used conductive adhesives are composed of conductive powder, organic resin, solvent, catalyst, etc., and gold, silver, copper, carbon, etc. are used for the conductive powder. -A lot of silver powder is used because of its excellent conductivity. In addition, thermosetting resins such as epoxy resins and phenol resins are often used as organic resins. While these conductive adhesives overcome the aforementioned drawbacks of solder, they have been found to be inferior to metallic solid solders when compared to heat conduction.
[0005]
[Problems to be solved by the invention]
In recent years, semiconductor elements and chip parts have been required to be downsized, highly accurate, and high performance. In particular, ICs and LSIs, which are semiconductor elements, are increasingly required to have a large number of pins, a small size, and a high frequency, and the heat generated therewith is several times the amount of heat generated several years ago. Similarly, higher brightness is also demanded for LEDs, and the amount of heat generation is increasing.
[0006]
In other words, since a material having high thermal conductivity is required for connection of semiconductor elements that generate high heat generation, a conductive adhesive is not used, and solders having excellent thermal conductivity are used. It is common. However, the use of solders has the above-mentioned drawbacks, and a conductive adhesive having high thermal conductivity is strongly desired.
[0007]
An object of the present invention is to provide a conductive adhesive having a thermal conductivity equivalent to that of solders and also having the advantages of conventional conductive adhesives.
[0008]
[Means for Solving the Problems]
As a result of diligent efforts to achieve the above object, in a conductive adhesive containing a conductive powder and an organic resin, the conductive powder has a maximum particle size of 1 μm or less and an average particle size of 0.1. 2μm contains only the following spherical silver powder, and an epoxy resin or polyimide resin as the organic resin, and an electrically conductive powder 50 to 90 wt%, by the organic resin Ru is contained from 4 to 36 wt% They have found that high thermal conductivity can be obtained.
[0009]
Alternatively, in a conductive adhesive containing at least a conductive powder and an organic resin, a spherical silver powder having a maximum particle size of 1 μm or less and an average particle size of 0.2 μm or less as the conductive powder, and a maximum particle size There following frame 50 [mu] m - comprises a mixture of click-like silver powder, and an epoxy resin or polyimide resin as the organic resin, frame for spherical silver powder - weight mixing ratio of the click-shaped silver powder (= frame - the mass of the click-shaped silver powder / mass of spherical silver powder) is Ri range der of 0.1 or more and less than 1.33, and the conductive powder is 50 to 90 wt%, by organic resin is contained 4 to 36% by weight, The advantage of the flaky silver powder that provides high conductivity by contact can also be provided.
[0010]
In addition, when the conductive adhesive of the present invention is used, by heating the applied conductive adhesive to 200 to 350 ° C., the spherical silver powder is sintered, and the conductivity and thermal conductivity are improved. I found.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
In the conductive adhesive of the present invention, spherical silver powder having a maximum particle size of 1 μm or less and an average particle size of 0.2 μm or less is used as the conductive powder. In general, silver powder is used for many of the conductive powders of conductive adhesives, and flake silver powder or a mixture of flaky silver powder and spherical silver powder is often used. This is because conventional conductive adhesives have obtained high conductivity by contact with flaky silver powder, and high conductivity has not been obtained with spherical silver powder alone. However, high thermal conductivity could not be obtained by using flaky silver powder.
[0012]
The spherical silver powder having a maximum particle size of 1 μm or less and an average particle size of 0.2 μm or less used in the present invention is a very fine silver powder and is easily sintered. Therefore, in the conductive adhesive of this invention, since silver powder sinters and approximates a metal solid, thermal conductivity and electroconductivity improve.
[0013]
In particular, when the conductive adhesive of the present invention is heated to 200 ° C. to 350 ° C., high thermal conductivity and high conductivity can be obtained. Sintering of silver powder occurs even at about 150 ° C., but at 150 ° C., the sintering is insufficient, and the resulting conductivity and thermal conductivity cannot be improved sufficiently. By heating to 200 ° C. to 350 ° C., the sintering of silver powder is promoted, and higher conductivity and thermal conductivity are obtained. Further, within this temperature range, the organic resin used for the conductive adhesive is not deteriorated.
[0014]
The silver powder used in the present invention can be produced by various methods, but any silver powder may be used as long as the above conditions are satisfied. As an example, sodium hydroxide and silver nitrate are reacted with stirring at the same equivalent amount to form silver oxide, and the obtained silver oxide is washed well, and rosin and triethanolamine are added while keeping the temperature at 75 ° C. Can be obtained by thoroughly washing the obtained silver powder with water while suction filtration. Further, the finer the silver powder, the lower the sintering start temperature, so the finer powder is preferable. If desired, the maximum particle diameter is 0.2 μm or less and the average particle diameter is preferably 0.1 μm or less.
[0015]
In the present invention, the spherical silver powder and the flake silver powder may be mixed and used. Thereby, the advantage of spherical silver powder from which high electroconductivity and high heat conductivity are obtained by sintering, and flake-like silver powder from which high electroconductivity is obtained by contact can be acquired. In that case, it is desirable that the flake-shaped silver powder has a maximum particle size of 50 μm or less.
[0016]
Using fine spherical silver powder increases the thixotropy and is suitable for printing, but is not suitable for dispensing or stamping. However, when the flake silver powder is mixed, the thixo ratio is lowered moderately, and a conductive adhesive suitable for dispensing and stamping is obtained. Even when a suitable amount of flake-shaped silver powder is mixed, the same performance as that of a conductive adhesive consisting only of spherical silver powder can be obtained in high conductivity and high thermal conductivity.
[0017]
Also, frame for spherical silver powder - weight mixing ratio of the click-shaped silver powder - although the (= deflection mass click silver powder mass / spherical silver powder) were blended in a range of 0.1 or more and less than 1.33, which is 0. If it is less than 1, the effect of the flake-shaped silver powder cannot be obtained at all, and if it is 1.33 or more, the effect of the spherical silver powder cannot be obtained and the thermal conductivity is lowered.
[0018]
As the organic resin used in the present invention, a polyimide resin or an epoxy resin is used. A mixture of a polyimide resin and an epoxy resin may be used for the organic resin.
[0019]
As the polyimide resin used in the present invention, all known polyimide resins can be used, and there is no particular limitation. However, considering the method of use, a liquid or a solid that can be dissolved in a solvent is desirable. Examples of commercially available polyimide resins that are commercially available are UPA series and Upico series manufactured by Ube Industries, Semicofine series manufactured by Toray Industries, and bisalkenyl substituted manufactured by Maruzen Petrochemical Co., Ltd. Nadiimide and the like can be mentioned. When using a polyimide resin mixed with an epoxy resin, it is desirable that the resin be compatible with the epoxy resin.
[0020]
When adding a solvent with respect to a polyimide resin, what has a dilution effect in a polyimide resin is used. Examples thereof include N-methyl-2-pyrrolidone, N, N-dimethylformamide, N, N-dimethylacetamide, toluene, xylene, petroleum ether and the like. These may be used alone or as a mixture of two or more. In some polyimide resins, ethylene glycol diglycidyl ether, phenyl glycidyl ether, 3-aminopropyltriethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropylmethyldimethoxysilane 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane or the like may be used.
[0021]
As an epoxy resin used for this invention, all the well-known epoxy resins can be used and there is no restriction | limiting in particular. Examples of known epoxy resins include bisphenol A diglycidyl ether, bisphenol F diglycidyl ether, novolac glycidyl ether, epoxidation, which are mainly used for casting and bonding of electronic materials. Examples include soybean oil, 3,4 epoxy-6 methyl cyclohexyl methyl carboxylate, 3,4 epoxy cyclohexyl methyl carboxylate, and tetraglycidyl diaminodiphenylmethane. Considering the intended use, a liquid one is desirable, and considering that it is used for an electronic material, it is desirable that ionic impurities including chlorine ions be 800 ppm or less. These epoxy resins may be used alone or in combination of a plurality of types.
[0022]
The curing agent for the epoxy resin is not particularly limited as long as it can rapidly cure with the epoxy resin during heating (60 to 300 ° C.) and can satisfy long-term storage stability at room temperature. In general, imidazoles such as 2-ethyl-4-methylimidazole, 2-phenyl-4,5-dihydroxymethylimidazole, 2-phenyl-4-methyl-5-hydroxymethylimidazole, 2- Examples include heptadecyl imidazole, phenol novolak compounds, dicyandiamide, acid anhydride tetrahydromethyl phthalic anhydride, hexahydrophthalic anhydride, methyl hymic anhydride, and BF 3 salt of Lewis acid complex. These may be used alone or in combination. Since the addition amount of these curing agents varies depending on the type, the amount is not particularly specified, but an amount suitable for the stoichiometric composition with the epoxy resin is desirable. In addition, in the present invention, those which are recognized to have a curing accelerating action, such as amine salts and block isocyanates, can also be used.
[0023]
Although not particularly defined in the present invention, it is desirable to use a solvent that is compatible with the epoxy resin and does not exist as a liquid after curing when a solvent is added to the epoxy resin. Generally, 2,2,4-trimethyl 3-hydroxydipentane isobutylate, 2,2,4-trimethylpentane 1,3-isobutylate, isobutyl butyrate, which does not react with epoxy resin or curing agent , Diethylene glycol monobutyl ether, ethylene glycol monobutyl ether, and the like. In addition, phenylglycidyl ether, ethylene glycol diglycidyl ether, 3-aminopropyltriethoxysilane, 3-glycidoxypropyltrimethoxysilane, Examples thereof include glycidoxypropylmethyldimethoxysilane and 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane.
[0024]
In the present invention, the conductive powder in the conductive adhesive is 50 to 90% by mass. If it is 50% by mass or less, satisfactory electric conductivity and thermal conductivity cannot be obtained, and 90% by mass or more. This is because the adhesive strength is weak and it does not have an adhesive function. Further, the resin components are a 4 to 36 wt%, the adhesive strength is less than 4% by weight is significantly reduced, electrical conductivity exceeds 36 wt%, because the thermal conductivity decreases.
[0025]
【Example】
[Preparation of sample]
Hereinafter, the present invention will be described in more detail with reference to examples. Table 1 shows Examples 1 to 13 and Table 2 shows Comparative Examples 1 to 7. In addition, the composition in Tables 1 and 2 is shown by weight%.
[0026]
In Tables 1 and 2, the silver powder has an average particle size of 0.05 μm as the spherical silver powder A and a fine spherical silver powder having a maximum particle size of 0.10 μm, and an average particle size of 0.12 μm and a maximum particle size as the spherical silver powder B. As the fine spherical silver powder and spherical silver powder C of 0.50 μm, spherical silver powder having an average particle diameter of 0.30 μm and a maximum particle diameter of 1.12 μm was used. Further, as the flake silver powder D, a flake silver powder having an average particle diameter of 1.45 μm and a maximum particle diameter of 37 μm was used.
[0027]
Polyimide resin includes N, N-hexamethylene-bis (allylbicyclo [2.2.1] hept-5-ene-2,3-dicarboximide as polyimide resin A, and bis [4- ( Allylbicyclo [2,2,1] hept-5-ene-2,3-dicarboximido) phenyl] methane was used.
[0028]
As the epoxy resin, bisphenol A diglycidyl ether was used as the epoxy resin A, and novolak glycidyl ether was used as the epoxy resin B. As the curing agent for the epoxy resin, phenol novolak was used as the curing agent A, dicyandiamide was used as the curing agent B, and 2-phenyl-4,5 dihydroxymethyl imidazole was used as the curing accelerator.
[0029]
Diluents used were N-methyl-2-pyrrolidone as diluent A, phenylglycidyl ether as diluent B, and diethylene glycol monobutyl ether as diluent C.
[0030]
The said raw material was mix | blended according to the mass ratio of Table 1 and Table 2, and the sample of the electrically conductive adhesive was produced by kneading | mixing with a 3 roll type kneader. About the obtained conductive adhesive sample, the sample for a measurement was produced about each following item, and each evaluation was performed.
[0031]
[Sample evaluation]
(1) Measurement of sheet resistance value A conductive adhesive was printed in a rectangular shape with a width of 2 mm and a length of 5 mm between the electrodes 2 mm apart on the alumina substrate. The resin was allowed to dry for 30 minutes and then dried or cured, placed on a hot plate at 300 ° C. for 15 minutes, allowed to sinter and fully cure the resin, then cooled to room temperature and measured for resistance between the electrodes. .
[0032]
(2) Measurement of adhesive strength A conductive adhesive is dropped onto a 2.5 cm square copper substrate with silver plating, a 1.5 mm square silicon chip is placed, and left in an oven at 200 ° C. for 30 minutes. The resin was then dried or cured, placed on a 300 ° C. hot plate and allowed to stand for 15 minutes to sinter and fully cure the resin. After cooling to room temperature, force was applied to the silicon chip from the horizontal direction with respect to the substrate, and the force when the silicon chip was peeled was measured as adhesive strength.
[0033]
(3) Measurement of heat resistance strength A conductive adhesive is dropped onto a 2.5 cm square copper substrate subjected to silver plating, a 1.5 mm square silicon chip is placed, and left in an oven at 200 ° C. for 30 minutes. The resin was then dried or cured, placed on a 300 ° C. hot plate and allowed to stand for 15 minutes to sinter and fully cure the resin. After cooling to room temperature, the substrate is allowed to stand for 30 seconds on a hot plate heated to 250 ° C., and then heated while applying force to the silicon chip from the horizontal direction against the substrate. The force when peeled was measured as the heat resistance strength.
[0034]
(4) Evaluation of heat and humidity resistance After the sheet resistance value measurement sample prepared in (1) above was held at a temperature of 85 ° C. and a humidity of 85% RH for 100 hours, it was cooled to room temperature and the same as (1) Then, the sheet resistance value was measured. Based on the sheet resistance value obtained in (1), the magnification of the sheet resistance value obtained here was obtained.
[0035]
In addition, a sample prepared in the same manner as the measurement sample of adhesive strength prepared in (2) above was held at a temperature of 85 ° C. and a humidity of 85% RH for 100 hours, and then cooled to room temperature. Was measured. Based on the adhesive strength determined in (2), the magnification of the adhesive strength determined here was determined.
[0036]
With respect to the sheet resistance value and the bond strength magnification obtained, the sheet resistance value magnification is within 1.2 times and the bond strength strength is 0.5 times or more. Otherwise, it was determined as impossible (×).
[0037]
(5) Evaluation of workability The obtained conductive adhesive was printed on a copper substrate at intervals of 0.5 mm using a 250-mesh screen with a width of 0.3 mm. At this time, it was visually confirmed whether there was any print fading on the printed substrate.
[0038]
Moreover, the conductive adhesive was filled in the syringe, the conductive adhesive was extruded by air pressure, discharged onto the copper plate (dispensing), and the shape was observed.
[0039]
In the above workability evaluation, when there is fading at the time of printing and the thread is pulled at the time of dispensing and falls to the side, or the height is 1 mm or more is not possible (×), when it can be used for either printing or dispensing, or When both were possible, it was determined to be good (◯).
[0040]
(6) Evaluation of thermal conductivity A conductive adhesive is dropped on a lead frame, a semiconductor chip is mounted, and left in a 200 ° C. oven for 30 minutes to dry or harden the resin. It was allowed to stand on a hot plate at 300 ° C. for 15 minutes to sinter and fully cure the resin. After cooling to room temperature, a microprobe is applied to the lead frame and the electrode part of the semiconductor chip, and a current of 5 mA is first applied for 3 mS to measure the voltage. The voltage value at this time is V1. Subsequently, a current of 300 mA is supplied for 50 mS to heat the semiconductor chip, and then a current of 5 mA is supplied again for 3 mS to measure the voltage. The voltage value at this time was V2, and if the value of V1-V2 was 30 mV or less, the thermal conductivity was good (◯), and the others were not possible (×).
[0041]
(7) Comprehensive evaluation In the above six items, the sheet resistance value is 200 mΩ or less, the adhesive strength is 40 N or more, the heat resistance strength is 5 N or more, the heat and humidity resistance, workability, and thermal conductivity are good (◯) conditions. Only those satisfying the conditions were evaluated as good (◯), and those that did not satisfy even one condition were determined as unacceptable (×).
[0042]
[Evaluation results]
As is clear from Table 1, the conductive adhesives of Examples 1 to 13 have performances excellent in conductivity, adhesiveness, heat resistance, workability, and thermal conductivity.
[0043]
[Table 1]
Figure 0003837858
[0044]
On the other hand, Comparative Examples 1 to 7 outside the composition range of the present invention shown in Table 2 do not satisfy all the conditions.
[0045]
Comparative Examples 1 and 2 are examples in which silver powder having an average particle diameter of spherical silver powder larger than 0.2 μm and a maximum particle diameter larger than 1.0 μm is used. When such silver powder is used, the silver powder does not sinter, and since it is a spherical silver powder, there is little contact between the silver powders, the sheet resistance value is very high, and the thermal conductivity is deteriorated.
[0046]
Comparative Examples 3 and 4 are cases where the amount of silver powder is greater than the upper limit of the composition range of the present invention and the resin component is less than the lower limit of the composition range. In Comparative Examples 3 and 4, since the amount of resin is small, the adhesive strength and heat resistance are weak, and the heat and humidity resistance is also poor. Moreover, since there was too much silver powder, neither printing nor dispensing was possible, and workability also deteriorated.
[0047]
In Comparative Examples 5 and 6, the amount of silver powder is less than the lower limit of the composition range of the present invention, and the resin component is larger than the upper limit of the composition range. In Comparative Examples 5 and 6, since the amount of silver powder is insufficient, the sheet resistance value is increased and the thermal conductivity is also deteriorated.
[0048]
The comparative example 7 is a case where silver powder is only flake-like silver powder, and is a composition of a general conductive adhesive on the market. Although the comparative example 7 can ensure high electroconductivity by contact between flaky silver powder, it has a bad thermal conductivity.
[0049]
[Table 2]
Figure 0003837858
[0050]
【The invention's effect】
Unlike the conventional conductive adhesive that obtains conductivity by contact with silver powder, the conductive adhesive of the present invention obtains conductivity by sintering silver powder, so that high conductivity is obtained and thermal conductivity is also obtained. It became a dramatic improvement.

Claims (3)

少なくとも導電性粉体と有機樹脂とを含有する導電性接着剤において、該導電性粉体として最大粒径が1μm以下でかつ平均粒径が0.2μm以下の球状銀粉のみを含有し、該有機樹脂としてエポキシ樹脂あるいはポリイミド樹脂を含有し、かつ、該導電性粉体が50〜90質量%、該有機樹脂が4〜36質量%含有されることを特徴とする導電性接着剤。In a conductive adhesive containing at least a conductive powder and an organic resin, the conductive powder contains only spherical silver powder having a maximum particle size of 1 μm or less and an average particle size of 0.2 μm or less as the conductive powder. A conductive adhesive comprising an epoxy resin or a polyimide resin as a resin, and containing 50 to 90% by mass of the conductive powder and 4 to 36% by mass of the organic resin. 少なくとも導電性粉体と有機樹脂とを含有する導電性接着剤において、該導電性粉体として最大粒径が1μm以下でかつ平均粒径が0.2μm以下の球状銀粉と、最大粒径が50μm以下のフレ−ク状銀粉との混合物を含有し、該有機樹脂としてエポキシ樹脂あるいはポリイミド樹脂を含有し、球状銀粉に対するフレ−ク状銀粉の質量混合比が0.1以上1.33未満の範囲であり、かつ、該導電性粉体が50〜90質量%、該有機樹脂が4〜36質量%含有されることを特徴とする導電性接着剤。 In a conductive adhesive containing at least a conductive powder and an organic resin, a spherical silver powder having a maximum particle size of 1 μm or less and an average particle size of 0.2 μm or less as the conductive powder, and a maximum particle size of 50 μm the following frame - containing a mixture of a click-like silver powder, and an epoxy resin or polyimide resin as the organic resin, frame for spherical silver powder - weight mixing ratio of the click-shaped silver powder is less than 0.1 or more 1.33 range der is, and, a conductive adhesive, wherein the conductive powder is 50 to 90 wt%, the organic resin is contained 4 to 36 wt%. 請求項1あるいは2記載の導電性接着剤を200〜350℃に加熱することを特徴とする導電性接着剤の使用方法。  A method for using a conductive adhesive, comprising heating the conductive adhesive according to claim 1 or 2 to 200 to 350 ° C.
JP22683197A 1997-08-22 1997-08-22 Conductive adhesive and method of using the same Expired - Lifetime JP3837858B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22683197A JP3837858B2 (en) 1997-08-22 1997-08-22 Conductive adhesive and method of using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22683197A JP3837858B2 (en) 1997-08-22 1997-08-22 Conductive adhesive and method of using the same

Publications (2)

Publication Number Publication Date
JPH1166953A JPH1166953A (en) 1999-03-09
JP3837858B2 true JP3837858B2 (en) 2006-10-25

Family

ID=16851267

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22683197A Expired - Lifetime JP3837858B2 (en) 1997-08-22 1997-08-22 Conductive adhesive and method of using the same

Country Status (1)

Country Link
JP (1) JP3837858B2 (en)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4543460B2 (en) * 1999-11-22 2010-09-15 住友ベークライト株式会社 Conductive resin paste and semiconductor device using the same
JP5293496B2 (en) * 2000-11-28 2013-09-18 日立化成株式会社 Adhesive composition, adhesive film, and semiconductor device
JP4507488B2 (en) * 2001-11-12 2010-07-21 日立化成工業株式会社 Bonding material
JP3858902B2 (en) 2004-03-03 2006-12-20 住友電気工業株式会社 Conductive silver paste and method for producing the same
CN1320663C (en) * 2004-04-22 2007-06-06 复旦大学 Solar cell based on polymer doped quasi-solid state electrolyte material and its prepn. method
CN1320664C (en) * 2004-04-22 2007-06-06 复旦大学 Solar cel adopting organic/inorganic nano doped quasi-solid state electrolyte, and its prepn. method
JP2006169288A (en) * 2004-12-13 2006-06-29 Tdk Corp Adhesive and method for bonding thin sheet to flat sheet
JP4942566B2 (en) * 2007-06-29 2012-05-30 富士通コンポーネント株式会社 Manufacturing method of touch panel
JP5311871B2 (en) * 2008-04-23 2013-10-09 京セラケミカル株式会社 Conductive adhesive composition
EP2278593A4 (en) * 2008-04-30 2013-08-28 Hitachi Chemical Co Ltd CONNECTING MATERIAL AND SEMICONDUCTOR DEVICE
CN101805575B (en) * 2010-04-09 2013-06-12 连云港昭华科技有限公司 High-performance conductive silver paste and preparation method thereof
DE102010044326A1 (en) * 2010-09-03 2012-03-08 Heraeus Materials Technology Gmbh & Co. Kg Use of aliphatic hydrocarbons and paraffins as solvents in silver pastes
DE112011103319T5 (en) 2010-09-29 2013-07-11 Hitachi Chemical Company, Ltd. Adhesive composition and semiconductor device using the same
TW201245364A (en) 2011-01-28 2012-11-16 Hitachi Chemical Co Ltd Adhesive composition and semiconductor device using same
JP5880300B2 (en) 2012-06-14 2016-03-08 日立化成株式会社 Adhesive composition and semiconductor device using the same
WO2014038331A1 (en) 2012-09-05 2014-03-13 日立化成株式会社 Silver paste composition and semiconductor device using same
JP5827203B2 (en) * 2012-09-27 2015-12-02 三ツ星ベルト株式会社 Conductive composition
JP2018181453A (en) * 2017-04-04 2018-11-15 名古屋ファインケミカル株式会社 Heat proof electroconductive adhesive

Also Published As

Publication number Publication date
JPH1166953A (en) 1999-03-09

Similar Documents

Publication Publication Date Title
JP3837858B2 (en) Conductive adhesive and method of using the same
KR100832628B1 (en) Conductive paste
US8222751B2 (en) Electroconductive bonding material and electronic apparatus
JP4401294B2 (en) Conductive adhesive and circuit using the same
JP5030196B2 (en) Adhesive for circuit connection
CN102086364A (en) Conductive silver paste for microelectronic packaging and preparation method thereof
JP5979237B2 (en) Conductive adhesive
TW201011088A (en) Conductive adhesive and LED substrate using it
JP2007091959A (en) Anisotropic conductive adhesive
JP2008094908A (en) Adhesive for electrode connection
JP4928021B2 (en) Conductive adhesive and circuit using the same
KR100804840B1 (en) Conductive Paste and Electronic Component Mounting Board Using the Same
JP3975728B2 (en) Conductive adhesive and circuit board such as semiconductor using the same
JP2006249342A (en) Adhesive composition and anisotropic conductive adhesive using the same
JP2007277384A (en) Electroconductive adhesive
JP2007056209A (en) Adhesive for circuit connection
JP2018131569A (en) Resin composition comprising conductive particles
JP2007197498A (en) Conductive adhesive
JP2005317491A (en) Conductive paste and electronic component mounting substrate using it
JP3484957B2 (en) Conductive adhesive
JP2016072239A (en) Anisotropic conductive film, and connection method
JP5764824B2 (en) Conductive adhesive composition and electronic device using the same
JP5861600B2 (en) Conductive adhesive composition and electronic device using the same
JP2009076271A (en) Conductive paste and electrode using it
JPH10330718A (en) Conductive adhesive

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040113

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060206

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060406

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060406

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060711

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060724

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100811

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100811

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110811

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110811

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120811

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120811

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130811

Year of fee payment: 7

EXPY Cancellation because of completion of term