[go: up one dir, main page]

JP3837602B2 - Method for producing conductive polymer having excellent stability - Google Patents

Method for producing conductive polymer having excellent stability Download PDF

Info

Publication number
JP3837602B2
JP3837602B2 JP28303892A JP28303892A JP3837602B2 JP 3837602 B2 JP3837602 B2 JP 3837602B2 JP 28303892 A JP28303892 A JP 28303892A JP 28303892 A JP28303892 A JP 28303892A JP 3837602 B2 JP3837602 B2 JP 3837602B2
Authority
JP
Japan
Prior art keywords
conductive polymer
excellent stability
base
polymer
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP28303892A
Other languages
Japanese (ja)
Other versions
JPH06136133A (en
Inventor
冬彦 久保田
▲聡▼ 今橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP28303892A priority Critical patent/JP3837602B2/en
Publication of JPH06136133A publication Critical patent/JPH06136133A/en
Application granted granted Critical
Publication of JP3837602B2 publication Critical patent/JP3837602B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Other Resins Obtained By Reactions Not Involving Carbon-To-Carbon Unsaturated Bonds (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、電気・電子工業の分野において、導電材料、電極材料、表示材料、電磁波遮蔽材料等に用いられる導電性重合体の製造方法に関する。
【0002】
【従来の技術】
ポリアセチレン、ポリピロール、ポリチオフェン、ポリアニリン、ポリパラフェニレン等の導電性重合体は、様々な機能性を有する新素材として期待されており、電極材料の分野では既に実用化されている。導電性重合体の機能性は、酸化剤によるp型ドーピング、又は還元剤によるn型ドーピングに際して、重合体の性質が変化することに基づいているが、一般に導電性重合体はp型ドーピングされるものが多い。一方n型ドーピングされる導電性重合体は、導電性重合体の利用分野を飛躍的に増大させる可能性をもちながら、その種類はポリアセチレン、ポリパラフェニレン等の一部の重合体に限定される。さらにp型ドーピングされる導電性重合体は、空気中で比較的安定に存在することが出来るのに対して、n型ドーピングされる導電性重合体は一般に空気中で極めて不安定であり、実用上十分な安定性を有する導電性重合体の開発が待たれていた。
【0003】
【発明が解決しようとする課題】
本発明は、従来のn型ドーピングされる導電性重合体の安定性における課題を解決せんとするものである。
【0004】
【課題を解決するための手段】
本発明者らは、n型ドーピングが可能でかつ空気中での安定性に優れた導電性重合体の製造方法の確立を目的として鋭意検討した結果、脱プロトン化可能な水素原子を結合した原子として、窒素原子、酸素原子、硫黄原子から選ばれる少なくとも1種の原子を有する重合体を塩基で脱プロトン化し、得られたアニオン構造を共役結合鎖中に含ましめることにより、n型ドーピング状態で安定性に優れた導電性重合体が容易に得られることを見出し、本発明を完成するに至った。
【0005】
一般に窒素原子、酸素原子、硫黄原子に結合した水素原子は、塩基の存在下に脱プロトン化され、アニオンを生成する。この際用いた塩基のカチオンが、対イオンとしてその近傍に存在する。本発明で言うところの「アニオン構造を共役結合鎖中に含ましめること」とは、重合体を塩基で脱プロトン化して得られたアニオン構造が、予め重合体に存在していた多重結合と電子的に共役し、事実上共役結合鎖の一部として作用し、さらに共役結合鎖内に負電荷を与える現象を指す。
【0006】
本発明における、脱プロトン化によりアニオン構造を生成する具体的な構造単位としては、ピロール、インドール、イソインドール、ナフトピロール、ピロロピリジン、ベンズイミダゾール、プリン、カルバゾール、フェノキサジン、フェノチアジン等の窒素含有複素環化合物構造、及び水酸基、カルボン酸基、スルホン酸基、スルフィン酸基、チオール基、リン酸基等が挙げられる。これらの構造単位は単独でも塩基と反応することによりアニオン構造を生成できるが、そのアニオン構造がより安定に存在するためには、当該構造単位が隣接する他の多重結合と共役していることが好ましい。さらにその共役系の電子密度の分布に影響を及ぼし得る位置に、電子吸引性基、例えばニトロ基、シアノ基、アンモニウム基、ピリジニウム基等が存在することは、アニオン構造の安定化に対して大きな効果がある。
【0007】
本発明における脱プロトン化を行うに際して用いられる塩基としては、リチウム、カリウム、ナトリウム、水酸化リチウム、水酸化カリウム、水酸化ナトリウム、水素化リチウム、水素化ナトリウム、水素化カルシウム、カリウムt−ブトキシド、ナトリウムエトキシド、ナトリウムメトキシド、ブチルリチウム、フェニルリチウム、リチウムジイソプロピルアミド等が挙げられる。
本発明の導電性重合体においては、脱プロトン化過程で用いられる塩基に含まれるカチオンがアニオン構造の対イオンとなるが、このカチオンは重合体を他のカチオン含有溶液に浸漬又は溶解することにより、イオン交換することが出来る。
以下に実施例を示し、本発明をより具体的に述べる。
【0008】
(実施例−1)
インドール(100mg)、テトラn−ブチルアンモニウムパークロレート(1.2g)をアセトニトリル(30ml)に溶解し、電解液を調製した。この電解液を用いて、ネサガラスを陽極、白金を陰極として定電位法(1.2V対銀/塩化銀電極)で電解重合を行ったところ、陽極板上に黒色のフィルム状生成物が得られた。
次に上記電解液と同濃度のテトラn−ブチルアンモニウムパークロレート/アセトニトリル溶液中で脱ドーピングを行い、その後電極よりフィルムを剥離し、すり鉢を用いて粉末状に粉砕した。
予めモレキュラーシーブス、水素化カルシウムで乾燥、蒸留したジメチルスルホキシド(50ml)にカリウムt−ブトキシド(150mg)を溶解した。この塩基溶液に上記の脱ドーピングしたポリインドール粉末を添加し、窒素雰囲気下、50度で3時間攪拌した。
ポリインドール粉末をろ過し、ジメチルスルホキシド引き続いてアセトンで洗浄し、真空乾燥した。この生成物の元素分析を原子吸光によって行ったところ、インドールモノマー単位に対して20%のカリウムカチオンが検出された。また通常の元素分析法によっては、塩素原子は全く検出されなかった。またその導電率を測定したところ、12S/cmであり、その値は生成物を空気中で1ケ月放置した後も、9S/cmにまで低下しただけであった。
【0009】
(実施例−2)
実施例−1で用いたインドールの代わりにイソインドールを用いて同様の実験を行ったところ、最終的に得られた生成物は、イソインドールモノマー単位に対して15%のカリウムカチオンを含んでいることが原子吸光より明らかになった。またその導電率を測定したところ、3S/cmであり、その値は生成物を空気中で1ケ月放置した後も、1S/cmにまで低下しただけであった。
【0010】
(実施例−3)
実施例−1で用いたインドールの代わりにピロロ〔3,4−c〕ピリジンを用いて同様の実験を行ったところ、最終的に得られた生成物は、ピロロ〔3,4−c〕ピリジンモノマー単位に対して23%のカリウムカチオンを含んでいることが原子吸光より明らかになった。またその導電率を測定したところ、20S/cmであり、その値は生成物を空気中で1ケ月放置した後も変化しなかった。
【0011】
【発明の効果】
本発明により、n型ドーピング状態でも優れた安定性を有する導電性重合体が容易に得られるようになった。本発明によって得られる導電性重合体は、導電材料、電極材料、表示材料、電磁波遮蔽材料等としての利用が可能である。
[0001]
[Industrial application fields]
The present invention relates to a method for producing a conductive polymer used for a conductive material, an electrode material, a display material, an electromagnetic wave shielding material and the like in the field of electrical and electronic industries.
[0002]
[Prior art]
Conductive polymers such as polyacetylene, polypyrrole, polythiophene, polyaniline, and polyparaphenylene are expected as new materials having various functions, and have already been put into practical use in the field of electrode materials. The functionality of a conductive polymer is based on the fact that the properties of the polymer change upon p-type doping with an oxidizing agent or n-type doping with a reducing agent, but generally the conductive polymer is p-type doped. There are many things. On the other hand, n-type doped conductive polymers have the potential to dramatically increase the field of use of conductive polymers, but their types are limited to some polymers such as polyacetylene and polyparaphenylene. . Further, conductive polymers doped with p-type can exist relatively stably in air, whereas conductive polymers doped with n-type are generally extremely unstable in air and are practically used. The development of a conductive polymer having sufficient stability has been awaited.
[0003]
[Problems to be solved by the invention]
The present invention seeks to solve the problems in the stability of conventional n-type doped conducting polymers.
[0004]
[Means for Solving the Problems]
As a result of intensive studies aimed at establishing a method for producing a conductive polymer capable of n-type doping and having excellent stability in air, the present inventors have found that atoms bonded with deprotonated hydrogen atoms. As described above, a polymer having at least one atom selected from a nitrogen atom, an oxygen atom and a sulfur atom is deprotonated with a base, and the resulting anion structure is included in a conjugated bond chain, thereby allowing n-type doping state. The inventors have found that a conductive polymer having excellent stability can be easily obtained, and have completed the present invention.
[0005]
In general, a hydrogen atom bonded to a nitrogen atom, an oxygen atom, or a sulfur atom is deprotonated in the presence of a base to generate an anion. The base cation used at this time is present in the vicinity as a counter ion. According to the present invention, “including an anion structure in a conjugated bond chain” means that an anion structure obtained by deprotonating a polymer with a base is a combination of multiple bonds and electrons previously present in the polymer. Refers to a phenomenon in which they are conjugated to each other, effectively acting as a part of the conjugated bond chain, and further giving a negative charge in the conjugated bond chain.
[0006]
Specific structural units for generating an anion structure by deprotonation in the present invention include pyrrole, indole, isoindole, naphthopyrrole, pyrrolopyridine, benzimidazole, purine, carbazole, phenoxazine, phenothiazine and the like. Examples of the ring compound structure include a hydroxyl group, a carboxylic acid group, a sulfonic acid group, a sulfinic acid group, a thiol group, and a phosphoric acid group. These structural units can generate an anionic structure by reacting with a base alone, but in order for the anionic structure to exist more stably, the structural unit must be conjugated with another adjacent multiple bond. preferable. Furthermore, the presence of an electron-withdrawing group such as a nitro group, a cyano group, an ammonium group, or a pyridinium group at a position that can affect the electron density distribution of the conjugated system is a great factor for stabilizing the anion structure. effective.
[0007]
Examples of the base used for deprotonation in the present invention include lithium, potassium, sodium, lithium hydroxide, potassium hydroxide, sodium hydroxide, lithium hydride, sodium hydride, calcium hydride, potassium t-butoxide, Sodium ethoxide, sodium methoxide, butyl lithium, phenyl lithium, lithium diisopropylamide and the like can be mentioned.
In the conductive polymer of the present invention, the cation contained in the base used in the deprotonation process becomes a counter ion of the anion structure. This cation is obtained by immersing or dissolving the polymer in another cation-containing solution. Ion exchange is possible.
The present invention will be described more specifically with reference to the following examples.
[0008]
(Example-1)
Indole (100 mg) and tetra n-butylammonium perchlorate (1.2 g) were dissolved in acetonitrile (30 ml) to prepare an electrolytic solution. Using this electrolytic solution, electropolymerization was performed by the constant potential method (1.2 V vs. silver / silver chloride electrode) using nesa glass as an anode and platinum as a cathode, and a black film-like product was obtained on the anode plate. It was.
Next, dedoping was performed in a tetra n-butylammonium perchlorate / acetonitrile solution having the same concentration as the electrolytic solution, and then the film was peeled off from the electrode and pulverized into a powder using a mortar.
Potassium t-butoxide (150 mg) was dissolved in dimethyl sulfoxide (50 ml) previously dried and distilled with molecular sieves and calcium hydride. The dedope polyindole powder was added to this base solution and stirred at 50 ° C. for 3 hours in a nitrogen atmosphere.
The polyindole powder was filtered, washed with dimethyl sulfoxide followed by acetone and vacuum dried. An elemental analysis of the product was performed by atomic absorption. As a result, 20% potassium cation was detected based on the indole monomer unit. Also, chlorine atoms were not detected at all by ordinary elemental analysis. The conductivity was measured and found to be 12 S / cm, and the value only decreased to 9 S / cm after the product was left in the air for 1 month.
[0009]
(Example-2)
A similar experiment was conducted using isoindole instead of indole used in Example 1, and the final product contained 15% potassium cation with respect to isoindole monomer units. This became clear from atomic absorption. The conductivity was measured to be 3 S / cm, and the value only decreased to 1 S / cm after the product was left in the air for 1 month.
[0010]
(Example-3)
When a similar experiment was conducted using pyrrolo [3,4-c] pyridine instead of indole used in Example-1, the final product was obtained as pyrrolo [3,4-c] pyridine. Atomic absorption revealed that it contained 23% potassium cation per monomer unit. The conductivity was measured and found to be 20 S / cm, and the value did not change even after the product was left in the air for 1 month.
[0011]
【The invention's effect】
According to the present invention, a conductive polymer having excellent stability even in an n-type doped state can be easily obtained. The conductive polymer obtained by the present invention can be used as a conductive material, an electrode material, a display material, an electromagnetic wave shielding material and the like.

Claims (1)

脱プロトン化可能な水素原子を結合した原子として、窒素原子を有することを特徴とする「ピロール、インドール、イソインドール、ナフトピロール、ピロロピリジン、ベンズイミダゾール、プリン、カルバゾール、フェノキサジン、およびフェノチアジン」からなる群から選ばれた構造を有する重合体を塩基で脱プロトン化し、得られたアニオン構造を共役結合鎖中に含ましめることを特徴とする安定性に優れた導電性重合体の製造方法。As atoms bonded deprotonation hydrogen atoms, and having a nitrogen atom from the "pyrrole, indole, isoindole, naphthopyrrole, pyrrolopyridine, benzimidazole, purine, carbazole, phenoxazine, and phenothiazine" A method for producing a conductive polymer having excellent stability, comprising deprotonating a polymer having a structure selected from the group consisting of a base with a base and including the obtained anionic structure in a conjugated bond chain.
JP28303892A 1992-10-21 1992-10-21 Method for producing conductive polymer having excellent stability Expired - Fee Related JP3837602B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28303892A JP3837602B2 (en) 1992-10-21 1992-10-21 Method for producing conductive polymer having excellent stability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28303892A JP3837602B2 (en) 1992-10-21 1992-10-21 Method for producing conductive polymer having excellent stability

Publications (2)

Publication Number Publication Date
JPH06136133A JPH06136133A (en) 1994-05-17
JP3837602B2 true JP3837602B2 (en) 2006-10-25

Family

ID=17660417

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28303892A Expired - Fee Related JP3837602B2 (en) 1992-10-21 1992-10-21 Method for producing conductive polymer having excellent stability

Country Status (1)

Country Link
JP (1) JP3837602B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008311048A (en) * 2007-06-14 2008-12-25 Toyobo Co Ltd Electrode catalyst

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008311048A (en) * 2007-06-14 2008-12-25 Toyobo Co Ltd Electrode catalyst

Also Published As

Publication number Publication date
JPH06136133A (en) 1994-05-17

Similar Documents

Publication Publication Date Title
JP2858648B2 (en) Alkaline water-soluble self-doping conductive copolymer and method for producing the same
Malinauskas Self-doped polyanilines
Kang et al. The intrinsic redox states in polypyrrole and polyaniline: A comparative study by XPS
DE3789005T2 (en) Highly conductive polymer composition and process for making the same.
EP0280173B1 (en) Radical polymerizable composition
US4566955A (en) Preparation of finely divided electrically conductive pyrrole polymers
Song et al. Electrolyte initiated instaneous in-situ chemical polymerization of organic cathodes for ultralong-cycling magnesium ion batteries
Kim et al. Difference in doping behavior between polypyrrole films and powders
Kang et al. XPS studies of proton modification and some anion exchange processes in polypyrrole
US4691005A (en) Thiophene derivative polymer, polymer composition, and methods for manufacture thereof
Saito et al. Electrochemical and chemical preparation of linear. pi.-conjugated poly (quinoline-2, 6-diyl) using nickel complexes and electrochemical properties of the polymer
Macdiarmid Conducting polymers: what does the future hold?
JP3837602B2 (en) Method for producing conductive polymer having excellent stability
Zhou et al. Electrosynthesis and characterisation of poly (2-methoxyaniline-5-sulfonic acid)-effect of pH control
JPS63215722A (en) Production of electroconductive polyaniline compound
Qiu et al. Poly [3, 6‐(carbaz‐9‐yl) propanesulfonate]: A Self‐Doped Polymer with Both Cation and Anion Exchange Properties
JP3257018B2 (en) Battery charge / discharge method
JPH06136134A (en) Conductive polymer
JPS63215772A (en) Production of electrically conductive polymer composition
Camacho-Cruz et al. Conducting Polymers: An Introduction
Diaw et al. Usefulness of aqueous micellar media for electrosynthesis of poly (N-phenylpyrrole). Characterization and optical properties
Jen et al. Low band-gap conjugated polymers: poly (thienylene vinylene) and poly (substituted thienylene vinylenes)
JPH0618863B2 (en) Organic semiconductor
Kitao et al. Mössbauer study of iodine-doped polythiophene and poly (3-Methylthiophene)
JPH02166165A (en) Conductive polymer composite

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060619

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060714

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090811

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100811

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110811

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110811

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120811

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees