[go: up one dir, main page]

JP3835231B2 - Electric motor - Google Patents

Electric motor Download PDF

Info

Publication number
JP3835231B2
JP3835231B2 JP2001308314A JP2001308314A JP3835231B2 JP 3835231 B2 JP3835231 B2 JP 3835231B2 JP 2001308314 A JP2001308314 A JP 2001308314A JP 2001308314 A JP2001308314 A JP 2001308314A JP 3835231 B2 JP3835231 B2 JP 3835231B2
Authority
JP
Japan
Prior art keywords
rotor
permanent magnet
magnet
flux barrier
permanent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001308314A
Other languages
Japanese (ja)
Other versions
JP2003116235A (en
Inventor
明秀 竹原
典禎 西山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2001308314A priority Critical patent/JP3835231B2/en
Publication of JP2003116235A publication Critical patent/JP2003116235A/en
Application granted granted Critical
Publication of JP3835231B2 publication Critical patent/JP3835231B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Iron Core Of Rotating Electric Machines (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Description

【0001】
【発明の属する技術分野】
永久磁石を用いて構成される同期回転機に属する。
【0002】
【従来の技術】
複数の永久磁石を埋め込む磁石溝を備えた回転子と、前記磁石溝に埋め込んだ永久磁石と、複数のスロットを有する固定子と、前記スロットに巻線を施したコイル部とを備え、マグネットトルクとリラクタンストルクにより回転駆動する電動機において、より少ない電流で高いトルクを発生させるためには、回転子内部に埋め込まれた永久磁石の発生する磁束を少しでも多く固定子側に配置されたコイルと鎖交させることが必要である。これによりマグネットトルクを有効に利用することが可能である。また、リラクタンストルクを有効に利用するためには永久磁石を回転子内部に埋め込み、回転子外部から見た磁気回路上で磁気抵抗が小さいq軸側のq軸インダクタンスと、永久磁石を埋め込む磁石溝及びフラックスバリアにより磁気抵抗が非常に大きいd軸側のd軸インダクタンスの差を大きくすることが必要である。その際に特に永久磁石の磁束を有効に固定子側のコイルに鎖交させるためには永久磁石及びフラックスバリア端部と回転子外周との距離であるブリッジ幅をできるだけ狭くすることが必要である。そのような設計を行うことで、ブリッジ部をより少ない永久磁石の磁束により磁気飽和させることができ、結果的により多くの永久磁石の磁束を固定子側のコイルに鎖交させることができる。
【0003】
しかし、永久磁石端部及びフラックスバリア端部と回転子外周との距離であるブリッジ幅を狭くする場合には、回転子が回転した場合の遠心力に対する破壊強度を十分に考慮しなければならない。すなわち、ブリッジ幅を狭くするほど回転子内部で短絡してしまう漏れ磁束を低減でき、より少ない電流で高いトルクを得ることが可能だが、永久磁石及び永久磁石全面の回転子鉄心の重量を支えているブリッジ部にかかる応力も高くなるため、回転子が回転中に破壊する危険性も非常に高くなる。
【0004】
【発明が解決しようとする課題】
その危険性を克服する手段として次のような解決手法が提案されている。
【0005】
永久磁石を埋め込む磁石溝を同一磁極内で分割して配置することにより、永久磁石及び永久磁石全面の回転子鉄心の重量を回転子表面のブリッジ部以外に同一磁極内に配置されたリブを用いて分散させる方法である。しかし、この場合には永久磁石の磁束がブリッジ部と同一磁極内に配置されたリブとを介して短絡してしまうためにコイルに鎖交する磁束を増加させることは困難である。
【0006】
本発明では、永久磁石端部と回転子外周との距離であるブリッジ幅を狭くすることにより、より少ない電流を用いて高いトルクを発生することが可能な回転子構造を提案する。また、その際に回転子が高回転で回転した場合にも回転子が回転中に破壊する危険性が少ないことを特徴とする。
【0007】
【課題を解決するための手段】
本発明の電動機構造は、複数の永久磁石を埋め込む磁石溝を備えた回転子と、前記磁石溝に埋め込んだ永久磁石と、複数のスロットを有する固定子と、前記スロットに巻線を施したコイル部とを備え、マグネットトルクとリラクタンストルクにより回転駆動する電動機であって、前記回転子の同一磁極内部に設けた磁石溝は周方向に2つ以上あり、前記同一磁極内の磁石溝と磁石溝の間の分割部を介して永久磁石を2つ以上のセグメントに分割し、前記分割部の背後にフラックスバリアを配置しそのフラックスバリアの中心部にフラックスバリアの前面に配置された2つ以上のセグメントに分割された永久磁石と同一磁極である永久磁石を配置した電動機において、前記フラックスバリアの中心部にフラックスバリアの前面に配置された2つ以上のセグメントに分割された永久磁石と同一磁極である永久磁石を配置したことを特徴とする。
【0008】
【発明の実施の形態】
本発明は複数の永久磁石を埋め込む磁石溝を備えた回転子と、前記磁石溝に埋め込んだ永久磁石と、複数のスロットを有する固定子と、前記スロットに巻線を施したコイル部とを備え、マグネットトルクとリラクタンストルクにより回転駆動する電動機であって、前記回転子の同一磁極内部に設けた磁石溝は周方向に2つ以上あり、前記同一磁極内の磁石溝と磁石溝の間の分割部を介して永久磁石を2つ以上のセグメントに分割し、前記分割部の背後にフラックスバリアを配置した構造を備える電動機である。
【0009】
本発明では図1に示すように、回転子内部に配置された永久磁石が2つ以上のセグメントに分割された構造を有し、その背後に磁束の障壁となるフラックスバリアを配置することを特徴とする。この構造により永久磁石端部と回転子外周との距離であるブリッジ幅を狭くした場合でも、永久磁石及び永久磁石前面部の重量を前記フラックスバリア以外に永久磁石極間のリブ構造部で支えることが可能なため、回転子が高速で回転した場合にも充分な破壊強度を保つことが可能である。
【0010】
また、その際に永久磁石極間のリブ構造部で短絡してしまう永久磁石の磁束を背後に配置されたフラックスバリアにより磁気飽和させることで前記リブ構造部において短絡する磁束を低減することが可能である。このため前記ブリッジ部及びリブ構造部を介して回転子内部で短絡してしまう磁束を最小限に低減することが可能であり、より少ない電流で高いトルクを得ることが可能であり、回転子が高速で回転しても破壊強度について充分な強度を保証することが可能となる。
【0011】
また、図2に示すように、回転子内部に配置された永久磁石が2つ以上のセグメントに分割されており、その背後に磁束の障壁となるフラックスバリアを配置し、更に前記フラックスバリアの中心部に前記永久磁石と同一磁極の永久磁石を配置する構造を用いても同様の効果が得られる。この構造により永久磁石端部と回転子外周との距離であるブリッジ幅を狭くした場合でも、永久磁石及び永久磁石前面部の重量を前記フラックスバリア以外に永久磁石極間のリブ構造部で支えることが可能なため、回転子が高速で回転した場合にも充分な破壊強度を保つことが可能である。
【0012】
また、その際に永久磁石極間のリブ構造部で短絡してしまう永久磁石の磁束を背後に配置された永久磁石により反発させることでリブ構造部による磁束の短絡を防ぐことが可能である。このため前記ブリッジ部及びリブ構造部を介して回転子内部で短絡してしまう磁束を最小限に低減することが可能であり、より少ない電流で高いトルクを得ることが可能であり、回転子が高速で回転しても破壊強度について充分な強度を保証することが可能となる。
【0013】
【実施例】
参考実施例)
図1に参考実施例を示す。図1は複数の永久磁石埋込溝11〜12,21〜22を備えた磁極数8の回転子5と、前記磁石溝に埋め込んだ永久磁石14〜15,24〜25と、スロット数12の固定子1と、前記スロットにそれぞれU,V,Wの巻き線2〜4を順番に配置したコイル部とを備え、マグネットトルクとリラクタンストルクにより回転駆動する電動機であって、回転子内部に配置された永久磁石14〜15,24〜25が各磁極の中心部で2つのセグメントに分割された構造を有し、その背後に磁束の障壁であるフラックスバリア31を設けた電動機の構成を示す。
【0014】
この構成により永久磁石14〜15,24〜25前部の鉄部分の重量を永久磁石14,24の左側、永久磁石15,25の右側であるブリッジ部と、永久磁石14,15の中間部、永久磁石24,25の磁極中間部で支えることができるために、前記ブリッジ幅を従来の永久磁石が複数のセグメントに分割されていない回転子に比べて狭くすることが可能である。その際前記ブリッジ部を通り回転子内部で短絡してしまう漏れ磁束以外に永久磁石14,15、及び24,25の磁極中間部を通り回転子内部で短絡してしまう漏れ磁束が発生するが、後者の漏れ磁束は前記永久磁石の背後にフラックスバリア31を設けることで、より少ない磁束により永久磁石14,15、及び24,25の磁極中間部を磁気飽和させることができ、結果的に同じ磁石量を用いて従来の永久磁石が複数のセグメントに分割されていない回転子よりも巻き線に鎖交する磁束量を増加することが可能である。
【0015】
なお、本参考実施例で示したフラックスバリア31は回転子内部で短絡してしまう漏れ磁束を効果的に磁気飽和させるために永久磁石14,15、及び24,25の磁極中間部に沿って中間部を囲い込むような形状としているが、磁極中間部を磁気飽和させることを目的とした形状で有れば、例えば図3に示すような端板やバランスウエイトなどと回転子を固定することを目的として回転子内部に空けられた通し穴32を兼用することでも同様の効果が得られる。
【0016】
(実施例
図2に本発明の実施例を示す。図2は複数の永久磁石埋め込み溝11〜13,21〜23を備えた磁極数8の回転子5と、前記磁石溝に埋め込んだ永久磁石14〜16,24〜26と、スロット数12の固定子1と、前記スロットにそれぞれU,V,Wの巻き線2〜4を順番に配置したコイル部とを備え、マグネットトルクとリラクタンストルクにより回転駆動する電動機であって、回転子内部に配置された永久磁石14〜15,24〜25が各磁極の中心部で2つのセグメントに分割された構造を有し、その背後に磁束の障壁であるフラックスバリア31を設け、その背後に分割された永久磁石14〜15,24〜25と同じ磁極の永久磁石16,26を配置した構造を備える電動機の構成を示す。
【0017】
この構成により永久磁石14〜15,24〜25前部の鉄部分の重量を永久磁石14,24の左側、永久磁石15,25の右側であるブリッジ部と、永久磁石14,15、及び24,25の磁極中間部で支えることができるために、前記ブリッジ幅を従来の永久磁石が複数のセグメントに分割されていない回転子に比べて狭くすることが可能である。
【0018】
その際前記ブリッジ部を通り回転子内部で短絡してしまう漏れ磁束以外に永久磁石14,15、及び24,25の磁極中間部を通り回転子内部で短絡してしまう漏れ磁束が発生するが、後者の漏れ磁束は前記永久磁石の背後に配置された永久磁石16,26の生じる磁束により反発させることで最小限に抑制することが可能であり、結果的に同じ磁石量を用いて従来の永久磁石が複数のセグメントに分割されていない回転子よりも巻き線に鎖交する磁束量を増加することが可能である。
【0019】
なお、本実施例で示す固定子の巻き線方法は前記スロットにそれぞれU,V,Wの巻き線2〜4を順番に配置したいわゆる集中巻であるが、これは前記スロットにそれぞれU,V,Wの巻き線2〜4を渡らせて配置したいわゆる分布巻でも同様の効果が得られる。
【0020】
【発明の効果】
請求項1記載の発明は、回転子内部に分割して埋め込まれた永久磁石の背後にフラックスバリアを配置し、その中心部に前記永久磁石と同じ磁極の永久磁石を配置することで、回転子の破壊強度を保持しつつ回転子内部で短絡してしまう漏れ磁束を低減させ、分割せずに埋め込まれた永久磁石により構成された回転子と同じ破壊強度で固定子巻き線に鎖交する磁束を増加することが可能である。
【0021】
また、請求項1記載のフラックスバリアを端板やバランスウエイトなどと回転子を固定することを目的として回転子内部に空けられた通し穴で兼用することができ、回転子の構成に必ず必要な前記通し穴を有効に利用することで簡素なロータ形状とすることができコストダウンが図れる。
【0022】
また、前記請求項1記載の発明を回転子の回転軸から見て逆円弧形状の永久磁石及びフラックスバリアで構成すれば、前記請求項1記載の回転子の磁極に垂直な永久磁石及びフラックスバリアで構成する場合よりもdq軸インダクタンスの差を大きくしてリラクタンストルクを増加させることが可能である。
【0023】
また、前記請求項1記載の発明を2層以上の永久磁石及びフラックスバリアを用いて構成すれば、前記請求項1記載の2層で構成された場合よりもdq軸インダクタンスの差を大きくしてリラクタンストルクを増加させることが可能である。
【図面の簡単な説明】
【図1】 本発明の参考実施例の構成を示す同期電動機の断面図
【図2】 本発明の実施例の構成を示す同期電動機の断面図
【図3】 本発明の他の参考実施例の構成を示す同期電動機の断面図
【符号の説明】
1 固定子
2 U相巻き線
3 V相巻き線
4 W相巻き線
5 回転子
6 回転軸
11、12 永久磁石埋込溝
14、15 永久磁石
31 フラックスバリア
32 通し穴
[0001]
BACKGROUND OF THE INVENTION
It belongs to a synchronous rotating machine configured using permanent magnets.
[0002]
[Prior art]
A rotor including a magnet groove for embedding a plurality of permanent magnets, a permanent magnet embedded in the magnet groove, a stator having a plurality of slots, and a coil portion having windings in the slots; In order to generate high torque with less current in an electric motor that is driven to rotate by reluctance torque, a coil and a chain arranged on the stator side have a little more magnetic flux generated by a permanent magnet embedded in the rotor. It is necessary to make them interact. Thereby, it is possible to effectively use the magnet torque. In order to effectively use the reluctance torque, a permanent magnet is embedded in the rotor, the q-axis inductance on the q-axis side having a small magnetic resistance on the magnetic circuit viewed from the outside of the rotor, and a magnet groove in which the permanent magnet is embedded. In addition, it is necessary to increase the difference in d-axis inductance on the d-axis side, which has a very large magnetic resistance due to the flux barrier. At that time, in order to effectively link the magnetic flux of the permanent magnet to the coil on the stator side, it is necessary to make the bridge width, which is the distance between the end of the permanent magnet and the flux barrier, and the outer periphery of the rotor as narrow as possible. . By performing such a design, the bridge portion can be magnetically saturated with a smaller number of permanent magnet magnetic fluxes, and as a result, more permanent magnet magnetic fluxes can be linked to the coils on the stator side.
[0003]
However, when narrowing the bridge width, which is the distance between the permanent magnet end and flux barrier end and the outer periphery of the rotor, it is necessary to sufficiently consider the breaking strength against centrifugal force when the rotor rotates. That is, as the bridge width is narrowed, the leakage magnetic flux that is short-circuited inside the rotor can be reduced, and high torque can be obtained with less current, but the weight of the rotor core on the entire surface of the permanent magnet and permanent magnet is supported. Since the stress applied to the bridge portion is high, the risk of the rotor breaking during rotation is very high.
[0004]
[Problems to be solved by the invention]
The following solutions have been proposed as means for overcoming the danger.
[0005]
By dividing and arranging the magnet groove for embedding the permanent magnet within the same magnetic pole, the weight of the rotor core of the permanent magnet and the entire permanent magnet is used in the same magnetic pole other than the bridge portion of the rotor surface. This is a method of dispersing. However, in this case, since the magnetic flux of the permanent magnet is short-circuited via the bridge portion and the rib arranged in the same magnetic pole, it is difficult to increase the magnetic flux linked to the coil.
[0006]
The present invention proposes a rotor structure capable of generating a high torque using a smaller amount of current by narrowing the bridge width, which is the distance between the end of the permanent magnet and the outer periphery of the rotor. In addition, when the rotor rotates at a high speed at that time, the risk of the rotor breaking during rotation is small.
[0007]
[Means for Solving the Problems]
An electric motor structure according to the present invention includes a rotor having a magnet groove in which a plurality of permanent magnets are embedded, a permanent magnet embedded in the magnet groove, a stator having a plurality of slots, and a coil in which windings are provided in the slots. An electric motor that is rotationally driven by magnet torque and reluctance torque, wherein there are two or more magnet grooves provided in the same magnetic pole of the rotor in the circumferential direction, and the magnet groove and the magnet groove in the same magnetic pole dividing the permanent magnet into two or more segments through a division portion between the flux barriers are arranged behind the divided portion, two or more arranged on the front surface of the flux barrier in the center of the flux barrier in the electric motor of the permanent magnet is arranged a permanent magnet of the same pole is divided into segments, which is disposed in front of the flux barrier in the center of the flux barrier 2 Characterized in that a permanent magnet is the same magnetic pole and divided permanent magnet or more segments.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
The present invention includes a rotor having a magnet groove for embedding a plurality of permanent magnets, a permanent magnet embedded in the magnet groove, a stator having a plurality of slots, and a coil portion in which the slots are wound. , An electric motor driven to rotate by magnet torque and reluctance torque, wherein there are two or more magnet grooves provided in the same magnetic pole of the rotor in the circumferential direction, and the division between the magnet groove and the magnet groove in the same magnetic pole An electric motor having a structure in which a permanent magnet is divided into two or more segments through a section and a flux barrier is disposed behind the divided section.
[0009]
In the present invention, as shown in FIG. 1, the permanent magnet disposed inside the rotor has a structure in which it is divided into two or more segments, and a flux barrier serving as a magnetic flux barrier is disposed behind the permanent magnet. And Even if the bridge width, which is the distance between the end of the permanent magnet and the outer periphery of the rotor, is reduced by this structure, the weight of the permanent magnet and the front of the permanent magnet is supported by the rib structure between the permanent magnet poles in addition to the flux barrier. Therefore, sufficient breaking strength can be maintained even when the rotor rotates at high speed.
[0010]
In addition, the magnetic flux of the permanent magnet that is short-circuited at the rib structure between the permanent magnet poles at that time can be magnetically saturated by the flux barrier disposed at the back, so that the magnetic flux that is short-circuited at the rib structure can be reduced. It is. For this reason, it is possible to minimize the magnetic flux that is short-circuited inside the rotor via the bridge part and the rib structure part, it is possible to obtain high torque with less current, Even if it rotates at a high speed, it is possible to guarantee a sufficient strength for the breaking strength.
[0011]
Further, as shown in FIG. 2, the permanent magnet disposed in the rotor is divided into two or more segments, a flux barrier serving as a magnetic flux barrier is disposed behind the permanent magnet, and the center of the flux barrier is further disposed. The same effect can be obtained by using a structure in which a permanent magnet having the same magnetic pole as that of the permanent magnet is disposed in the part. Even if the bridge width, which is the distance between the end of the permanent magnet and the outer periphery of the rotor, is reduced by this structure, the weight of the permanent magnet and the front of the permanent magnet is supported by the rib structure between the permanent magnet poles in addition to the flux barrier. Therefore, sufficient breaking strength can be maintained even when the rotor rotates at high speed.
[0012]
Moreover, it is possible to prevent the short circuit of the magnetic flux by the rib structure part by repelling the magnetic flux of the permanent magnet which is short-circuited at the rib structure part between the permanent magnet poles by the permanent magnet disposed behind. For this reason, it is possible to minimize the magnetic flux that is short-circuited inside the rotor via the bridge part and the rib structure part, it is possible to obtain high torque with less current, Even if it rotates at a high speed, it is possible to guarantee a sufficient strength for the breaking strength.
[0013]
【Example】
( Reference Example)
FIG. 1 shows a reference embodiment. FIG. 1 shows a rotor 5 having 8 magnetic poles having a plurality of permanent magnet embedded grooves 11 to 12 and 21 to 22, permanent magnets 14 to 15 and 24 to 25 embedded in the magnet grooves, and 12 slots. An electric motor that includes a stator 1 and a coil portion in which windings 2 to 4 of U, V, and W are sequentially arranged in the slots, and is driven to rotate by magnet torque and reluctance torque, and is disposed inside the rotor. A configuration of an electric motor in which the permanent magnets 14 to 15 and 24 to 25 are divided into two segments at the center of each magnetic pole, and a flux barrier 31 as a magnetic flux barrier is provided behind the permanent magnets 14 to 15 and 24 to 25 is shown.
[0014]
With this configuration, the weight of the iron portion in front of the permanent magnets 14 to 15 and 24 to 25 is set to the left side of the permanent magnets 14 and 24, the bridge portion on the right side of the permanent magnets 15 and 25, and the intermediate part of the permanent magnets 14 and 15, Since it can be supported by the magnetic pole intermediate portions of the permanent magnets 24 and 25, the bridge width can be made narrower than that of a rotor in which a conventional permanent magnet is not divided into a plurality of segments. At that time, in addition to the leakage magnetic flux that is short-circuited inside the rotor through the bridge portion, a leakage magnetic flux that is short-circuited inside the rotor through the magnetic pole intermediate portions of the permanent magnets 14, 15 and 24, 25 is generated. By providing the flux barrier 31 behind the permanent magnet, the latter leakage magnetic flux can magnetically saturate the magnetic pole intermediate portions of the permanent magnets 14, 15 and 24, 25 with less magnetic flux, resulting in the same magnet The amount can be used to increase the amount of magnetic flux interlinked with the windings rather than a rotor in which a conventional permanent magnet is not divided into a plurality of segments.
[0015]
Incidentally, the flux barrier 31 shown in this reference example along the pole intermediate part of the permanent magnets 14, 15, and 24, 25 in order to effectively magnetically saturate the leakage flux short-circuited internally rotor intermediate If the shape is intended to magnetically saturate the magnetic pole middle part, for example, the end plate or balance weight as shown in FIG. 3 can be fixed to the rotor. For the purpose, the same effect can be obtained by also using the through hole 32 formed in the rotor.
[0016]
(Example 1 )
FIG. 2 shows an embodiment of the present invention. FIG. 2 shows a rotor 5 having 8 magnetic poles having a plurality of permanent magnet embedded grooves 11 to 13 and 21 to 23, permanent magnets 14 to 16 and 24 to 26 embedded in the magnet grooves, and fixing of 12 slots. An electric motor that includes a child 1 and a coil portion in which windings 2 to 4 of U, V, and W are sequentially arranged in the slots, and is driven to rotate by magnet torque and reluctance torque, and is disposed inside the rotor. The permanent magnets 14 to 15 and 24 to 25 have a structure in which the magnetic poles are divided into two segments at the center of each magnetic pole, and a flux barrier 31 that is a magnetic flux barrier is provided behind the permanent magnets. The structure of an electric motor provided with the structure which has arrange | positioned the permanent magnets 16 and 26 of the same magnetic pole as the magnets 14-15 and 24-25 is shown.
[0017]
With this configuration, the weights of the iron portions of the front portions of the permanent magnets 14 to 15 and 24 to 25 are set to the left side of the permanent magnets 14 and 24, the bridge portion on the right side of the permanent magnets 15 and 25, and the permanent magnets 14, 15 and 24, Since it can be supported by 25 magnetic pole intermediate portions, the bridge width can be made narrower than that of a rotor in which a conventional permanent magnet is not divided into a plurality of segments.
[0018]
At that time, in addition to the leakage magnetic flux that is short-circuited inside the rotor through the bridge portion, a leakage magnetic flux that is short-circuited inside the rotor through the magnetic pole intermediate portions of the permanent magnets 14, 15 and 24, 25 is generated. The latter leakage magnetic flux can be suppressed to a minimum by repelling the magnetic flux generated by the permanent magnets 16 and 26 disposed behind the permanent magnet. As a result, the conventional permanent magnet is used with the same magnet amount. It is possible to increase the amount of magnetic flux linked to the winding rather than the rotor in which the magnet is not divided into a plurality of segments.
[0019]
The stator winding method shown in the present embodiment is so-called concentrated winding in which windings 2 to 4 of U, V, and W are sequentially arranged in the slots, respectively. The same effect can be obtained with so-called distributed windings that are arranged across the windings 2 to 4 of W.
[0020]
【The invention's effect】
According to the first aspect of the present invention , a flux barrier is disposed behind a permanent magnet that is divided and embedded inside the rotor, and a permanent magnet having the same magnetic pole as that of the permanent magnet is disposed at the center thereof. Magnetic flux interlinked with the stator winding with the same breaking strength as a rotor composed of permanent magnets embedded without dividing, reducing leakage magnetic flux that short-circuits inside the rotor while maintaining the breaking strength of Can be increased.
[0021]
Further, the flux barrier according to claim 1 can be used as a through-hole formed in the rotor for the purpose of fixing the rotor to the end plate, balance weight, etc., which is absolutely necessary for the configuration of the rotor. By effectively using the through hole, a simple rotor shape can be obtained, and the cost can be reduced.
[0022]
Further, if the invention of claim 1 is constituted by a permanent arc and a flux barrier having a reverse arc shape when viewed from the rotation axis of the rotor, the permanent magnet and flux barrier perpendicular to the magnetic pole of the rotor of claim 1 It is possible to increase the reluctance torque by making the difference in dq axis inductance larger than in the case of the above configuration.
[0023]
Further, if the invention of the first aspect is configured by using two or more layers of permanent magnets and a flux barrier, the difference in dq axis inductance is made larger than that of the two-layer structure of the first aspect. It is possible to increase the reluctance torque.
[Brief description of the drawings]
Other references embodiment disclosed exemplary cross-sectional view of a synchronous motor showing the configuration of Embodiment 1 of Reference Example sectional view of a synchronous motor showing the arrangement of Figure 2 The present invention the present invention; FIG Sectional view of synchronous motor showing configuration
DESCRIPTION OF SYMBOLS 1 Stator 2 U phase winding 3 V phase winding 4 W phase winding 5 Rotor 6 Rotating shaft 11, 12 Permanent magnet embedded groove 14, 15 Permanent magnet 31 Flux barrier 32 Through hole

Claims (1)

複数の永久磁石を埋め込む磁石溝を備えた回転子と、前記磁石溝に埋め込んだ永久磁石と、複数のスロットを有する固定子と、前記スロットに巻線を施したコイル部とを備え、マグネットトルクとリラクタンストルクにより回転駆動する電動機であって、前記回転子の同一磁極内部に設けた磁石溝は周方向に2つ以上あり、前記同一磁極内の磁石溝と磁石溝の間の分割部を介して永久磁石を2つ以上のセグメントに分割し、前記分割部の背後にフラックスバリアを配置し、前記フラックスバリアの中心部にフラックスバリアの前面に配置された2つ以上のセグメントに分割された永久磁石と同一磁極である永久磁石を配置したことを特徴とする電動機。 A rotor including a magnet groove for embedding a plurality of permanent magnets, a permanent magnet embedded in the magnet groove, a stator having a plurality of slots, and a coil portion having windings in the slots; And an electric motor that is rotationally driven by a reluctance torque, and there are two or more magnet grooves provided in the same magnetic pole of the rotor in the circumferential direction, and a part between the magnet groove and the magnet groove in the same magnetic pole is interposed. The permanent magnet is divided into two or more segments, a flux barrier is disposed behind the divided portion, and the permanent magnet is divided into two or more segments disposed in front of the flux barrier at the center of the flux barrier. An electric motor comprising a permanent magnet having the same magnetic pole as a magnet.
JP2001308314A 2001-10-04 2001-10-04 Electric motor Expired - Fee Related JP3835231B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001308314A JP3835231B2 (en) 2001-10-04 2001-10-04 Electric motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001308314A JP3835231B2 (en) 2001-10-04 2001-10-04 Electric motor

Publications (2)

Publication Number Publication Date
JP2003116235A JP2003116235A (en) 2003-04-18
JP3835231B2 true JP3835231B2 (en) 2006-10-18

Family

ID=19127647

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001308314A Expired - Fee Related JP3835231B2 (en) 2001-10-04 2001-10-04 Electric motor

Country Status (1)

Country Link
JP (1) JP3835231B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2712062A2 (en) 2012-09-21 2014-03-26 Sanyo Denki Co., Ltd. Permanent magnet-embedded rotor and motor thereof

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1471621A3 (en) 2003-04-24 2005-12-14 Minebea Co., Ltd. Rotor element for an electrical motor
DE10318624A1 (en) 2003-04-24 2004-11-25 Minebea Co., Ltd. Rotor body for an electric motor
WO2005031946A1 (en) * 2003-09-22 2005-04-07 Nissan Motor Co., Ltd. Rotor using electrical steel sheet of low iron loss, rotor manufacturing method, laser peening method, and laser peening device
JP2006115684A (en) * 2004-09-15 2006-04-27 Nissan Motor Co Ltd Magnetic circuit structure of rotating electrical machine
EP1966870B1 (en) 2005-12-29 2010-10-06 Arçelik Anonim Sirketi An electric motor
DE102006011738A1 (en) * 2006-03-14 2007-09-20 Siemens Ag Electrical machine e.g. permanent magnet synchronize motor, has rotor supported around rotary axis in rotatable manner, where rotor has permanent magnets that are arranged within rotor and magnetic coating layer of magnetic pole
JP4886624B2 (en) 2007-07-11 2012-02-29 株式会社日立製作所 Permanent magnet type rotating electrical machine and permanent magnet type rotating electrical machine system
US20090140593A1 (en) * 2007-11-30 2009-06-04 Gm Global Technology Operations, Inc. Methods and apparatus for a permanent magnet machine with added rotor slots
JP5082825B2 (en) * 2007-12-21 2012-11-28 株式会社安川電機 Rotor for embedded magnet type rotating electrical machine, embedded magnet type rotating electrical machine, vehicle, elevator, fluid machine, processing machine using the rotating electrical machine
JP5363520B2 (en) * 2011-03-04 2013-12-11 株式会社日立産機システム Permanent magnet synchronous machine
JP5835928B2 (en) * 2011-04-15 2015-12-24 三菱重工業株式会社 Electric motor and electric compressor using the same
DE102013219260B4 (en) * 2012-09-28 2020-08-06 Suzuki Motor Corporation Electric lathe with permanent magnets inside
JP5765317B2 (en) * 2012-11-02 2015-08-19 株式会社デンソー Rotating electrical machine rotor
JP5977155B2 (en) * 2012-11-26 2016-08-24 アイチエレック株式会社 Permanent magnet motor
JP6648774B2 (en) 2018-03-22 2020-02-14 株式会社富士通ゼネラル Compressor
CN116742856B (en) * 2023-07-03 2024-05-31 山东理工大学 Magnetic field distribution adjustable motor with arc-shaped magnetic barriers

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1219228B (en) * 1988-04-21 1990-05-03 Antonino Fratta SYNCHRONOUS RELUCTANCE ELECTRICAL MACHINE EQUIPPED WITH INTRINSIC POWER SUPPLY MEANS
JP3832530B2 (en) * 1997-10-06 2006-10-11 株式会社富士通ゼネラル Permanent magnet motor
JP2000060038A (en) * 1998-08-05 2000-02-25 Toyota Motor Corp Electric motor
JP3172506B2 (en) * 1999-03-18 2001-06-04 株式会社東芝 Permanent magnet type reluctance type rotating electric machine
JP2001251825A (en) * 2000-03-01 2001-09-14 Hitachi Ltd Permanent magnet synchronous motor and air conditioner using the same
JP2002078259A (en) * 2000-08-31 2002-03-15 Yamaha Motor Co Ltd Permanent magnet rotor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2712062A2 (en) 2012-09-21 2014-03-26 Sanyo Denki Co., Ltd. Permanent magnet-embedded rotor and motor thereof
KR20140039128A (en) 2012-09-21 2014-04-01 산요 덴키 가부시키가이샤 Permanent magnet-embedded motor and rotor thereof
US10014736B2 (en) 2012-09-21 2018-07-03 Sanyo Denki Co., Ltd. Permanent magnet-embedded motor and rotor thereof

Also Published As

Publication number Publication date
JP2003116235A (en) 2003-04-18

Similar Documents

Publication Publication Date Title
JP3835231B2 (en) Electric motor
EP1014542B1 (en) Motor having a rotor with interior split-permanent-magnet
JP3816727B2 (en) Permanent magnet type reluctance type rotating electrical machine
US20050140236A1 (en) Rotor structure of multi-layer interior permanent magnet motor
JP2006520178A (en) Rotating electric machine having one stator and two rotors
JP5259927B2 (en) Permanent magnet rotating electric machine
JP2006050745A (en) Axial gap rotary electric machine
JP2018061392A (en) Armature and rotary electric machine
JP2008136298A (en) Rotator of rotary electric machine, and rotary electric machine
JP3286542B2 (en) Reluctance motor and electric vehicle using the same
JP3605475B2 (en) Permanent magnet synchronous motor
JP2000041367A (en) Hybrid excitation type synchronous machine
JP2000245085A (en) Motor
JP2018061404A (en) Synchronous reluctance type rotary electric machine
JP2018198534A (en) Rotary electric machine
JP3654377B2 (en) Inner magnet type synchronous motor
JP3655205B2 (en) Rotating electric machine and electric vehicle using the same
JP2003319583A (en) Synchronous motor
JP3172504B2 (en) Rotor of permanent magnet type reluctance type rotating electric machine
JP3772819B2 (en) Coaxial motor rotor structure
WO2021106395A1 (en) Rotary electric machine, rotor, and electromagnetic steel plate
JP4405000B2 (en) motor
US10666097B2 (en) Switched reluctance electric machine including pole flux barriers
JPH09271151A (en) Permanent magnet rotating electric machine and electric vehicle using the same
JP4491211B2 (en) Permanent magnet rotating electric machine

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050701

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051104

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051115

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060322

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060518

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060704

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060717

R151 Written notification of patent or utility model registration

Ref document number: 3835231

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090804

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100804

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110804

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110804

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120804

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130804

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees