[go: up one dir, main page]

JP3831012B2 - Method for oxidizing conjugated compounds - Google Patents

Method for oxidizing conjugated compounds Download PDF

Info

Publication number
JP3831012B2
JP3831012B2 JP18486696A JP18486696A JP3831012B2 JP 3831012 B2 JP3831012 B2 JP 3831012B2 JP 18486696 A JP18486696 A JP 18486696A JP 18486696 A JP18486696 A JP 18486696A JP 3831012 B2 JP3831012 B2 JP 3831012B2
Authority
JP
Japan
Prior art keywords
group
general formula
compound represented
elements
conjugated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP18486696A
Other languages
Japanese (ja)
Other versions
JPH09278675A (en
Inventor
康敬 石井
達也 中野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daicel Corp
Original Assignee
Daicel Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP18486696A priority Critical patent/JP3831012B2/en
Application filed by Daicel Chemical Industries Ltd filed Critical Daicel Chemical Industries Ltd
Priority to US08/913,881 priority patent/US5958821A/en
Priority to KR1019970707044A priority patent/KR100472895B1/en
Priority to EP02009780A priority patent/EP1258292B1/en
Priority to CN97190284A priority patent/CN1098124C/en
Priority to ES97902584T priority patent/ES2199340T3/en
Priority to PCT/JP1997/000279 priority patent/WO1997028897A1/en
Priority to DE69729229T priority patent/DE69729229T2/en
Priority to DE69721662T priority patent/DE69721662T2/en
Priority to EP97902584A priority patent/EP0824962B1/en
Publication of JPH09278675A publication Critical patent/JPH09278675A/en
Application granted granted Critical
Publication of JP3831012B2 publication Critical patent/JP3831012B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Catalysts (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、共役化合物(例えば、共役ジエン類、α,β−不飽和ニトリル、α,β−不飽和カルボン酸又はその誘導体など)から対応する酸化物、特にジオール類などの酸化物を製造する上で有用な酸化方法に関する。
【0002】
【従来の技術】
ポリアミドなどの合成樹脂、無水マレイン酸、可塑剤などの合成原料としてブテンジオールが利用されている。また、ブテンジオールから誘導されるブタンジオールは、例えば、テトラヒドロフラン、ブチロラクトン、ポリエステルやポリウレタンの合成原料として有用である。前記ブテンジオールやブタンジオールは、レッペ反応を利用してブチンジオールを生成させ、生成したブチンジオールを還元触媒を用いて水素添加することにより得ることができる。
一方、石油精製工程においてブタジエンなどの共役ジエンは多量に生成する。そのため、ブタジエンなどの共役ジエンから対応するブテンジオールなどのアルケンジオールを直接生成できるならば工業的に有用である。共役ジエンからジオールを製造する方法として、硝酸を用いて共役ジエンを酸化し、ジオール生成させることも考えられる。しかし、硝酸酸化により生成するN2OおよびNOxを処理するために、高価な排ガス処理施設が必要となる。そのため、資源及び環境上の観点から、分子状酸素又は空気を酸化剤として直接利用する触媒的な酸化法によりアルケンジオールを効率よく製造可能ならばさらに有用である。
【0003】
また、酸素又は空気を酸化剤として利用する酸化方法が、共役ジエン類以外の共役化合物、例えば、アクリル酸又はその誘導体などのα,β−不飽和部位の酸化においても有効であり、効率よく対応する酸化物を製造することできれば、この酸素による酸化方法は極めて有用となる。
しかし、酸素酸化、特に温和な条件下での酸素酸化により、共役ジエン類、アクリル酸又はその誘導体などの共役化合物から、対応するジオール類又はその誘導体(例えば、アルケンジオール、アセタールなど)を高い選択率および収率で生成させることは困難である。
【0004】
【発明が解決しようとする課題】
従って、本発明の目的は、排ガス処理を特に必要とせず、酸素により共役化合物を効率よく酸化できる方法を提供することにある。
本発明の他の目的は、分子状酸素により、高い反応転化率および選択率で、共役化合物から対応するジオール類又はその誘導体を生成できる酸化方法を提供することにある。
本発明のさらに他の目的は、温和な条件下、酸素により共役化合物を効率よく酸化できる酸化方法を提供することにある。
本発明の別の目的は、温和な条件下、排ガス処理を特に必要とせず、共役化合物から対応するジオール類又はその誘導体を高い転化率及び選択率で製造できる方法を提供することにある。
【0005】
【課題を解決するための手段】
本発明者らは、前記目的を達成するため鋭意検討した結果、N−ヒドロキシフタルイミドなどのイミド化合物を触媒として用いると、常圧の酸素雰囲気下であっても、共役ジエン類、アクリル酸又はその誘導体などの共役化合物から、ジオール類又はその誘導体が高い転化率および選択率で直接かつ効率よく生成することを見いだし、本発明を完成した。
すなわち、本発明の酸化方法は、一般式(1)
【0006】
【化6】

Figure 0003831012
【0007】
(式中、R1及びR2は、同一又は異なって、水素原子、ハロゲン原子、アルキル基、アリール基、シクロアルキル基、ヒドロキシル基、アルコキシ基、カルボキシル基、アルコキシカルボニル基、アシル基を示し、R1及びR2は互いに結合して二重結合、または芳香族性又は非芳香族性の環を形成してもよい。Xは酸素原子又はヒドロキシル基を示し、nは1〜3の整数を示す)
で表されるイミド化合物で構成された酸化触媒の存在下、共役化合物と酸素とを接触させることにより共役化合物を酸化する。前記酸化触媒は、一般式(1)で表されるイミド化合物と助触媒とで構成してもよい。助触媒は、遷移金属化合物(例えば、酸化物、有機酸塩、無機酸塩、ハロゲン化物、錯体、およびヘテロポリ酸又はその塩など)やホウ素化合物などで構成できる。
【0008】
共役化合物には、共役ジエン類、α,β−不飽和ニトリル又は一般式(2)
【0009】
【化7】
Figure 0003831012
【0010】
(式中、R1は、水素原子又はメチル基を示し、Xは、−OR2(R2は、水素原子、アルキル基、アリール基、シクロアルキル基、ヒドロキシアルキル基、グリシジル基を示す),−NR34(R3およびR4は、同一又は異なって、水素原子、アルキル基、ヒドロキシアルキル基を示す)を示す)
で表される化合物が含まれる。一般式(2)で表される化合物には、例えば、α,β−不飽和カルボン酸又はその誘導体などが含まれる。
また、本発明の方法では、前記イミド化合物で構成された触媒、又は前記イミド化合物と助触媒とで構成された触媒系の存在下、共役ジエン類、α,β−不飽和ニトリル又は一般式(2)で表される共役化合物と酸素とを接触させることにより、アルケンジオール又は一般式(3a)又は(3b)
【0011】
【化8】
Figure 0003831012
【0012】
(式中、Yは、酸素原子又は−OR5b(R5aおよびR5bは、同一又は異なって、水素原子、アルキル基、アシル基を示す)を示し、nは0又は1を示す。式中「…」は、単結合又は二重結合を示す。R1、Xは前記に同じ。但し、Yが酸素原子であるとき、nは0、「…」は二重結合であり、Yが−OR5bであるとき、nは1、「…」は単結合である)
で表される化合物を製造する。
なお、本明細書において「共役化合物」、「共役ジエン類」、「α,β−不飽和ニトリル」、「α,β−不飽和カルボン酸又はその誘導体」を単に「基質」という場合がある。また、「アクリル酸、メタクリル酸又はそれらの誘導体」を「(メタ)アクリル酸又はその誘導体」と総称する場合がある。また、「共役化合物」とは、二重結合と単結合とが交互に並んだ化合物(例えば、ブタジエンなど)に限らず、不飽和結合(二重結合および三重結合)が単結合を介して又は介することなく交互に並んだ化合物(例えば、共役ポリエンなど)も含む意味に用いる。そのため、不飽和ジオールが、「共役ジエン類」に対応する酸化物である限り、単一の二重結合のみならず、複数の二重結合や三重結合を有する不飽和ジオールも「アルケンジオール」と総称する。
【0013】
【発明の実施の形態】
[イミド化合物]
前記一般式(1)で表されるイミド化合物において、置換基R1及びR2のうちハロゲン原子には、ヨウ素、臭素、塩素およびフッ素が含まれる。アルキル基には、例えば、メチル、エチル、プロピル、イソプロピル、ブチル、イソブチル、sec−ブチル、t−ブチル、ペンチル、ヘキシル、ペプチル、オクチル、デシル基などの炭素数1〜10程度の直鎖状又は分岐鎖状アルキル基が含まれる。好ましいアルキル基としては、例えば、炭素数1〜6程度、特に炭素数1〜4程度の低級アルキル基が挙げられる。
アリール基には、フェニル基、ナフチル基などが含まれ、シクロアルキル基には、シクロペンチル、シクロヘキシル、シクロオクチル基などが含まれる。アルコキシ基には、例えば、メトキシ、エトキシ、プロポキシ、イソプロポキシ、ブトキシ、イソブトキシ、t−ブトキシ、ペンチルオキシ、ヘキシルオキシ基などの炭素数1〜10程度、好ましくは炭素数1〜6程度、特に炭素数1〜4程度の低級アルコキシ基が含まれる。
【0014】
アルコキシカルボニル基には、例えば、メトキシカルボニル、エトキシカルボニル、プロポキシカルボニル、イソプロポキシカルボニル、ブトキシカルボニル、イソブトキシカルボニル、t−ブトキシカルボニル、ペンチルオキシカルボニル、ヘキシルオキシカルボニル基などのアルコキシ部分の炭素数が1〜10程度のアルコキシカルボニル基が含まれる。好ましいアルコキシカルボニル基にはアルコキシ部分の炭素数が1〜6程度、特に1〜4程度の低級アルコキシカルボニル基が含まれる。
アシル基としては、例えば、ホルミル、アセチル、プロピオニル、ブチリル、イソブチリル、バレリル、イソバレリル、ピバロイル基などの炭素数1〜6程度のアシル基が例示できる。
【0015】
前記置換基R1及びR2は、同一又は異なっていてもよい。また、前記一般式(1)において、R1およびR2は互いに結合して、二重結合、または芳香族性又は非芳香族性の環を形成してもよい。好ましい芳香族性又は非芳香族性環は5〜12員環、特に6〜10員環程度であり、複素環又は縮合複素環であってもよいが、炭化水素環である場合が多い。このような環には、例えば、非芳香族性脂環族環(シクロヘキサン環などの置換基を有していてもよいシクロアルカン環、シクロヘキセン環などの置換基を有していてもよいシクロアルケン環など)、非芳香族性橋かけ環(5−ノルボルネン環などの置換基を有していてもよい橋かけ式炭化水素環など)、ベンゼン環、ナフタレン環などの置換基を有していてもよい芳香族環が含まれる。前記環は、芳香族環で構成される場合が多い。
【0016】
好ましいイミド化合物には、下記式(1a)〜(1f)で表される化合物が含まれる。
【0017】
【化9】
Figure 0003831012
【0018】
(式中、R3〜R6は、同一又は異なって、水素原子、アルキル基、ヒドロキシル基、アルコキシ基、カルボキシル基、アルコキシカルボニル基、アシル基、ニトロ基、シアノ基、アミノ基、ハロゲン原子を示す。R1、R2およびnは一般式(1)に同じ)
置換基R3〜R6において、アルキル基には、前記例示のアルキル基と同様のアルキル基、特に炭素数1〜6程度のアルキル基が含まれ、アルコキシ基には、前記と同様のアルコキシ基、特に炭素数1〜4程度の低級アルコキシ基、アルコキシカルボニル基には、前記と同様のアルコキシカルボニル基、特にアルコキシ部分の炭素数が1〜4程度の低級アルコキシカルボニル基が含まれる。また、アシル基としては、前記と同様のアシル基、特に炭素数1〜6程度のアシル基が例示され、ハロゲン原子としては、フッ素、塩素、臭素原子が例示できる。置換基R3〜R6は、通常、水素原子、炭素数1〜4程度の低級アルキル基、カルボキシル基、ニトロ基、ハロゲン原子である場合が多い。
【0019】
前記一般式(1)において、Xは酸素原子又はヒドロキシル基を示し、nは、通常、1〜3程度、好ましくは1又は2である。一般式(1)で表される化合物は酸化反応において一種又は二種以上使用できる。
前記一般式(1)で表されるイミド化合物に対応する酸無水物には、例えば、無水コハク酸、無水マレイン酸などの飽和又は不飽和脂肪族ジカルボン酸無水物、テトラヒドロ無水フタル酸、ヘキサヒドロ無水フタル酸(1,2−シクロヘキサンジカルボン酸無水物)、1,2,3,4−シクロヘキサンテトラカルボン酸−1,2−無水物などの飽和又は不飽和非芳香族性環状多価カルボン酸無水物(脂環族多価カルボン酸無水物)、無水ヘット酸、無水ハイミック酸などの橋かけ環式多価カルボン酸無水物(脂環族多価カルボン酸無水物)、無水フタル酸、テトラブロモ無水フタル酸、テトラクロロ無水フタル酸、無水ニトロフタル酸、無水トリメリット酸、メチルシクロヘキセントリカルボン酸無水物、無水ピロメリット酸、無水メリト酸、1,8;4,5−ナフタレンテトラカルボン酸二無水物などの芳香族多価カルボン酸無水物が含まれる。
【0020】
好ましいイミド化合物としては、例えば、N−ヒドロキシコハク酸イミド、N−ヒドロキシマレイン酸イミド、N−ヒドロキシヘキサヒドロフタル酸イミド、N,N′−ジヒドロキシシクロヘキサンテトラカルボン酸イミド、N−ヒドロキシフタル酸イミド、N−ヒドロキシテトラブロモフタル酸イミド、N−ヒドロキシテトラクロロフタル酸イミド、N−ヒドロキシヘット酸イミド、N−ヒドロキシハイミック酸イミド、N−ヒドロキシトリメリット酸イミド、N,N′−ジヒドロキシピロメリット酸イミド、N,N′−ジヒドロキシナフタレンテトラカルボン酸イミドなどが挙げられる。特に好ましい化合物には、脂環族多価カルボン酸無水物、なかでも芳香族多価カルボン酸無水物から誘導されるN−ヒドロキシイミド化合物、例えば、N−ヒドロキシフタル酸イミドなどが含まれる。
【0021】
前記イミド化合物は、慣用のイミド化反応、例えば、対応する酸無水物とヒドロキシルアミンNH2OHとを反応させて酸無水物基を開環した後、閉環してイミド化することにより調整できる。
このようなイミド化合物は、酸化活性が高く、穏和な条件であっても、共役化合物の酸化反応を触媒的に促進できる。そのため、共役化合物を効率よく高い選択率で酸化でき、対応する共役化合物の酸化物(例えば、アルコール類、アルデヒド類やカルボン酸類など)、特にジオール類又はその誘導体(例えば、アルケンジオールやアセタールなど)などを生成させることができる。さらに、前記一般式(1)で表されるイミド化合物と助触媒との共存下で共役化合物を酸化すると、転化率及び/又は選択率をさらに向上できる。
【0022】
[助触媒]
助触媒としての共酸化剤には、金属化合物、例えば、遷移金属化合物や、ホウ素化合物などの周期表13族元素(ホウ素B、アルミニウムAlなど)を含む化合物が含まれる。共酸化剤は、一種又は二種以上組合わせて使用できる。
前記遷移金属の元素としては、例えば、周期表3族元素(例えば、スカンジウムSc、イットリウムYの外、ランタンLa,セリウムCe、サマリウムSmなどのランタノイド元素、アクチノイドAcなどのアクチノイド元素)、4族元素(チタンTi、ジルコニウムZr、ハフニウムHfなど)、5族元素(バナジウムV、ニオブNb、タンタルTaなど)、6族元素(クロムCr、モリブデンMo、タングステンWなど)、7族元素(マンガンMn、テクネチウムTc、レニウムReなど)、8族元素(鉄Fe、ルテニウムRu、オスミウムOsなど)、9族元素(コバルトCo、ロジウムRh、イリジウムIrなど)、10族元素(ニッケルNi、パラジウムPd、白金Ptなど)、11族元素(銅Cu、銀Ag,金Auなど)などが挙げられる。
【0023】
好ましい助触媒を構成する元素には、遷移金属の元素(例えば、ランタノイド元素、アクチノイド元素などの周期表3族元素、V、Nbなどの5族元素、Cr,Mo,Wなどの6族元素,Mn,Tc,Reなどの7族元素、Fe,Ruなどの8族元素,Co、Rhなどの9族元素、Niなどの10族元素,Cuなどの11族元素)、Bなどの13族元素が含まれる。特に、前記一般式(1)で表されるイミド化合物と組合わせたとき、Ceなどのランタノイド元素、Vなどの5族元素、Mo、Wなどの6族元素、Mnなどの7族元素、Fe、Ruなどの8族元素、Co、Rhなどの9族元素、Niなどの10族元素、Cuなどの11族元素を含む化合物は、高い活性を示す。
助触媒は、前記元素を含み、かつ酸化能を有する限り特に制限されず、金属単体、水酸化物などであってもよいが、通常、前記元素を含む金属酸化物、複酸化物または酸素酸塩、有機酸塩、無機酸塩、ハロゲン化物、前記金属元素を含む配位化合物(錯体)やヘテロポリ酸又はその塩などである場合が多い。また、ホウ素化合物としては、例えば、水酸化ホウ素(例えば、ボラン、ジボラン、テトラボラン、ペンタボラン、デカボランなど)、ホウ酸(例えば、オルトホウ酸、メタホウ酸、四ホウ酸など)、ホウ酸塩(例えば、ホウ酸ニッケル、ホウ酸マグネシウム、ホウ酸マンガンなど)、B23などのホウ素酸化物、ボザラン、ボラゼン、ボラジン、ホウ素アミド、ホウ素イミドなどの窒素化合物、BF3、BCl3、テトラフルオロホウ酸塩などのハロゲン化物、ホウ酸エステル(例えば、ホウ酸メチル、ホウ酸フェニルなど)などが挙げられる。好ましいホウ素化合物には、水素化ホウ素、オルトホウ酸などのホウ酸又はその塩など、特にホウ酸が含まれる。これらの助触媒は一種又は二種以上使用できる。
【0024】
水酸化物には、例えば、Mn(OH)2、MnO(OH)などが含まれる。金属酸化物には、例えば、Sm23、TiO2、CrO、Cr23、MoO3、MnO、Mn34、Mn23、MnO2、Mn27、FeO、Fe23、RuO2、RuO4、CoO、CoO2、Co23、RhO2、Rh23、Cu23などが含まれ、複酸化物または酸素酸塩としては、例えば、MnAl24、MnTiO3、LaMnO3、K2Mn25、CaO・xMnO2(x=0.5,1,2,3,5)、マンガン酸塩[例えば、Na3MnO4、Ba3(MnO42などのマンガン(V)酸塩、K2MnO4、Na2MnO4、BaMnO4などのマンガン(VI)酸塩、KMnO4、NaMnO4、LiMnO4、NH4MnO4、CsMnO4、AgMnO4、Ca(MnO42、Zn(MnO42、Ba(MnO42、Mg(MnO42、Cd(MnO42などの過マンガン酸塩]が含まれる。
【0025】
有機酸塩としては、例えば、酢酸コバルト、酢酸マンガン、プロピオン酸コバルト、プロピオン酸マンガン、ナフテン酸コバルト、ナフテン酸マンガン、ステアリン酸コバルト、ステアリン酸マンガン、チオシアン酸マンガンや対応するCe塩、Cr塩、Fe塩、Ni塩、Pd塩、Cu塩などが例示され、無機酸塩としては、例えば、硝酸コバルト、硝酸マンガン、硝酸ニッケル、硝酸銅などの硝酸塩やこれらに対応する硫酸塩、リン酸塩および炭酸塩(例えば、硫酸コバルト、硫酸マンガン、リン酸コバルト、リン酸マンガン、炭酸マンガンなど)が挙げられる。また、ハロゲン化物としては、例えば、SmCl3、MnCl2、MnCl3、FeCl2、FeCl3、RuCl3、CoCl2、RhCl2、RhCl3、NiCl2、PdCl2、PtCl2、CuCl、CuCl2などの塩化物やこれらに対応するフッ化物や臭化物(例えば、MnF2、MnBr2、MnF3など)などのハロゲン化物、M1MnCl3、M1 2MnCl4、M1 2MnCl5、M1 2MnCl6(M1は一価金属を示す)などの複ハロゲン化物などが挙げられる。
【0026】
錯体を形成する配位子としては、OH(ヒドロキシ)、メトキシ、エトキシ、プロポキシ、ブトキシ基などのアルコキシ基、アセチル、プロピオニルなどのアシル基、メトキシカルボニル(アセタト)、エトキシカルボニルなどのアルコキシカルボニル基、アセチルアセトナト、シクロペンタジエニル基、塩素、臭素などのハロゲン原子、CO、CN、酸素原子、H2O(アコ)、ホスフィン(例えば、トリフェニルホスフィンなどのトリアリールホスフィン)などのリン化合物、NH3(アンミン)、NO、NO2(ニトロ)、NO3(ニトラト)、エチレンジアミン、ジエチレントリアミン、ピリジン、フェナントロリンなどの窒素含有化合物などが挙げられる。錯体又は錯塩において、同種又は異種の配位子は一種又は二種以上配位していてもよい。
【0027】
好ましい錯体には、遷移金属元素(例えば、Ceなどのランタノイド元素やアクチノイド元素が属する周期表3族元素、Mnなどの周期表7族元素、Fe、Ruなどの周期表8族元素、Co、Rhなどの周期表9族元素、Ni、Pd、Ptなどの周期表10族元素、Cuなどの周期表11族元素など)を含む錯体が含まれる。また、配位子は、例えば、OH、アルコキシ基、アシル基、アルコキシカルボニル基、アセチルアセトナト、ハロゲン原子、CO、CN、H2O(アコ)、トリフェニルホスフィンなどのリン化合物や、NH3、NO2、NO3を含めて窒素含有化合物である場合が多い。前記遷移金属元素と配位子は適当に組合わせて錯体を構成することができ、例えば、セリウムアセチルアセトナト、マンガンアセチルアセトナト、コバルトアセチルアセトナト、ルテニウムアセチルアセトナト、銅アセチルアセトナトなどであってもよい。
【0028】
ヘテロポリ酸を形成するポリ酸は、例えば、周期表5族又は6族元素、例えば、V(バナジン酸)、Mo(モリブデン酸)およびW(タングステン酸)の少なくとも一種である場合が多く、中心原子は特に制限されず、例えば、Cu、Be、B、Al、Si、Ge、Sn、Ti、Th、N、P、As、Sb、V、Nb、Ta、Cr、Mo、W、S、Se、Te、Mn、I、Fe、Co、Ni、Rh、Os、Ir、Pt、Cuなどであってもよい。ヘテロポリ酸の具体例としては、例えば、コバルトモリブデン酸塩、コバルトタングステン酸塩、モリブデンタングステン酸塩、バナジウムモリブデン酸塩、バナドモリブドリン酸塩などが挙げられる。
助触媒としては、V、MoおよびWの少なくとも一種の元素を含むヘテロポリ酸塩(例えば、バナジウム−モリブデン系のヘテロポリ酸又はその塩など)、遷移金属化合物(例えば、ランタノイド元素、Mn、Ru、CoおよびCuの少なくとも一種の元素を含む遷移金属化合物)を用いる場合が多い。
【0029】
一般式(1)で表されるイミド化合物、又はこのイミド化合物および前記助触媒で構成される触媒系は、均一系であってもよく、不均一系であってもよい。また、触媒系は、担体に触媒成分が担持された固体触媒であってもよい。担体としては、活性炭、ゼオライト、シリカ、シリカ−アルミナ、ベントナイトなどの多孔質担体を用いる場合が多い。固体触媒における触媒成分の担持量は、担体100重量部に対して、一般式(1)で表されるイミド化合物0.1〜50重量部、好ましくは0.5〜30重量部、さらに好ましくは1〜20重量部程度である。また、助触媒の担持量は、担体100重量部に対して、0.1〜30重量部、好ましくは0.5〜25重量部、さらに好ましくは1〜20重量部程度である。
前記一般式(1)で表されるイミド化合物の使用量は、広い範囲で選択でき、例えば、共役化合物1モルに対して0.001モル(0.1モル%)〜1モル(100モル%)、好ましくは0.001モル(0.1モル%)〜0.5モル(50モル%)、さらに好ましくは0.01〜0.30モル程度であり、0.01〜0.25モル程度である場合が多い。
【0030】
また、助触媒(共酸化剤)の使用量も、反応性および選択率を低下させない範囲で適当に選択でき、例えば、共役化合物1モルに対して0.0001モル(0.1モル%)〜0.7モル(70モル%)、好ましくは0.0001〜0.5モル、さらに好ましくは0.001〜0.3モル程度であり、0.0005〜0.1モル(例えば、0.005〜0.1モル)程度である場合が多い。
なお、一般式(1)で表されるイミド化合物に対する助触媒の割合は、反応速度、選択率を損なわない範囲で選択でき、例えば、イミド化合物1モルに対して、助触媒0.001〜10モル、好ましくは0.005〜5モル、さらに好ましくは0.01〜3モル程度であり、0.01〜5モル程度である場合が多い。
ヘテロポリ酸又はその塩を助触媒として使用する場合、基質100重量部に対して0.1〜25重量部、好ましくは0.5〜10重量部、さらに好ましくは1〜5重量部程度である。
【0031】
[共役化合物]
このような酸化触媒を利用すると、共役化合物を効率よく酸素酸化でき、共役化合物の酸化物(アルコール類、アルデヒド類など)、特にジオール類又はその誘導体を高い選択率で生成させることができる。さらに、酸化反応が進行すると、対応するカルボン酸類が生成する場合もある。そのため、本発明の方法では、前記酸化触媒の存在下、共役化合物と酸素とを接触させて酸化する。
共役化合物には、共役ジエン類、α,β−不飽和ニトリル、α,β−不飽和カルボン酸又はその誘導体などが含まれる。
共役ジエン類には、例えば、ブタジエン(1,3−ブタジエン)、イソプレン(2−メチル−1,3−ブタジエン)などの共役二重結合を有する化合物、二重結合と三重結合とを有する化合物(ビニルアセチレン、ジビニルアセチレンなど)およびこれらの誘導体などが含まれる。共役ジエン類の誘導体には、例えば、2−クロロブタジエン、2,3−ジクロロブタジエンなどのハロゲン原子(ヨウ素、臭素、塩素およびフッ素原子)を有する化合物、2−エチルブタジエン、2,3−ジメチルブタジエンなどのアルキル基(例えば、メチル、エチル、プロピル、イソプロピル、ブチル、イソブチル、sec−ブチル、t−ブチルなどの炭素数1〜4程度の低級アルキル基)を有する化合物、ブタジエン−1−カルボン酸などのカルボキシル基を有する化合物などが例示できる。好ましい共役ジエン類は、ブタジエンおよびイソプレンである。
【0032】
共役ジエン類の酸素酸化によりアルケンジオールが生成する。生成するアルケンジオールは、共役ジエン類に対応するジオールである限り、ヒドロキシル基の置換位置は特に制限されない。例えば、ブタジエンの酸化により生成するブテンジオールは、2−ブテン−1,4−ジオール、1−ブテン−3,4−ジオールなどであってもよく、ブテンジオールはシス体又はトランス体のいずれであってもよい。
α,β−不飽和ニトリルには、例えば、(メタ)アクリロニトリルなどが含まれる。
一般式(2)で表される共役化合物は、α,β−不飽和カルボン酸又はその誘導体に相当する。
【0033】
【化10】
Figure 0003831012
【0034】
(式中、R1は、水素原子又はメチル基を示し、Xは、−OR2(R2は、水素原子、アルキル基、アリール基、シクロアルキル基、ヒドロキシアルキル基、グリシジル基を示す),−NR34(R3およびR4は、同一又は異なって、水素原子、アルキル基、ヒドロキシアルキル基を示す)を示す)
一般式(2)において置換基R2のうち、アルキル基には、メチル、エチル、プロピル、イソプロピル、ブチル、イソブチル、sec−ブチル、t−ブチル、ペンチル、ヘキシル、ヘプチル、2−エチルヘキシル、オクチル、デシル、テトラデシル基などの炭素数1〜20程度の直鎖又は分岐鎖状アルキル基が含まれる。好ましいアルキル基には、炭素数1〜15程度のアルキル基、特に炭素数1〜12程度(例えば、1〜10程度)のアルキル基が含まれる。アリール基には、フェニル基、ナフチル基などが含まれる。シクロアルキル基には、シクロペンチル、シクロヘキシル、シクロオクチル基などの5〜10員環のシクロアルキル基が含まれる。
【0035】
ヒドロキシアルキル基には、2−ヒドロキシエチル、2−ヒドロキシプロピル、4−ヒドロキシブチル、ヒドロキシペンチル基などの炭素数2〜10程度のヒドロキシアルキル基が含まれる。好ましいヒドロキシアルキル基には、炭素数2〜4程度のヒドロキシアルキル基、特に炭素数2又は3程度のヒドロキシアルキル基が含まれる。
置換基R2は、通常、水素原子、炭素数1〜10のアルキル基、炭素数2又は3のヒドロキシルアルキル基、グリシジル基などである場合が多い。
このような置換基を有する化合物として、例えば、(メタ)アクリル酸;(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸イソプロピル、(メタ)アクリル酸n−ブチル、(メタ)アクリル酸イソブチル、(メタ)アクリル酸ヘキシル、(メタ)アクリル酸2−エチルヘキシル、(メタ)アクリル酸ラウリルなどの(メタ)アクリル酸アルキルエステル;(メタ)アクリル酸−2−ヒドロキシエチル、(メタ)アクリル酸−2−ヒドロキシプロピルなどのヒドロキシルアルキル(メタ)アクリレート;(メタ)アクリル酸グリシジルなどが挙げられる。
【0036】
Xで表される−NR34において、置換基R3及びR4のうち、アルキル基には、メチル、エチル、プロピル、イソプロピル、ブチル、イソブチル、sec−ブチル、t−ブチル、ペンチル基などの炭素数1〜10程度のアルキル基が挙げられる。好ましいアルキル基には、炭素数1〜6程度のアルキル基、特に炭素数1〜4程度のアルキル基が挙げられる。ヒドロキシアルキル基には、ヒドロキシ−C1-10アルキル、好ましくはヒドロキシメチル、ヒドロキシエチル基が含まれる。
置換基R3及びR4は、同一又は異なっていてもよく、通常、水素原子、炭素数1〜4程度のアルキル基、炭素数1又は2のヒドロキシアルキル基である場合が多い。
【0037】
このような置換基を有する化合物として、例えば、(メタ)アクリルアミド、N−メチル(メタ)アクリルアミド、N−メチロール(メタ)アクリルアミドなどの(メタ)アクリルアミド誘導体などが挙げられる。
これらのα,β−不飽和ニトリル、α,β−不飽和カルボン酸又はその誘導体を酸素との接触により酸化させると、α,β−不飽和結合部位が選択的に酸化され、高い転化率及び選択率で一般式(3a)又は(3b)
【0038】
【化11】
Figure 0003831012
【0039】
(式中、Yは、酸素原子又は−OR5b(R5aおよびR5bは、同一又は異なって、水素原子、アルキル基、アシル基を示す)を示し、nは0又は1を示す。式中「…」は、単結合又は二重結合を示す。R1、Xは一般式(2)に同じ。但し、Yが酸素原子であるとき、nは0、「…」結合は二重結合であり、Yが−OR5bであるとき、nは1、「…」結合は単結合である)
で表される化合物が生成する。
前記一般式(3a)又は(3b)で表される化合物において、置換基R5aおよびR5bのうち、アルキル基には、例えば、メチル、エチル、プロピル、イソプロピル、ブチル、イソブチル、sec−ブチル、t−ブチル基などのC1-6アルキル基、アシル基には、アセチル、プロピオニル基などのC2-6アシル基が含まれる。これらのアルキル基、アシル基は、溶媒との反応により生成する場合がある。
【0040】
この酸化反応では、ジオール類(Yが−OR5bで、R5aおよびR5bがともに水素原子である化合物)が、基本的に生成すると思われ、脱水反応により、アルデヒド又はその誘導体(Yが酸素原子である化合物)が生成する場合がある。また、反応溶媒として、プロトン性溶媒(酢酸、プロピオン酸などの有機酸、メタノール、エタノール、n−プロパノール、イソプロパノール、n−ブタノール、t−ブタノールなどのアルコール類など)を用いると、アセタール又はアシルオキシ化合物などのジオール誘導体(Yが−OR5bであり、R5aおよびR5bの少なくとも一方がアルキル基又はアシル基である化合物)が生成する場合がある。これらのアルデヒド又はその誘導体、またはアセタールなどのジオール誘導体は、ジオール類と等価な化合物である。
【0041】
例えば、反応溶媒として、メタノールを用い、アクリロニトリルを酸化させると、1,1−ジメトキシプロピオニトリルが生成する場合がある。また、メタノール溶媒中、アクリル酸メチルを酸化させると、1,1−ジメトキシプロピオン酸メチルが生成する場合がある。
共役化合物の酸化に利用される酸素は、活性酸素であってもよいが、分子状酸素を利用するのが経済的に有利である。分子状酸素は特に制限されず、純粋な酸素を用いてもよく、窒素、ヘリウム、アルゴン、二酸化炭素などの不活性ガスで希釈した酸素を使用してもよい。操作性及び安全性のみならず経済性などの点から、空気を使用するのが好ましい。
酸素の使用量は、基質の種類に応じて選択でき、通常、基質1モルに対して、0.5モル以上(例えば、1モル以上)、好ましくは1〜100モル、さらに好ましくは2〜50モル程度である。基質に対して過剰モルの酸素を使用する場合が多く、特に空気や酸素などの分子状酸素を含有する雰囲気下で反応させるのが有利である。
本発明の酸化方法は、反応に不活性な有機溶媒中で行うことができる。反応に不活性な有機溶媒としては、例えば、プロトン性溶媒(例えば、酢酸、プロピオン酸などの有機酸;メタノール、エタノール、n−プロパノール、イソプロパノール、n−ブタノール、t−ブタノールなどのアルコール類など)、ニトリル類(例えば、アセトニトリル、プロピオニトリル、ベンゾニトリルなど)、アミド類(例えば、ホルムアミド、アセトアミド、ジメチルホルムアミド(DMF)など)、脂肪族炭化水素(例えば、ヘキサン、オクタンなど)、芳香族炭化水素(例えば、ベンゼン、トルエンなど)、ハロゲン化炭化水素(例えば、クロロホルム、ジクロロメタン、ジクロロエタン、四塩化炭素、クロロベンゼンなど)、ニトロ化合物(例えば、ニトロベンゼン、ニトロメタン、ニトロエタンなど)、エステル類(例えば、酢酸エチル、酢酸ブチル、プロピオン酸エチル、プロピオン酸ブチル、安息香酸メチル、安息香酸エチルなど)、エーテル類(例えば、ジメチルエーテル、ジエチルエーテル、ジイソプロピルエーテル、ジオキサン、テトラヒドロフランなど)、これらの混合溶媒などが挙げられる。なお、過剰の基質を用いることにより、基質を反応溶媒として利用してもよい。
【0042】
本発明の方法は、比較的温和な条件であっても円滑に酸化反応が進行するという特色がある。反応温度は、基質の種類などに応じて適当に選択でき、例えば、0〜300℃、好ましくは30〜250℃、さらに好ましくは40〜200℃程度であり、通常、40〜150℃程度で反応する場合が多い。また、反応は、常圧又は加圧下で行うことができ、加圧下で反応させる場合には、通常、1〜100atm(例えば、1.5〜80atm)、好ましくは2〜70atm、さらに好ましくは5〜50atm程度である場合が多い。反応時間は、反応温度及び圧力に応じて、例えば、30分〜48時間、好ましくは1〜36時間、さらに好ましくは2〜24時間程度の範囲から適当に選択できる。
反応は、分子状酸素の存在下又は分子状酸素の流通下、回分式、半回分式、連続式などの慣用の方法により行うことができる。反応終了後、反応生成物は、慣用の方法、例えば、瀘過、濃縮、蒸留、抽出、晶析、再結晶、カラムクロマトグラフィーなどの分離手段や、これらを組合わせた分離手段により、容易に分離精製できる。
【0043】
本発明は、共役化合物から対応する酸化物、例えば、共役ジエン類から対応する酸化物であるアルケンジオール(例えば、ブタジエンから、ポリアミドなどの合成樹脂、無水マレイン酸、可塑剤、ブタンジオールなどの合成原料として使用されるブテンジオール)を製造する上で有用である。
【0044】
【発明の効果】
本発明の酸化方法では、▲1▼前記イミド化合物又は▲2▼このイミド化合物と助触媒とで構成された酸化触媒を用いるため、排ガス処理を特に必要とせず、酸素酸化により共役化合物を効率よく酸化でき、経済性及び安全性の点でも有利である。また、分子状酸素により、高い反応転化率および選択率で、共役化合物から対応する酸化物を生成できる。さらに、温和な条件であっても、酸素により共役化合物を効率よく酸化できる。そのため、共役化合物から対応する酸化物、特に、ジオール類又はその誘導体を高い転化率及び選択率で製造する上で有用である。
【0045】
【実施例】
以下に、実施例に基づいて本発明を詳細に説明するが、本発明はこれらの実施例により何ら限定されるものではない。
実施例1
ブタジエン1.08g(20ミリモル)、N−ヒドロキシフタルイミド0.26g(1.6ミリモル)、コバルトアセチルアセトナートCo(AA)2 0.03g(0.12ミリモル)、アセトニトリル25mlの混合物を、酸素雰囲気下、60℃で6時間撹拌した。反応液中の生成物をガスクロマトグラフィー分析により調べたところ、ブタジエンの転化率35%で、2−ブテン−1,4−ジオール(ブタジエン基準の選択率63%、収率22%)と、1−ブテン−3,4−ジオール(ブタジエン基準の選択率23%、収率8%)とが得られた。アルコール体の選択率は86%である。
【0046】
実施例2
アクリロニトリル1.06g(20ミリモル)、N−ヒドロキシフタルイミド0.26g(1.6ミリモル)、コバルトアセチルアセトナートCo(AA)20.03g(0.12ミリモル)、メタノール25mlの混合物を、酸素雰囲気下、50℃で3時間撹拌した。反応液中の生成物をガスクロマトグラフィー分析により調べたところ、アクリロニトリルの転化率99%で、1,1−ジメトキシプロピオニトリルが収率99%で得られた。
実施例3
アクリル酸メチル1.72g(20ミリモル)、N−ヒドロキシフタルイミド0.26g(1.6ミリモル)、コバルトアセチルアセトナートCo(AA)20.03g(0.12ミリモル)、メタノール25mlの混合物を、酸素雰囲気下、50℃で3時間撹拌した。反応液中の生成物をガスクロマトグラフィー分析により調べたところ、アクリル酸メチルの転化率99%で、1,1−ジメチルプロピオン酸メチルが収率99%で得られた。[0001]
BACKGROUND OF THE INVENTION
The present invention produces corresponding oxides, particularly oxides such as diols, from conjugated compounds (eg, conjugated dienes, α, β-unsaturated nitriles, α, β-unsaturated carboxylic acids or derivatives thereof). It relates to an oxidation method useful above.
[0002]
[Prior art]
Butenediol is used as a synthetic raw material for synthetic resins such as polyamide, maleic anhydride, and plasticizers. In addition, butanediol derived from butenediol is useful as a raw material for synthesizing, for example, tetrahydrofuran, butyrolactone, polyester, and polyurethane. The butenediol and butanediol can be obtained by producing butynediol using the Reppe reaction and hydrogenating the produced butynediol using a reduction catalyst.
On the other hand, conjugated dienes such as butadiene are produced in large quantities in the petroleum refining process. Therefore, it is industrially useful if the corresponding alkenediol such as butenediol can be produced directly from the conjugated diene such as butadiene. As a method for producing a diol from a conjugated diene, it is conceivable to oxidize the conjugated diene using nitric acid to generate a diol. However, N produced by nitric acid oxidation2In order to treat O and NOx, an expensive exhaust gas treatment facility is required. Therefore, from the viewpoint of resources and environment, it is further useful if alkenediol can be efficiently produced by a catalytic oxidation method that directly uses molecular oxygen or air as an oxidizing agent.
[0003]
In addition, the oxidation method using oxygen or air as an oxidant is also effective in the oxidation of conjugated compounds other than conjugated dienes, for example, α, β-unsaturated sites such as acrylic acid or its derivatives, and can be handled efficiently. If an oxide to be produced can be produced, this oxidation method using oxygen is extremely useful.
However, by oxygen oxidation, especially oxygen oxidation under mild conditions, the corresponding diols or derivatives thereof (eg, alkenediols, acetals, etc.) are highly selected from conjugated compounds such as conjugated dienes, acrylic acid or derivatives thereof. It is difficult to produce at a rate and yield.
[0004]
[Problems to be solved by the invention]
Accordingly, an object of the present invention is to provide a method that can efficiently oxidize a conjugated compound with oxygen without particularly requiring exhaust gas treatment.
Another object of the present invention is to provide an oxidation method capable of producing a corresponding diol or derivative thereof from a conjugated compound with molecular oxygen with high reaction conversion and selectivity.
Still another object of the present invention is to provide an oxidation method capable of efficiently oxidizing a conjugated compound with oxygen under mild conditions.
Another object of the present invention is to provide a method capable of producing a corresponding diol or derivative thereof from a conjugated compound with high conversion and selectivity without requiring an exhaust gas treatment under mild conditions.
[0005]
[Means for Solving the Problems]
As a result of intensive studies to achieve the above object, the present inventors have found that when an imide compound such as N-hydroxyphthalimide is used as a catalyst, conjugated dienes, acrylic acid or the like can be used even under an atmospheric pressure of oxygen. The inventors have found that diols or derivatives thereof are directly and efficiently produced from conjugated compounds such as derivatives with high conversion and selectivity, thereby completing the present invention.
That is, the oxidation method of the present invention has the general formula (1)
[0006]
[Chemical 6]
Figure 0003831012
[0007]
(Wherein R1And R2Are the same or different and each represents a hydrogen atom, a halogen atom, an alkyl group, an aryl group, a cycloalkyl group, a hydroxyl group, an alkoxy group, a carboxyl group, an alkoxycarbonyl group, or an acyl group, and R1And R2May bond to each other to form a double bond, or an aromatic or non-aromatic ring. X represents an oxygen atom or a hydroxyl group, and n represents an integer of 1 to 3)
The conjugated compound is oxidized by bringing the conjugated compound into contact with oxygen in the presence of an oxidation catalyst composed of an imide compound represented by the formula: The oxidation catalyst may be composed of an imide compound represented by the general formula (1) and a promoter. The cocatalyst can be composed of a transition metal compound (for example, an oxide, an organic acid salt, an inorganic acid salt, a halide, a complex, and a heteropolyacid or a salt thereof), a boron compound, or the like.
[0008]
Conjugated compounds include conjugated dienes, α, β-unsaturated nitriles or general formula (2)
[0009]
[Chemical 7]
Figure 0003831012
[0010]
(Wherein R1Represents a hydrogen atom or a methyl group, and X represents —OR2(R2Represents a hydrogen atom, an alkyl group, an aryl group, a cycloalkyl group, a hydroxyalkyl group or a glycidyl group), -NRThreeRFour(RThreeAnd RFourAre the same or different and represent a hydrogen atom, an alkyl group, or a hydroxyalkyl group))
The compound represented by these is included. The compound represented by the general formula (2) includes, for example, α, β-unsaturated carboxylic acid or a derivative thereof.
In the method of the present invention, a conjugated diene, an α, β-unsaturated nitrile or a general formula (in the presence of a catalyst composed of the imide compound or a catalyst system composed of the imide compound and a cocatalyst 2) By contacting the conjugated compound represented by oxygen and oxygen, the alkenediol or the general formula (3a) or (3b)
[0011]
[Chemical 8]
Figure 0003831012
[0012]
Wherein Y is an oxygen atom or -OR5b(R5aAnd R5bAre the same or different and each represents a hydrogen atom, an alkyl group or an acyl group, and n represents 0 or 1. In the formula, “...” represents a single bond or a double bond. R1, X is the same as above. However, when Y is an oxygen atom, n is 0, “...” Is a double bond, and Y is —OR.5bWhere n is 1 and “...” Is a single bond)
The compound represented by these is manufactured.
In the present specification, “conjugated compound”, “conjugated dienes”, “α, β-unsaturated nitrile”, “α, β-unsaturated carboxylic acid or derivative thereof” may be simply referred to as “substrate”. Further, “acrylic acid, methacrylic acid or derivatives thereof” may be collectively referred to as “(meth) acrylic acid or derivatives thereof”. In addition, the “conjugated compound” is not limited to a compound in which double bonds and single bonds are alternately arranged (for example, butadiene and the like), and an unsaturated bond (double bond and triple bond) is formed via a single bond or It is used to mean including compounds (for example, conjugated polyenes) arranged alternately without intervening. Therefore, as long as the unsaturated diol is an oxide corresponding to “conjugated dienes”, an unsaturated diol having not only a single double bond but also a plurality of double bonds or triple bonds is also referred to as “alkene diol”. Collectively.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
[Imide compound]
In the imide compound represented by the general formula (1), the substituent R1And R2Among them, the halogen atom includes iodine, bromine, chlorine and fluorine. Examples of the alkyl group include straight chain having about 1 to 10 carbon atoms such as methyl, ethyl, propyl, isopropyl, butyl, isobutyl, sec-butyl, t-butyl, pentyl, hexyl, peptyl, octyl and decyl groups. Branched alkyl groups are included. Preferable alkyl groups include, for example, lower alkyl groups having about 1 to 6 carbon atoms, particularly about 1 to 4 carbon atoms.
Aryl groups include phenyl groups, naphthyl groups, and the like, and cycloalkyl groups include cyclopentyl, cyclohexyl, cyclooctyl groups, and the like. The alkoxy group includes, for example, about 1 to 10 carbon atoms such as methoxy, ethoxy, propoxy, isopropoxy, butoxy, isobutoxy, t-butoxy, pentyloxy and hexyloxy groups, preferably about 1 to 6 carbon atoms, particularly carbon. A lower alkoxy group of about 1 to 4 is included.
[0014]
In the alkoxycarbonyl group, for example, the carbon number of the alkoxy moiety such as methoxycarbonyl, ethoxycarbonyl, propoxycarbonyl, isopropoxycarbonyl, butoxycarbonyl, isobutoxycarbonyl, t-butoxycarbonyl, pentyloxycarbonyl, hexyloxycarbonyl group and the like is 1 About 10 to 10 alkoxycarbonyl groups are included. Preferred alkoxycarbonyl groups include lower alkoxycarbonyl groups having about 1 to 6, particularly about 1 to 4 carbon atoms in the alkoxy moiety.
Examples of the acyl group include acyl groups having about 1 to 6 carbon atoms such as formyl, acetyl, propionyl, butyryl, isobutyryl, valeryl, isovaleryl, and pivaloyl groups.
[0015]
The substituent R1And R2May be the same or different. In the general formula (1), R1And R2May be bonded to each other to form a double bond or an aromatic or non-aromatic ring. A preferable aromatic or non-aromatic ring is a 5- to 12-membered ring, particularly a 6- to 10-membered ring, and may be a heterocyclic ring or a condensed heterocyclic ring, but is often a hydrocarbon ring. Such a ring includes, for example, a non-aromatic alicyclic ring (a cycloalkene ring which may have a substituent such as a cyclohexane ring and a cycloalkene ring which may have a substituent such as a cyclohexene ring). Ring), non-aromatic bridged ring (such as bridged hydrocarbon ring optionally having substituent such as 5-norbornene ring), benzene ring, naphthalene ring and the like Also good aromatic rings are included. The ring is often composed of an aromatic ring.
[0016]
Preferred imide compounds include compounds represented by the following formulas (1a) to (1f).
[0017]
[Chemical 9]
Figure 0003831012
[0018]
(Wherein RThree~ R6Are the same or different and each represents a hydrogen atom, an alkyl group, a hydroxyl group, an alkoxy group, a carboxyl group, an alkoxycarbonyl group, an acyl group, a nitro group, a cyano group, an amino group, or a halogen atom. R1, R2And n are the same as those in the general formula (1))
Substituent RThree~ R6The alkyl group includes the same alkyl group as the above exemplified alkyl group, particularly an alkyl group having about 1 to 6 carbon atoms, and the alkoxy group includes the same alkoxy group as described above, particularly 1 to 4 carbon atoms. The lower alkoxy group and alkoxycarbonyl group of the same level include the same alkoxycarbonyl group as described above, particularly a lower alkoxycarbonyl group having about 1 to 4 carbon atoms in the alkoxy moiety. Examples of the acyl group include the same acyl groups as described above, particularly those having about 1 to 6 carbon atoms, and examples of the halogen atom include fluorine, chlorine, and bromine atoms. Substituent RThree~ R6Is usually a hydrogen atom, a lower alkyl group having about 1 to 4 carbon atoms, a carboxyl group, a nitro group, or a halogen atom.
[0019]
In the general formula (1), X represents an oxygen atom or a hydroxyl group, and n is usually about 1 to 3, preferably 1 or 2. The compound represented by General formula (1) can be used 1 type, or 2 or more types in an oxidation reaction.
Examples of the acid anhydride corresponding to the imide compound represented by the general formula (1) include saturated or unsaturated aliphatic dicarboxylic anhydrides such as succinic anhydride and maleic anhydride, tetrahydrophthalic anhydride, and hexahydro anhydride. Saturated or unsaturated non-aromatic cyclic polyvalent carboxylic acid anhydrides such as phthalic acid (1,2-cyclohexanedicarboxylic acid anhydride) and 1,2,3,4-cyclohexanetetracarboxylic acid-1,2-anhydride (Alicyclic polyvalent carboxylic acid anhydride), crosslinked cyclic polyvalent carboxylic acid anhydride (alicyclic polyvalent carboxylic acid anhydride) such as het acid anhydride and hymic anhydride, phthalic anhydride, tetrabromophthalic anhydride Acid, tetrachlorophthalic anhydride, nitrophthalic anhydride, trimellitic anhydride, methylcyclohexeric carboxylic anhydride, pyromellitic anhydride, melittic anhydride 1,8; aromatic polycarboxylic anhydrides such as 4,5-naphthalene tetracarboxylic dianhydride are included.
[0020]
Preferred imide compounds include, for example, N-hydroxysuccinimide, N-hydroxymaleimide, N-hydroxyhexahydrophthalimide, N, N'-dihydroxycyclohexanetetracarboxylic imide, N-hydroxyphthalimide, N-hydroxytetrabromophthalimide, N-hydroxytetrachlorophthalimide, N-hydroxyhetamic imide, N-hydroxyhymic imide, N-hydroxytrimellitic imide, N, N'-dihydroxypyromellitic acid Examples thereof include imide and N, N′-dihydroxynaphthalenetetracarboxylic imide. Particularly preferred compounds include alicyclic polycarboxylic anhydrides, especially N-hydroxyimide compounds derived from aromatic polycarboxylic anhydrides, such as N-hydroxyphthalimide.
[0021]
The imide compound is prepared by a conventional imidization reaction such as a corresponding acid anhydride and hydroxylamine NH.2It can be adjusted by reacting with OH to open the acid anhydride group and then closing and imidizing.
Such an imide compound has a high oxidation activity and can promote the oxidation reaction of the conjugated compound catalytically even under mild conditions. Therefore, conjugated compounds can be oxidized efficiently and with high selectivity, and oxides of corresponding conjugated compounds (for example, alcohols, aldehydes and carboxylic acids), particularly diols or derivatives thereof (for example, alkene diols and acetals) Etc. can be generated. Furthermore, when the conjugated compound is oxidized in the coexistence of the imide compound represented by the general formula (1) and the cocatalyst, the conversion and / or selectivity can be further improved.
[0022]
[Cocatalyst]
The co-oxidant as a co-catalyst includes a metal compound, for example, a compound containing a group 13 element of the periodic table (boron B, aluminum Al, etc.) such as a transition metal compound or a boron compound. A co-oxidant can be used 1 type or in combination of 2 or more types.
Examples of the transition metal element include Group 3 elements in the periodic table (for example, scandium Sc and yttrium Y, lanthanoid elements such as lanthanum La, cerium Ce, and samarium Sm, and actinoid elements such as actinoid Ac), group 4 elements (Titanium Ti, Zirconium Zr, Hafnium Hf, etc.) Group 5 elements (Vanadium V, Niobium Nb, Tantalum Ta, etc.), Group 6 elements (Chromium Cr, Molybdenum Mo, Tungsten W, etc.), Group 7 elements (Manganese Mn, Technetium) Tc, rhenium Re, etc.), group 8 elements (iron Fe, ruthenium Ru, osmium Os, etc.), group 9 elements (cobalt Co, rhodium Rh, iridium Ir, etc.), group 10 elements (nickel Ni, palladium Pd, platinum Pt, etc.) ), Group 11 elements (copper Cu, silver Ag, gold Au, etc.) It is below.
[0023]
The elements constituting the preferred promoter include transition metal elements (for example, Group 3 elements of the periodic table such as lanthanoid elements and actinoid elements, Group 5 elements such as V and Nb, Group 6 elements such as Cr, Mo and W, Group 7 elements such as Mn, Tc and Re, Group 8 elements such as Fe and Ru, Group 9 elements such as Co and Rh, Group 10 elements such as Ni, Group 11 elements such as Cu), and Group 13 elements such as B Is included. In particular, when combined with the imide compound represented by the general formula (1), lanthanoid elements such as Ce, group 5 elements such as V, group 6 elements such as Mo and W, group 7 elements such as Mn, Fe A compound containing a Group 8 element such as Ru, a Group 9 element such as Co or Rh, a Group 10 element such as Ni, or a Group 11 element such as Cu exhibits high activity.
The co-catalyst is not particularly limited as long as it contains the element and has an oxidizing ability, and may be a simple metal, a hydroxide or the like, but usually a metal oxide, double oxide or oxygen acid containing the element It is often a salt, an organic acid salt, an inorganic acid salt, a halide, a coordination compound (complex) containing the metal element, a heteropolyacid or a salt thereof. Examples of the boron compound include boron hydroxide (for example, borane, diborane, tetraborane, pentaborane, decaborane), boric acid (for example, orthoboric acid, metaboric acid, tetraboric acid, etc.), borate (for example, Nickel borate, magnesium borate, manganese borate, etc.), B2OThreeBoron oxide such as bozarane, borazene, borazine, boron amide, boron imide, etc., BFThree, BClThree, Halides such as tetrafluoroborate, and borate esters (for example, methyl borate, phenyl borate, etc.). Preferred boron compounds include boric acid such as borohydride, orthoboric acid or salts thereof, in particular boric acid. These promoters can be used alone or in combination of two or more.
[0024]
Examples of hydroxides include Mn (OH)2, MnO (OH) and the like. Examples of the metal oxide include Sm.2OThreeTiO2, CrO, Cr2OThree, MoOThree, MnO, MnThreeOFour, Mn2OThree, MnO2, Mn2O7, FeO, Fe2OThree, RuO2, RuOFour, CoO, CoO2, Co2OThree, RhO2, Rh2OThree, Cu2OThreeAs the double oxide or oxyacid salt, for example, MnAl2OFour, MnTiOThreeLaMnOThree, K2Mn2OFive, CaO · xMnO2(X = 0.5, 1, 2, 3, 5), manganate [for example, NaThreeMnOFour, BaThree(MnOFour)2Manganese (V) acid salts such as K2MnOFour, Na2MnOFour, BaMnOFourManganese (VI) acid salts such as KMnOFourNaMnOFourLiMnOFour, NHFourMnOFour, CsMnOFour, AgMnOFour, Ca (MnOFour)2Zn (MnOFour)2, Ba (MnOFour)2Mg (MnOFour)2, Cd (MnOFour)2Permanganate] and the like.
[0025]
Examples of the organic acid salt include cobalt acetate, manganese acetate, cobalt propionate, manganese propionate, cobalt naphthenate, manganese naphthenate, cobalt stearate, manganese stearate, manganese thiocyanate and corresponding Ce salt, Cr salt, Fe salts, Ni salts, Pd salts, Cu salts, etc. are exemplified, and as inorganic acid salts, for example, nitrates such as cobalt nitrate, manganese nitrate, nickel nitrate, copper nitrate, and sulfates, phosphates corresponding to these, and the like Examples of the carbonate include cobalt sulfate, manganese sulfate, cobalt phosphate, manganese phosphate, and manganese carbonate. Examples of the halide include SmCl.Three, MnCl2, MnClThree, FeCl2, FeClThree, RuClThreeCoCl2, RhCl2, RhClThreeNiCl2, PdCl2, PtCl2, CuCl, CuCl2And their corresponding fluorides and bromides (for example, MnF2, MnBr2, MnFThreeHalide) such as M)1MnClThree, M1 2MnClFour, M1 2MnClFive, M1 2MnCl6(M1Represents a monovalent metal) and the like.
[0026]
As a ligand forming a complex, an alkoxy group such as OH (hydroxy), methoxy, ethoxy, propoxy, butoxy group, an acyl group such as acetyl, propionyl, an alkoxycarbonyl group such as methoxycarbonyl (acetato), ethoxycarbonyl, Halogen atoms such as acetylacetonato, cyclopentadienyl group, chlorine, bromine, CO, CN, oxygen atom, H2Phosphorus compounds such as O (aquo) and phosphine (for example, triarylphosphine such as triphenylphosphine), NHThree(Ammin), NO, NO2(Nitro), NOThreeAnd nitrogen-containing compounds such as (nitrato), ethylenediamine, diethylenetriamine, pyridine, and phenanthroline. In the complex or complex salt, the same or different ligands may be coordinated with one or more.
[0027]
Preferred complexes include transition metal elements (for example, lanthanoid elements such as Ce and periodic table group 3 elements to which actinoid elements belong, periodic table group 7 elements such as Mn, periodic table group 8 elements such as Fe and Ru, Co, Rh, etc. A periodic table group 9 element such as Ni, Pd, Pt and the like, and a periodic table group 11 element such as Cu. The ligand may be, for example, OH, alkoxy group, acyl group, alkoxycarbonyl group, acetylacetonato, halogen atom, CO, CN, H2Phosphorus compounds such as O (aquo) and triphenylphosphine, NHThree, NO2, NOThreeAre often nitrogen-containing compounds. The transition metal element and the ligand can be combined appropriately to form a complex, such as cerium acetylacetonate, manganese acetylacetonate, cobalt acetylacetonate, ruthenium acetylacetonate, copper acetylacetonate, etc. There may be.
[0028]
The polyacid forming the heteropolyacid is, for example, often a group 5 or 6 element of the periodic table, for example, at least one of V (vanadic acid), Mo (molybdic acid) and W (tungstic acid). Is not particularly limited, for example, Cu, Be, B, Al, Si, Ge, Sn, Ti, Th, N, P, As, Sb, V, Nb, Ta, Cr, Mo, W, S, Se, Te, Mn, I, Fe, Co, Ni, Rh, Os, Ir, Pt, Cu and the like may be used. Specific examples of the heteropoly acid include cobalt molybdate, cobalt tungstate, molybdenum tungstate, vanadium molybdate, vanadomolybdophosphate, and the like.
Examples of the cocatalyst include heteropoly acid salts containing at least one element of V, Mo, and W (for example, vanadium-molybdenum-based heteropoly acids or salts thereof), transition metal compounds (for example, lanthanoid elements, Mn, Ru, Co, and the like). And a transition metal compound containing at least one element of Cu).
[0029]
The catalyst system composed of the imide compound represented by the general formula (1) or the imide compound and the cocatalyst may be a homogeneous system or a heterogeneous system. The catalyst system may be a solid catalyst having a catalyst component supported on a carrier. As the carrier, porous carriers such as activated carbon, zeolite, silica, silica-alumina and bentonite are often used. The supported amount of the catalyst component in the solid catalyst is 0.1 to 50 parts by weight, preferably 0.5 to 30 parts by weight, more preferably 100 parts by weight of the imide compound represented by the general formula (1). About 1 to 20 parts by weight. The amount of the cocatalyst supported is 0.1 to 30 parts by weight, preferably 0.5 to 25 parts by weight, and more preferably about 1 to 20 parts by weight with respect to 100 parts by weight of the carrier.
The amount of the imide compound represented by the general formula (1) can be selected within a wide range. For example, 0.001 mol (0.1 mol%) to 1 mol (100 mol%) with respect to 1 mol of the conjugated compound. ), Preferably 0.001 mol (0.1 mol%) to 0.5 mol (50 mol%), more preferably about 0.01 to 0.30 mol, and about 0.01 to 0.25 mol In many cases.
[0030]
The amount of the cocatalyst (co-oxidant) used can be appropriately selected within a range that does not decrease the reactivity and selectivity. For example, 0.0001 mol (0.1 mol%) to 1 mol of the conjugated compound 0.7 mol (70 mol%), preferably 0.0001 to 0.5 mol, more preferably about 0.001 to 0.3 mol, and 0.0005 to 0.1 mol (for example, 0.005 It is often about 0.1 mol).
In addition, the ratio of the cocatalyst with respect to the imide compound represented by the general formula (1) can be selected within a range that does not impair the reaction rate and selectivity. Mol, preferably 0.005 to 5 mol, more preferably about 0.01 to 3 mol, and often about 0.01 to 5 mol.
When heteropoly acid or a salt thereof is used as a cocatalyst, it is 0.1 to 25 parts by weight, preferably 0.5 to 10 parts by weight, and more preferably about 1 to 5 parts by weight with respect to 100 parts by weight of the substrate.
[0031]
[Conjugated compound]
By using such an oxidation catalyst, the conjugated compound can be efficiently oxidized with oxygen, and oxides (alcohols, aldehydes, etc.) of the conjugated compound, particularly diols or derivatives thereof can be generated with high selectivity. Furthermore, when the oxidation reaction proceeds, a corresponding carboxylic acid may be generated. Therefore, in the method of the present invention, the conjugated compound and oxygen are brought into contact with each other and oxidized in the presence of the oxidation catalyst.
Conjugated compounds include conjugated dienes, α, β-unsaturated nitriles, α, β-unsaturated carboxylic acids or derivatives thereof.
Examples of the conjugated dienes include compounds having a conjugated double bond such as butadiene (1,3-butadiene) and isoprene (2-methyl-1,3-butadiene), and compounds having a double bond and a triple bond ( Vinyl acetylene, divinyl acetylene and the like) and derivatives thereof. The derivatives of conjugated dienes include, for example, compounds having halogen atoms (iodine, bromine, chlorine and fluorine atoms) such as 2-chlorobutadiene and 2,3-dichlorobutadiene, 2-ethylbutadiene, and 2,3-dimethylbutadiene. A compound having an alkyl group (for example, a lower alkyl group having about 1 to 4 carbon atoms such as methyl, ethyl, propyl, isopropyl, butyl, isobutyl, sec-butyl, t-butyl), butadiene-1-carboxylic acid, etc. A compound having a carboxyl group can be exemplified. Preferred conjugated dienes are butadiene and isoprene.
[0032]
Alkenediol is formed by oxygen oxidation of conjugated dienes. As long as the alkenediol produced is a diol corresponding to the conjugated diene, the substitution position of the hydroxyl group is not particularly limited. For example, butene diol produced by oxidation of butadiene may be 2-butene-1,4-diol, 1-butene-3,4-diol, etc., butene diol is either a cis isomer or a trans isomer. May be.
Examples of the α, β-unsaturated nitrile include (meth) acrylonitrile.
The conjugated compound represented by the general formula (2) corresponds to an α, β-unsaturated carboxylic acid or a derivative thereof.
[0033]
[Chemical Formula 10]
Figure 0003831012
[0034]
(Wherein R1Represents a hydrogen atom or a methyl group, and X represents —OR2(R2Represents a hydrogen atom, an alkyl group, an aryl group, a cycloalkyl group, a hydroxyalkyl group or a glycidyl group), -NRThreeRFour(RThreeAnd RFourAre the same or different and represent a hydrogen atom, an alkyl group, or a hydroxyalkyl group))
Substituent R in general formula (2)2Among them, the alkyl group includes methyl, ethyl, propyl, isopropyl, butyl, isobutyl, sec-butyl, t-butyl, pentyl, hexyl, heptyl, 2-ethylhexyl, octyl, decyl, tetradecyl groups and the like. About 20 linear or branched alkyl groups are included. The preferred alkyl group includes an alkyl group having about 1 to 15 carbon atoms, particularly an alkyl group having about 1 to 12 carbon atoms (for example, about 1 to 10). The aryl group includes a phenyl group, a naphthyl group, and the like. Cycloalkyl groups include 5- to 10-membered cycloalkyl groups such as cyclopentyl, cyclohexyl, and cyclooctyl groups.
[0035]
The hydroxyalkyl group includes a hydroxyalkyl group having about 2 to 10 carbon atoms such as 2-hydroxyethyl, 2-hydroxypropyl, 4-hydroxybutyl, and hydroxypentyl group. Preferred hydroxyalkyl groups include hydroxyalkyl groups having about 2 to 4 carbon atoms, especially hydroxyalkyl groups having about 2 or 3 carbon atoms.
Substituent R2Is usually a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, a hydroxyl alkyl group having 2 or 3 carbon atoms, or a glycidyl group.
Examples of the compound having such a substituent include (meth) acrylic acid; (meth) methyl acrylate, ethyl (meth) acrylate, isopropyl (meth) acrylate, n-butyl (meth) acrylate, (meth ) Isobutyl acrylate, (meth) acrylic acid hexyl, (meth) acrylic acid 2-ethylhexyl, (meth) acrylic acid alkyl esters such as lauryl acrylate; (meth) acrylic acid-2-hydroxyethyl, (meta ) Hydroxylalkyl (meth) acrylates such as 2-hydroxypropyl acrylate; glycidyl (meth) acrylate and the like.
[0036]
-NR represented by XThreeRFourA substituent RThreeAnd RFourAmong them, examples of the alkyl group include alkyl groups having about 1 to 10 carbon atoms such as methyl, ethyl, propyl, isopropyl, butyl, isobutyl, sec-butyl, t-butyl, and pentyl groups. Preferred alkyl groups include an alkyl group having about 1 to 6 carbon atoms, particularly an alkyl group having about 1 to 4 carbon atoms. Hydroxyalkyl groups include hydroxy-C1-10Alkyl, preferably hydroxymethyl, hydroxyethyl groups are included.
Substituent RThreeAnd RFourMay be the same or different and are usually a hydrogen atom, an alkyl group having about 1 to 4 carbon atoms, or a hydroxyalkyl group having 1 or 2 carbon atoms in many cases.
[0037]
Examples of the compound having such a substituent include (meth) acrylamide derivatives such as (meth) acrylamide, N-methyl (meth) acrylamide, and N-methylol (meth) acrylamide.
When these α, β-unsaturated nitriles, α, β-unsaturated carboxylic acids or derivatives thereof are oxidized by contact with oxygen, α, β-unsaturated bond sites are selectively oxidized, and a high conversion rate and General formula (3a) or (3b)
[0038]
Embedded image
Figure 0003831012
[0039]
Wherein Y is an oxygen atom or -OR5b(R5aAnd R5bAre the same or different and each represents a hydrogen atom, an alkyl group or an acyl group, and n represents 0 or 1. In the formula, “...” represents a single bond or a double bond. R1, X is the same as in general formula (2). However, when Y is an oxygen atom, n is 0, the “...” bond is a double bond, and Y is —OR5bWhere n is 1 and the "..." bond is a single bond)
Is produced.
In the compound represented by the general formula (3a) or (3b), the substituent R5aAnd R5bAmong them, the alkyl group includes, for example, C such as methyl, ethyl, propyl, isopropyl, butyl, isobutyl, sec-butyl, t-butyl group and the like.1-6Alkyl and acyl groups include C and C such as acetyl and propionyl groups.2-6Acyl groups are included. These alkyl groups and acyl groups may be generated by reaction with a solvent.
[0040]
In this oxidation reaction, diols (Y is —OR5bAnd R5aAnd R5bIs a hydrogen atom), and an aldehyde or a derivative thereof (a compound in which Y is an oxygen atom) may be generated by a dehydration reaction. Further, when a protic solvent (an organic acid such as acetic acid or propionic acid, an alcohol such as methanol, ethanol, n-propanol, isopropanol, n-butanol, or t-butanol) is used as a reaction solvent, an acetal or an acyloxy compound Diol derivatives (Y is -OR5bAnd R5aAnd R5bA compound in which at least one of them is an alkyl group or an acyl group) may be produced. These aldehydes or derivatives thereof, or diol derivatives such as acetal are compounds equivalent to diols.
[0041]
For example, when methanol is used as a reaction solvent and acrylonitrile is oxidized, 1,1-dimethoxypropionitrile may be generated. Further, when methyl acrylate is oxidized in a methanol solvent, methyl 1,1-dimethoxypropionate may be generated.
The oxygen used for the oxidation of the conjugated compound may be active oxygen, but it is economically advantageous to use molecular oxygen. The molecular oxygen is not particularly limited, and pure oxygen may be used, or oxygen diluted with an inert gas such as nitrogen, helium, argon, or carbon dioxide may be used. From the viewpoint of not only operability and safety but also economy, it is preferable to use air.
The amount of oxygen used can be selected according to the type of the substrate, and is usually 0.5 mol or more (for example, 1 mol or more), preferably 1 to 100 mol, more preferably 2 to 50, relative to 1 mol of the substrate. It is about a mole. In many cases, an excess molar amount of oxygen relative to the substrate is used, and it is particularly advantageous to carry out the reaction in an atmosphere containing molecular oxygen such as air or oxygen.
The oxidation method of the present invention can be carried out in an organic solvent inert to the reaction. Examples of the organic solvent inert to the reaction include protic solvents (for example, organic acids such as acetic acid and propionic acid; alcohols such as methanol, ethanol, n-propanol, isopropanol, n-butanol, and t-butanol). Nitriles (eg acetonitrile, propionitrile, benzonitrile, etc.), amides (eg formamide, acetamide, dimethylformamide (DMF) etc.), aliphatic hydrocarbons (eg hexane, octane etc.), aromatic carbonization Hydrogen (eg, benzene, toluene, etc.), halogenated hydrocarbons (eg, chloroform, dichloromethane, dichloroethane, carbon tetrachloride, chlorobenzene, etc.), nitro compounds (eg, nitrobenzene, nitromethane, nitroethane, etc.), esters (eg, Ethyl acetate, butyl acetate, ethyl propionate, butyl propionate, methyl benzoate, ethyl benzoate, etc.), ethers (eg, dimethyl ether, diethyl ether, diisopropyl ether, dioxane, tetrahydrofuran, etc.), mixed solvents thereof, etc. Is mentioned. In addition, you may utilize a substrate as a reaction solvent by using an excess substrate.
[0042]
The method of the present invention is characterized in that the oxidation reaction proceeds smoothly even under relatively mild conditions. The reaction temperature can be appropriately selected depending on the type of the substrate, and is, for example, 0 to 300 ° C., preferably 30 to 250 ° C., more preferably about 40 to 200 ° C., and the reaction is usually performed at about 40 to 150 ° C. There are many cases to do. The reaction can be carried out under normal pressure or under pressure. When the reaction is carried out under pressure, it is usually 1 to 100 atm (for example, 1.5 to 80 atm), preferably 2 to 70 atm, and more preferably 5 It is often about 50 atm. The reaction time can be appropriately selected from the range of, for example, 30 minutes to 48 hours, preferably 1 to 36 hours, more preferably 2 to 24 hours, depending on the reaction temperature and pressure.
The reaction can be performed by a conventional method such as batch, semi-batch, or continuous in the presence of molecular oxygen or in the flow of molecular oxygen. After completion of the reaction, the reaction product can be easily separated by a conventional method, for example, separation means such as filtration, concentration, distillation, extraction, crystallization, recrystallization, column chromatography, or a combination of these. Separation and purification are possible.
[0043]
The present invention relates to the synthesis of alkenediol (eg, butadiene, synthetic resin such as polyamide, maleic anhydride, plasticizer, butanediol, etc., which is a corresponding oxide from a conjugated compound, for example, a corresponding oxide from conjugated dienes. This is useful in producing butenediol used as a raw material.
[0044]
【The invention's effect】
In the oxidation method of the present invention, (1) the imide compound or (2) an oxidation catalyst composed of the imide compound and a cocatalyst is used, so that exhaust gas treatment is not particularly required, and the conjugated compound is efficiently formed by oxygen oxidation. It can be oxidized and is advantageous in terms of economy and safety. In addition, molecular oxygen can produce the corresponding oxide from the conjugated compound with high reaction conversion and selectivity. Furthermore, even under mild conditions, the conjugated compound can be efficiently oxidized with oxygen. Therefore, it is useful for producing a corresponding oxide from a conjugated compound, in particular, a diol or a derivative thereof with high conversion and selectivity.
[0045]
【Example】
EXAMPLES The present invention will be described in detail below based on examples, but the present invention is not limited to these examples.
Example 1
Butadiene 1.08 g (20 mmol), N-hydroxyphthalimide 0.26 g (1.6 mmol), cobalt acetylacetonate Co (AA)2 A mixture of 0.03 g (0.12 mmol) and 25 ml of acetonitrile was stirred at 60 ° C. for 6 hours under an oxygen atmosphere. When the product in the reaction solution was examined by gas chromatography analysis, the conversion of butadiene was 35%, 2-butene-1,4-diol (63% selectivity based on butadiene, yield 22%), 1 -Butene-3,4-diol (23% selectivity based on butadiene, 8% yield). The selectivity for the alcohol is 86%.
[0046]
Example 2
Acrylonitrile 1.06 g (20 mmol), N-hydroxyphthalimide 0.26 g (1.6 mmol), cobalt acetylacetonate Co (AA)2A mixture of 0.03 g (0.12 mmol) and 25 ml of methanol was stirred at 50 ° C. for 3 hours under an oxygen atmosphere. When the product in the reaction solution was examined by gas chromatography analysis, the conversion of acrylonitrile was 99% and 1,1-dimethoxypropionitrile was obtained in a yield of 99%.
Example 3
1.72 g (20 mmol) of methyl acrylate, 0.26 g (1.6 mmol) of N-hydroxyphthalimide, cobalt acetylacetonate Co (AA)2A mixture of 0.03 g (0.12 mmol) and 25 ml of methanol was stirred at 50 ° C. for 3 hours under an oxygen atmosphere. When the product in the reaction solution was examined by gas chromatography analysis, methyl acrylate conversion was 99%, and methyl 1,1-dimethylpropionate was obtained in 99% yield.

Claims (10)

一般式(1)
Figure 0003831012
(式中、R及びRは、同一又は異なって、水素原子、ハロゲン原子、アルキル基、アリール基、シクロアルキル基、ヒドロキシル基、アルコキシ基、カルボキシル基、アルコキシカルボニル基、アシル基を示し、R及びRは互いに結合して二重結合、または芳香族性又は非芳香族性の環を形成してもよい。Xは酸素原子又はヒドロキシル基を示し、nは1〜3の整数を示す)
で表されるイミド化合物で構成された酸化触媒の存在下、共役化合物と酸素とを接触させる共役化合物の酸化方法であって、
i )前記一般式(1)で表されるイミド化合物が、下記式(1a)〜(1f)で表される化合物であり、
Figure 0003831012
(式中、R 〜R は、同一又は異なって、水素原子、アルキル基、ヒドロキシル基、アルコキシ基、カルボキシル基、アルコキシカルボニル基、アシル基、ニトロ基、シアノ基、アミノ基、ハロゲン原子を示す。X、R 、R およびnは前記一般式(1)に同じ)
ii )前記共役化合物が、共役ジエン類、α,β−不飽和ニトリル又は一般式(2)
Figure 0003831012
(式中、R は、水素原子又はメチル基を示し、Xは、−OR (R は、水素原子、アルキル基、アリール基、シクロアルキル基、ヒドロキシアルキル基、グリシジル基を示す),−NR (R およびR は、同一又は異なって、水素原子、アルキル基、ヒドロキシアルキル基を示す)を示す)
で表される化合物である酸化方法。
General formula (1)
Figure 0003831012
(Wherein R 1 and R 2 are the same or different and each represents a hydrogen atom, a halogen atom, an alkyl group, an aryl group, a cycloalkyl group, a hydroxyl group, an alkoxy group, a carboxyl group, an alkoxycarbonyl group, or an acyl group; R 1 and R 2 may combine with each other to form a double bond or an aromatic or non-aromatic ring, X represents an oxygen atom or a hydroxyl group, and n represents an integer of 1 to 3. Show)
A method for oxidizing a conjugated compound in which a conjugated compound and oxygen are brought into contact with each other in the presence of an oxidation catalyst composed of an imide compound represented by :
( I ) The imide compound represented by the general formula (1) is a compound represented by the following formulas (1a) to (1f),
Figure 0003831012
(Wherein R 3 to R 6 are the same or different and each represents a hydrogen atom, an alkyl group, a hydroxyl group, an alkoxy group, a carboxyl group, an alkoxycarbonyl group, an acyl group, a nitro group, a cyano group, an amino group, or a halogen atom. X, R 1 , R 2 and n are the same as in the general formula (1))
( Ii ) The conjugated compound is a conjugated diene, an α, β-unsaturated nitrile or the general formula (2)
Figure 0003831012
(Wherein R 1 represents a hydrogen atom or a methyl group, X represents —OR 2 (R 2 represents a hydrogen atom, an alkyl group, an aryl group, a cycloalkyl group, a hydroxyalkyl group, or a glycidyl group), —NR 3 R 4 (R 3 and R 4 are the same or different and represent a hydrogen atom, an alkyl group, or a hydroxyalkyl group)
The oxidation method which is a compound represented by these.
一般式(1)で表されるイミド化合物が、脂肪族多価カルボン酸無水物、脂環族多価カルボン酸無水物又は芳香族多価カルボン酸無水物から誘導されるイミド化合物から選択された少なくとも一種の化合物である請求項1記載の酸化方法。  The imide compound represented by the general formula (1) was selected from an imide compound derived from an aliphatic polycarboxylic acid anhydride, an alicyclic polycarboxylic acid anhydride, or an aromatic polycarboxylic acid anhydride. The oxidation method according to claim 1, which is at least one compound. 一般式(1)で表されるイミド化合物がN−ヒドロキシフタルイミドである請求項1記載の酸化方法。  The oxidation method according to claim 1, wherein the imide compound represented by the general formula (1) is N-hydroxyphthalimide. 触媒が一般式(1)で表されるイミド化合物と助触媒とで構成される請求項1記載の酸化方法。  The oxidation method according to claim 1, wherein the catalyst comprises an imide compound represented by the general formula (1) and a cocatalyst. 助触媒が遷移金属化合物又はホウ素化合物である請求項記載の酸化方法。The oxidation method according to claim 4 , wherein the promoter is a transition metal compound or a boron compound. 助触媒が、ホウ酸、ホウ酸塩、周期表3族元素(ランタノイド元素、アクチノイド元素を含む)、5族元素、6族元素、7族元素、8族元素、9族元素、10族元素,11族元素を含む酸化物、有機酸塩、無機酸塩、ハロゲン化物、錯体、およびヘテロポリ酸又はその塩から選ばれた少なくとも一種である請求項記載の酸化方法。Cocatalyst is boric acid, borate, periodic table group 3 elements (including lanthanoid elements, actinoid elements), group 5 elements, group 6 elements, group 7 elements, group 8 elements, group 9 elements, group 10 elements, 5. The oxidation method according to claim 4 , wherein the oxidation method is at least one selected from oxides, organic acid salts, inorganic acid salts, halides, complexes, and heteropolyacids or salts thereof containing Group 11 elements. 共役化合物が、ブタジエン、イソプレン、(メタ)アクリロニトリル、(メタ)アクリル酸、(メタ)アクリル酸エステル、(メタ)アクリルアミドである請求項記載の酸化方法。The oxidation method according to claim 1 , wherein the conjugated compound is butadiene, isoprene, (meth) acrylonitrile, (meth) acrylic acid, (meth) acrylic acid ester, or (meth) acrylamide. 一般式(1)において、RおよびRが互いに結合して、置換基を有していてもよいシクロヘキサン環、置換基を有していてもよいシクロヘキセン環、置換基を有していてもよい5−ノルボルネン環、または置換基を有していてもよいベンゼン環を形成するイミド化合物の存在下、ブタジエン、イソプレン、(メタ)アクリロニトリル、(メタ)アクリル酸、(メタ)アクリル酸エステル、(メタ)アクリルアミドから選ばれた少なくとも一種の化合物を分子状酸素により酸化する請求項1記載の酸化方法。In General Formula (1), R 1 and R 2 may be bonded to each other to form a cyclohexane ring that may have a substituent, a cyclohexene ring that may have a substituent, or a substituent. In the presence of a good 5-norbornene ring or an imide compound that forms an optionally substituted benzene ring, butadiene, isoprene, (meth) acrylonitrile, (meth) acrylic acid, (meth) acrylic acid ester, ( The oxidation method according to claim 1, wherein at least one compound selected from (meth) acrylamide is oxidized with molecular oxygen. 温度0〜300℃、常圧または加圧下で反応させる請求項1記載の酸化方法。  The oxidation method according to claim 1, wherein the reaction is carried out at a temperature of 0 to 300 ° C under normal pressure or pressure. 一般式(1)で表されるイミド化合物で構成された触媒、又は一般式(1)で表されるイミド化合物と助触媒とで構成された触媒系の存在下、共役ジエン類、α,β−不飽和ニトリル又は一般式(2)
Figure 0003831012
(式中、Rは、水素原子又はメチル基を示し、Xは、−OR(Rは、水素原子、アルキル基、アリール基、シクロアルキル基、ヒドロキシアルキル基、グリシジル基を示す),−NR(RおよびRは、同一又は異なって、水素原子、アルキル基、ヒドロキシアルキル基を示す)を示す)
で表される共役化合物と酸素とを接触させ、アルケンジオール、一般式(3a)又は(3b)
Figure 0003831012
(式中、Yは、酸素原子又は−OR5b(R5aおよびR5bは、同一又は異なって、水素原子、アルキル基、アシル基を示す)を示し、nは0又は1を示す。式中「…」は、単結合又は二重結合を示す。R、Xは前記に同じ。但し、Yが酸素原子であるとき、nは0、「…」は二重結合であり、Yが−OR5bであるとき、nは1、「…」は単結合である)
で表される化合物を製造する方法であって、
前記一般式(1)で表されるイミド化合物が、前記式(1a)〜(1f)で表される化合物である製造方法。
In the presence of a catalyst composed of an imide compound represented by the general formula (1) or a catalyst system composed of an imide compound represented by the general formula (1) and a promoter, conjugated dienes, α, β -Unsaturated nitrile or general formula (2)
Figure 0003831012
(Wherein R 1 represents a hydrogen atom or a methyl group, X represents —OR 2 (R 2 represents a hydrogen atom, an alkyl group, an aryl group, a cycloalkyl group, a hydroxyalkyl group, or a glycidyl group), —NR 3 R 4 (R 3 and R 4 are the same or different and represent a hydrogen atom, an alkyl group, or a hydroxyalkyl group)
And a conjugated compound represented by the formula (3a) or (3b):
Figure 0003831012
(In the formula, Y represents an oxygen atom or —OR 5b (R 5a and R 5b are the same or different and each represents a hydrogen atom, an alkyl group, or an acyl group), and n represents 0 or 1. "..." represents a single bond or a double bond, R 1 and X are the same as above, provided that when Y is an oxygen atom, n is 0, "..." is a double bond, and Y is- When OR 5b , n is 1 and "..." is a single bond)
A method of manufacturing a compound represented by,
The manufacturing method whose imide compound represented by the said General formula (1) is a compound represented by the said Formula (1a)-(1f).
JP18486696A 1996-02-07 1996-07-15 Method for oxidizing conjugated compounds Expired - Fee Related JP3831012B2 (en)

Priority Applications (10)

Application Number Priority Date Filing Date Title
JP18486696A JP3831012B2 (en) 1996-02-09 1996-07-15 Method for oxidizing conjugated compounds
DE69721662T DE69721662T2 (en) 1996-02-07 1997-02-06 USE OF AN OXIDATION CATALYST SYSTEM AND OXIDATION METHOD IN WHICH THE SYSTEM IS USED
EP02009780A EP1258292B1 (en) 1996-02-07 1997-02-06 Oxidation catalytic system and oxidation process using same
CN97190284A CN1098124C (en) 1996-02-07 1997-02-06 Oxidation catalyst system and process for oxidation with the same
ES97902584T ES2199340T3 (en) 1996-02-07 1997-02-06 USE OF AN OXIDATION CATALYSTING SYSTEM AND OXIDATION PROCESS THAT RECURNS THIS SYSTEM.
PCT/JP1997/000279 WO1997028897A1 (en) 1996-02-07 1997-02-06 Oxidation catalyst system and process for oxidation with the same
US08/913,881 US5958821A (en) 1996-02-07 1997-02-06 Oxidation catalytic system and oxidation process using the same
KR1019970707044A KR100472895B1 (en) 1996-02-07 1997-02-06 Oxidation Catalytic System and Oxidation Process Using the Same
EP97902584A EP0824962B1 (en) 1996-02-07 1997-02-06 Use of an oxidation catalyst system and process for oxidation with the same
DE69729229T DE69729229T2 (en) 1996-02-07 1997-02-06 Oxidation catalyst system and its use in an oxidation process

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP8-47920 1996-02-09
JP4792096 1996-02-09
JP18486696A JP3831012B2 (en) 1996-02-09 1996-07-15 Method for oxidizing conjugated compounds

Publications (2)

Publication Number Publication Date
JPH09278675A JPH09278675A (en) 1997-10-28
JP3831012B2 true JP3831012B2 (en) 2006-10-11

Family

ID=26388128

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18486696A Expired - Fee Related JP3831012B2 (en) 1996-02-07 1996-07-15 Method for oxidizing conjugated compounds

Country Status (1)

Country Link
JP (1) JP3831012B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69834077T2 (en) * 1997-01-14 2006-08-24 Daicel Chemical Industries, Ltd., Sakai NITRATION OR CARBOXYLATION CATALYSTS
JP4464476B2 (en) 1999-02-19 2010-05-19 ダイセル化学工業株式会社 Oxidation method
JP4197207B2 (en) * 1999-03-09 2008-12-17 ダイセル化学工業株式会社 Method for producing organic sulfur acid or salt thereof
US6548713B2 (en) * 2000-03-10 2003-04-15 Daicel Chemical Industries, Ltd. Process for the preparation of organic compounds with manganese catalysts or the like
KR100817338B1 (en) 2000-04-04 2008-03-26 다이셀 가가꾸 고교 가부시끼가이샤 Separation Method of Imide Compound
JP4640877B2 (en) * 2000-06-14 2011-03-02 ダイセル化学工業株式会社 Method for producing organic compound using imide compound as catalyst
JP4651181B2 (en) 2000-11-01 2011-03-16 ダイセル化学工業株式会社 Separation method of reaction product and catalyst

Also Published As

Publication number Publication date
JPH09278675A (en) 1997-10-28

Similar Documents

Publication Publication Date Title
JP3911060B2 (en) Oxidation catalyst system and oxidation method using the same
JP4756719B2 (en) Oxidation catalyst system, oxidation method and oxide production method
KR100472895B1 (en) Oxidation Catalytic System and Oxidation Process Using the Same
JP3434034B2 (en) Oxidation catalyst and oxidation method using the same
EP1074536B1 (en) Oxidation method
JP4080026B2 (en) Oxidation method of ethers
JP4451939B2 (en) Method for producing cycloalkanone
KR100507258B1 (en) Oxidation Process of Branched Aliphatic Hydrocarbons and Process for Producing the Oxide
JP3831012B2 (en) Method for oxidizing conjugated compounds
JP3892938B2 (en) Oxidation catalyst and method for producing ketones using the same
JP4046395B2 (en) Method for oxidizing aromatic compounds having methyl or methylene groups
JP4107696B2 (en) Method for producing epoxy compound
US6548713B2 (en) Process for the preparation of organic compounds with manganese catalysts or the like
JP4865742B2 (en) Method for producing epoxy compound
JP3854344B2 (en) Oxidation catalyst and oxidation method using the same
JP3818829B2 (en) Oxidation catalyst and oxidation method using the same
JP4216941B2 (en) Method for producing cycloalkanone
JP4046402B2 (en) Oxidation catalyst system and oxidation method using the same
JP2000212116A (en) Method for producing hydroxyketone
JP2002320861A (en) Metal catalyst separation method
JPH11302211A (en) Adamantanol derivative and its production
JP2001253847A (en) Method for producing (hydroxyalkyl)cycloaliphatic carboxylic acids
JPH10316601A (en) Oxidation of polycyclic hydrocarbon

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060306

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060704

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060713

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090721

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090721

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100721

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110721

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110721

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120721

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120721

Year of fee payment: 6

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120721

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120721

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130721

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees