[go: up one dir, main page]

JP3827877B2 - Optical fiber preform manufacturing method - Google Patents

Optical fiber preform manufacturing method Download PDF

Info

Publication number
JP3827877B2
JP3827877B2 JP2325799A JP2325799A JP3827877B2 JP 3827877 B2 JP3827877 B2 JP 3827877B2 JP 2325799 A JP2325799 A JP 2325799A JP 2325799 A JP2325799 A JP 2325799A JP 3827877 B2 JP3827877 B2 JP 3827877B2
Authority
JP
Japan
Prior art keywords
base material
optical fiber
fiber preform
preheated
chuck
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2325799A
Other languages
Japanese (ja)
Other versions
JP2000219530A (en
Inventor
俊一郎 平船
光一 原田
浩一 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP2325799A priority Critical patent/JP3827877B2/en
Publication of JP2000219530A publication Critical patent/JP2000219530A/en
Application granted granted Critical
Publication of JP3827877B2 publication Critical patent/JP3827877B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/01205Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments
    • C03B37/01225Means for changing or stabilising the shape, e.g. diameter, of tubes or rods in general, e.g. collapsing
    • C03B37/0124Means for reducing the diameter of rods or tubes by drawing, e.g. for preform draw-down

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、光ファイバを製造するために用いられる光ファイバ母材を製造する方法に関する。
【0002】
【従来の技術】
光ファイバ母材は、線引されて光ファイバとされる。この光ファイバ母材は、溶融線引きするに先立って、所定の直径とする必要があり、このためにVAD法等で得られた光ファイバ製造用の母材を延伸することがある。
【0003】
【発明が解決しようとする課題】
この延伸に用いられる延伸装置の例を第5図に示す。該延伸装置は、加熱炉11の内部にヒーター13を備え、加熱炉11の上方と、加熱炉11の下方に母材1を把持するためのチャック15、17を備えている。
母材1を延伸するには、まず、母材1を加熱炉11内に挿通し、軟化点以上に母材1を加熱炉11内で加熱(予熱)した後、チャック15、17を下降させることで母材1を所定直径にまで延伸する。母材1を延伸する際に、送側チャック15の下降速度よりも早い速度で引側チャック17を下降させる。
【0004】
ところで、延伸を始める前の予熱時に、母材1は熱膨脹して伸びる。従来の方法では、送側チャック15と引側チャック17とは移動しないように支持固定されているので、母材1の加熱による伸び分の逃げがない。このため、図6、7に示すように予熱された母材1は曲がって、その断面形状は円形とならない。このため母材1の熱軟化した部分に偏りが生じやすい。この状態で、チャック15、17を下降させて延伸を始めると、引側の中心がずれているので、図8に示すように、延伸により得られた光ファイバ母材3に曲がりが生じる。つまり、引側と送側で芯ずれした状態で母材1を延伸しているからである。
延伸時の送側と引側の速度差が小さい場合には、光ファイバ母材3の曲がりが大きくなる。その理由は、柔らかい部分はあまり伸ばされないために、偏った柔らかい部分が矯正されないため、即ち、偏ったまま固まってしまうためである。
延伸時の送側と引側の速度差が大きい場合には、偏った部分が柔らかいうちに伸ばされるために、曲がりが矯正されるが、光ファイバ母材3が所定直径になり難いという問題があった。
【0005】
本発明は、曲がりが少なく、しかも所定直径を有する光ファイバ母材を容易に製造できる方法を提供することを目的とする。
【0006】
【課題を解決するための手段】
上記課題を解決するため、
請求項1に係る発明は、母材の長手方向に、1〜10kg/cm の大きさの張力をかけ続けた状態で該母材を予熱した後、この予熱された母材を長手方向に延伸することを特徴とする光ファイバ母材の製造方法である。
請求項2に係る発明は、母材を把持するチャックとチャックとの間に、この母材を予熱する加熱炉を配置し、該加熱炉に母材を挿通した状態で母材を予熱することを特徴とする請求項1記載の光ファイバ母材の製造方法である。
【0007】
【発明の実施の形態】
図1は、本発明の光ファイバ母材の製造方法の例を説明する図である。本発明の光ファイバ母材の製造方法の例は、図1に示すように、予熱されている母材1の長手方向に張力をかけ続けて母材1の下端を降下させながら母材1を予熱した後、この予熱された母材1をその長手方向に延伸する製造方法であって、母材1を把持する送側チャック15と母材1を把持する引側チャック17との間に、母材1を予熱する加熱炉11を配置し、該加熱炉11に母材1を挿通した状態で母材1を予熱する製造方法である。
図1に示す加熱炉11は、母材1が挿通される孔12が形成された箱状のカバーの内部に、母材1を加熱するためのヒーター13を備えている。母材1とは、石英系ガラス等の棒状物である。本発明によれば、予熱された母材1を延伸により引き伸ばして、母材1の直径を約10〜90%減じて、直径約10〜150mmの光ファイバ母材を容易に製造できる。
【0008】
母材1の予熱時に母材1に張力をかけ続け、母材1の一端(下端)を予熱中に降下させると、母材1の熱膨脹による伸びは母材1の伸び変形によって吸収される。このため、予熱された母材1の断面形状は円状を保つことができ、図2に示すように、母材1に芯ずれが生じない。従って、図3に示すように、曲がりの少ない光ファイバ母材3が得られる。
例えば、引側チャック17にて母材1に張力を掛ける場合には、送側チャック15をチャック挟持具18にて支持固定し、引側チャック17にて張力を掛け、母材1の予熱を開始する。母材1が加熱により温度上昇し、母材1が熱膨脹により伸び始めると引側チャック17は支持固定されていないので、その分降下する。これにより、溶融した母材部分に偏りが生じ難い。
【0009】
予熱時に母材1に張力を作用させる方法として、図1に示すように引側チャック17に所定重さの錘19を吊るして荷重をかける方法、或いは、引側チャック17の駆動用モーターにより張力をかける方法、送側チャック15の駆動用モーターにより張力をかける方法、引側チャック17にて母材1を把持しないで母材1の自重により張力をかける方法、が挙げられる。
【0010】
母材1が十分に溶融する温度まで予熱された後張力を掛け続けると、溶融している母材部分が引き延ばされて細くなり目標直径以下となってしまう。これを防ぐ方法として、例えば、予め試験を行い、加熱による母材1の伸びと目標の延伸径になるまでの、引側チャック17の下降距離を調べておき、該距離だけ引側が下降した時点で、母材1の延伸を開始する等の方法が挙げられる。
【0011】
母材1が石英系ガラスの場合、母材1に作用させる張力(W/S)の大きさが約1〜10kg/cm2であれば、曲がりが少ない光ファイバ母材3が得られ易い。ここで、Wは母材1にかかる荷重で、Sは20℃における延伸される前の母材1の断面積である。母材1が石英系ガラスの場合、約1800〜2200℃まで予熱され、予熱された母材1は所定直径まで延伸により引き延ばされる。
【0012】
本発明の方法により、曲がりが少ない光ファイバ母材が得られる。しかも、加熱炉11の孔12に母材を挿通した状態で母材1を予熱し延伸するので、母材1の延伸が容易であると共に、光ファイバ母材に直径のバラツキが生じ難い。
【0013】
【実施例】
実施例1
図1に示す装置を用いて、直径100mmの母材1から、直径80mmの光ファイバ母材3を以下のようにして製造した。
母材1として、石英系ガラス丸棒(直径は100mm)を準備した。
チャック挟持具18により支持固定された送側チャック15に、母材1の上端部を、加熱炉11の上方で把持して吊り下げた。この吊り下げられた母材1を孔12に挿通し、母材1の下端部を加熱炉11の下方に突出させ、母材1の下端部に引側チャック17を取り付けた。そして、引側チャック17に錘19を吊り下げた。引側チャック17と錘19との荷重によって、母材1に約2kg/cm2の張力を作用させた。そして、図1に示すように、引側チャック17と錘19とを母材1に吊り下げた状態で、母材1の一部をヒーター13にて、約1800℃〜約2200℃に予熱した。この予熱によって母材1は熱軟化し、引側チャック17は降下した。引側チャック17が所定距離降下したとき、引側チャック17をチャック挟持具18にてクランプした。そして、送側チャック15と引側チャック17との部分を下降させて、母材1を下方に漸次移動させながら加熱炉11の内部で母材1を加熱し、延伸した。その結果、直径80mm、長さ1000mmの丸棒として光ファイバ母材3が得られた。
得られた光ファイバ母材3の曲がり量の測定結果を表1に示す。
尚、表1に示す曲がり量とは、図4に示すように、旋盤のチャック21に光ファイバ母材1の一端を把持して光ファイバ母材3を回転させ、他端が振れたときの最上点と、最下点との間の距離である。
【0014】
比較例1
図5に示す装置を用いて、実施例1と同じ母材1から直径80mmの光ファイバ母材を作製した。尚、実施例1と異なり、チャック挟持具18により送側チャック15と引側チャック17とを支持固定した。そして、この支持固定された送側チャック15と引側チャック17に、母材1の上端と下端とを把持し、母材1をヒーター13により予熱した。母材1の予熱後、実施例1と同様に延伸して光ファイバ母材3を得た。光ファイバ母材3の曲がり量を実施例1と同様に測定し、その測定結果を表1に示す。
【0015】
【表1】

Figure 0003827877
【0016】
表1から、実施例1の光ファイバ母材は曲がり量が小さいことが判る。これに対して比較例1の光ファイバ母材は曲がりが大きく、光ファイバを線引するための光ファイバ母材として用いるには、その上部をつかむと線引炉に接触してしまうという不都合、曲がりにより、線引炉の中心に光ファイバ母材が位置しなくなり光ファイバの非円の原因となるという不都合があった。
【0017】
【発明の効果】
以上説明したように、本発明の製造方法によれば、曲がりが少なく、しかも所定直径を有する光ファイバ母材を容易に製造できる。本発明の製造方法による光ファイバ母材は光ファイバを線引きするために好適に用いることができる。
【図面の簡単な説明】
【図1】 本発明の光ファイバ母材の製造方法に用いる延伸装置の例を示す部分断面図であって、母材を予熱している状態を示す図である。
【図2】 本発明の製造方法によって予熱された母材の下部形状を示す図である。
【図3】 本発明の製造方法によって製造された光ファイバ母材を示す正面図である。
【図4】 光ファイバ母材の曲がり量の測定法を示す側面図である。
【図5】 従来例の光ファイバ母材の製造方法に用いる延伸装置の例を示す部分断面図であって、母材を予熱している状態を示す図である。
【図6】 従来例によって予熱された母材の下部形状を示す正面図である。
【図7】 従来例によって予熱された母材の下部形状を示す側面図である。
【図8】 従来例によって製造された光ファイバ母材を示す正面図である。
【符号の説明】
1・・母材、3・・光ファイバ母材、11・・加熱炉、12・・孔、13・・ヒータ、15・・送側チャック、17・・引側チャック、18・・チャック挟持具、19・・錘、21・・旋盤のチャック[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method of manufacturing an optical fiber preform used for manufacturing an optical fiber.
[0002]
[Prior art]
The optical fiber preform is drawn into an optical fiber. This optical fiber preform needs to have a predetermined diameter prior to the drawing of the melt. For this reason, the preform for optical fiber production obtained by the VAD method or the like may be stretched.
[0003]
[Problems to be solved by the invention]
An example of a stretching apparatus used for this stretching is shown in FIG. The stretching apparatus includes a heater 13 inside the heating furnace 11, and includes chucks 15 and 17 for holding the base material 1 above the heating furnace 11 and below the heating furnace 11.
In order to extend the base material 1, first, the base material 1 is inserted into the heating furnace 11, the base material 1 is heated (preheated) in the heating furnace 11 to be higher than the softening point, and then the chucks 15 and 17 are lowered. Thus, the base material 1 is stretched to a predetermined diameter. When the base material 1 is stretched, the pulling side chuck 17 is lowered at a speed higher than the lowering speed of the feeding side chuck 15.
[0004]
By the way, at the time of preheating before starting stretching, the base material 1 expands by thermal expansion. In the conventional method, the feeding side chuck 15 and the pulling side chuck 17 are supported and fixed so as not to move, so there is no escape due to the heating of the base material 1. For this reason, as shown in FIGS. 6 and 7, the preheated base material 1 is bent and its cross-sectional shape is not circular. For this reason, a bias tends to occur in the heat-softened portion of the base material 1. In this state, when the chucks 15 and 17 are lowered and stretching is started, the center of the pulling side is shifted, so that the optical fiber preform 3 obtained by stretching is bent as shown in FIG. That is, it is because the base material 1 is stretched in a state where the center is shifted between the drawing side and the feeding side.
When the speed difference between the sending side and the drawing side during drawing is small, the bending of the optical fiber preform 3 becomes large. The reason is that the soft part is not stretched so much, and the biased soft part is not corrected, that is, it is hardened while being biased.
When the speed difference between the feeding side and the pulling side during stretching is large, the biased portion is stretched while it is soft, so that the bending is corrected, but there is a problem that the optical fiber preform 3 is difficult to have a predetermined diameter. there were.
[0005]
An object of the present invention is to provide a method capable of easily manufacturing an optical fiber preform having a small diameter and a predetermined diameter.
[0006]
[Means for Solving the Problems]
To solve the above problem,
In the invention according to claim 1, after preheating the base material in a state in which a tension of 1 to 10 kg / cm 2 is continuously applied to the longitudinal direction of the base material, the preheated base material is longitudinally It is a manufacturing method of an optical fiber preform characterized by extending.
According to a second aspect of the present invention, a heating furnace for preheating the base material is disposed between the chuck for gripping the base material, and the base material is preheated in a state where the base material is inserted into the heating furnace. The method of manufacturing an optical fiber preform according to claim 1.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 is a diagram illustrating an example of a method for manufacturing an optical fiber preform according to the present invention. As shown in FIG. 1, an example of a method for manufacturing an optical fiber preform according to the present invention is that the preform 1 is moved while lowering the lower end of the preform 1 while continuing to apply tension in the longitudinal direction of the preform 1 being preheated. After preheating, this is a manufacturing method in which the preheated base material 1 is stretched in the longitudinal direction between the feeding side chuck 15 for gripping the base material 1 and the pull side chuck 17 for gripping the base material 1. In this manufacturing method, a heating furnace 11 for preheating the base material 1 is arranged, and the base material 1 is preheated in a state where the base material 1 is inserted into the heating furnace 11.
A heating furnace 11 shown in FIG. 1 includes a heater 13 for heating the base material 1 inside a box-shaped cover in which a hole 12 through which the base material 1 is inserted is formed. The base material 1 is a rod-shaped material such as quartz glass. According to the present invention, an optical fiber preform having a diameter of about 10 to 150 mm can be easily manufactured by stretching the preheated preform 1 by stretching and reducing the diameter of the preform 1 by about 10 to 90%.
[0008]
When the base material 1 is continuously tensioned during the preheating of the base material 1 and one end (lower end) of the base material 1 is lowered during preheating, the elongation due to the thermal expansion of the base material 1 is absorbed by the deformation of the base material 1. For this reason, the cross-sectional shape of the preheated base material 1 can maintain a circular shape, and the base material 1 is not misaligned as shown in FIG. Therefore, as shown in FIG. 3, an optical fiber preform 3 with less bending is obtained.
For example, when tension is applied to the base material 1 by the pull side chuck 17, the feed side chuck 15 is supported and fixed by the chuck holding tool 18, and tension is applied by the pull side chuck 17 to preheat the base material 1. Start. When the temperature of the base material 1 rises due to heating and the base material 1 begins to expand due to thermal expansion, the pulling side chuck 17 is not supported and fixed, and thus falls. Thereby, it is hard to produce bias | deviation in the fuse | melted base material part.
[0009]
As a method of applying tension to the base material 1 during preheating, a method of applying a load by hanging a weight 19 having a predetermined weight on the pull side chuck 17 as shown in FIG. 1 or a tension by a driving motor of the pull side chuck 17 is used. A method of applying tension by a driving motor of the feed side chuck 15, and a method of applying tension by the weight of the base material 1 without gripping the base material 1 by the pull side chuck 17.
[0010]
If tension is continuously applied after preheating to a temperature at which the base material 1 is sufficiently melted, the melted base material portion is stretched and thinned to become the target diameter or less. As a method of preventing this, for example, a test is performed in advance, and the lowering distance of the pulling chuck 17 until the elongation of the base material 1 by heating and the target drawing diameter is reached, and the pulling side is lowered by this distance. Thus, a method such as starting stretching of the base material 1 can be mentioned.
[0011]
When the base material 1 is quartz glass, if the magnitude of the tension (W / S) applied to the base material 1 is about 1 to 10 kg / cm 2 , the optical fiber base material 3 with little bending is easily obtained. Here, W is a load applied to the base material 1, and S is a cross-sectional area of the base material 1 before being stretched at 20 ° C. When the base material 1 is quartz glass, it is preheated to about 1800 to 2200 ° C., and the preheated base material 1 is stretched to a predetermined diameter by stretching.
[0012]
By the method of the present invention, an optical fiber preform with less bending is obtained. Moreover, since the base material 1 is preheated and stretched in a state where the base material is inserted into the hole 12 of the heating furnace 11, the base material 1 is easily stretched and the optical fiber base material is less likely to have a variation in diameter.
[0013]
【Example】
Example 1
Using the apparatus shown in FIG. 1, an optical fiber preform 3 having a diameter of 80 mm was manufactured from a preform 1 having a diameter of 100 mm as follows.
A quartz glass round bar (having a diameter of 100 mm) was prepared as the base material 1.
The upper end portion of the base material 1 was held above the heating furnace 11 and suspended from the feeding side chuck 15 supported and fixed by the chuck holding tool 18. The suspended base material 1 was inserted into the hole 12, the lower end portion of the base material 1 was projected below the heating furnace 11, and the pull side chuck 17 was attached to the lower end portion of the base material 1. Then, a weight 19 was suspended from the pull side chuck 17. A tension of about 2 kg / cm 2 was applied to the base material 1 by the load of the pull side chuck 17 and the weight 19. As shown in FIG. 1, a part of the base material 1 is preheated to about 1800 ° C. to about 2200 ° C. by the heater 13 with the pulling side chuck 17 and the weight 19 suspended from the base material 1. . By this preheating, the base material 1 was softened and the pull side chuck 17 was lowered. When the pull side chuck 17 was lowered by a predetermined distance, the pull side chuck 17 was clamped by the chuck holding tool 18. The portions of the feeding side chuck 15 and the pulling side chuck 17 were lowered, and the base material 1 was heated and stretched inside the heating furnace 11 while gradually moving the base material 1 downward. As a result, the optical fiber preform 3 was obtained as a round bar having a diameter of 80 mm and a length of 1000 mm.
Table 1 shows the measurement results of the bending amount of the obtained optical fiber preform 3.
In addition, as shown in FIG. 4, the bending amount shown in Table 1 means that when one end of the optical fiber preform 1 is gripped by the lathe chuck 21 and the optical fiber preform 3 is rotated, and the other end swings. This is the distance between the highest point and the lowest point.
[0014]
Comparative Example 1
An optical fiber preform having a diameter of 80 mm was produced from the same preform 1 as in Example 1 using the apparatus shown in FIG. In contrast to Example 1, the feeding side chuck 15 and the pulling side chuck 17 were supported and fixed by the chuck holding tool 18. Then, the upper end and the lower end of the base material 1 were gripped by the feed side chuck 15 and the pull side chuck 17 that were supported and fixed, and the base material 1 was preheated by the heater 13. After preheating the base material 1, it was stretched in the same manner as in Example 1 to obtain an optical fiber base material 3. The bending amount of the optical fiber preform 3 was measured in the same manner as in Example 1, and the measurement results are shown in Table 1.
[0015]
[Table 1]
Figure 0003827877
[0016]
From Table 1, it can be seen that the optical fiber preform of Example 1 has a small amount of bending. On the other hand, the optical fiber preform of Comparative Example 1 has a large bend, and in order to use it as an optical fiber preform for drawing an optical fiber, the inconvenience of contacting the drawing furnace when grasping the upper part thereof, Due to the bending, the optical fiber preform is not positioned at the center of the drawing furnace, which causes a non-circularity of the optical fiber.
[0017]
【The invention's effect】
As described above, according to the manufacturing method of the present invention, it is possible to easily manufacture an optical fiber preform having a small diameter and a predetermined diameter. The optical fiber preform according to the manufacturing method of the present invention can be suitably used for drawing an optical fiber.
[Brief description of the drawings]
FIG. 1 is a partial cross-sectional view showing an example of a drawing apparatus used in a method for producing an optical fiber preform of the present invention, and shows a state in which the preform is preheated.
FIG. 2 is a view showing a lower shape of a base material preheated by the manufacturing method of the present invention.
FIG. 3 is a front view showing an optical fiber preform manufactured by the manufacturing method of the present invention.
FIG. 4 is a side view showing a method for measuring the bending amount of an optical fiber preform.
FIG. 5 is a partial cross-sectional view showing an example of a drawing apparatus used in a conventional method for manufacturing an optical fiber preform, and shows a state in which the preform is preheated.
FIG. 6 is a front view showing a lower shape of a base material preheated by a conventional example.
FIG. 7 is a side view showing a lower shape of a base material preheated by a conventional example.
FIG. 8 is a front view showing an optical fiber preform manufactured according to a conventional example.
[Explanation of symbols]
1 .... Base material, 3 .... Optical fiber base material, 11 .... Heat furnace, 12 .... Hole, 13 .... Heater, 15 .... Feed side chuck, 17 .... Pull side chuck, 18 .... Chuck clamp , 19 ·· Weight, 21 · · Lathe chuck

Claims (2)

母材の長手方向に、1〜10kg/cm1-10 kg / cm in the longitudinal direction of the base material 2 の大きさの張力をかけ続けた状態で該母材を予熱した後、この予熱された母材を長手方向に延伸することを特徴とする光ファイバ母材の製造方法。A method for producing an optical fiber preform, wherein the preform is preheated in a state in which a tension of a magnitude of 2 is continuously applied, and then the preheated preform is stretched in the longitudinal direction. 母材を把持するチャックとチャックとの間に、この母材を予熱する加熱炉を配置し、該加熱炉に母材を挿通した状態で母材を予熱することを特徴とする請求項1記載の光ファイバ母材の製造方法。2. A heating furnace for preheating the base material is disposed between the chuck for gripping the base material, and the base material is preheated in a state in which the base material is inserted into the heating furnace. Manufacturing method of optical fiber preform.
JP2325799A 1999-01-29 1999-01-29 Optical fiber preform manufacturing method Expired - Fee Related JP3827877B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2325799A JP3827877B2 (en) 1999-01-29 1999-01-29 Optical fiber preform manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2325799A JP3827877B2 (en) 1999-01-29 1999-01-29 Optical fiber preform manufacturing method

Publications (2)

Publication Number Publication Date
JP2000219530A JP2000219530A (en) 2000-08-08
JP3827877B2 true JP3827877B2 (en) 2006-09-27

Family

ID=12105561

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2325799A Expired - Fee Related JP3827877B2 (en) 1999-01-29 1999-01-29 Optical fiber preform manufacturing method

Country Status (1)

Country Link
JP (1) JP3827877B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4376100B2 (en) * 2004-03-18 2009-12-02 信越化学工業株式会社 Optical fiber preform drawing method
US10590022B2 (en) 2015-01-22 2020-03-17 Heraeus Quartz North America Llc Formation of elongated glass components with low bow using a gripper device

Also Published As

Publication number Publication date
JP2000219530A (en) 2000-08-08

Similar Documents

Publication Publication Date Title
JP2704147B2 (en) Method and apparatus for sintering hollow cylindrical body of silica soot
US9328012B2 (en) Glass base material elongating method
JP4634617B2 (en) Method for producing cylindrical parts from quartz glass and equipment suitable for this
JP3827877B2 (en) Optical fiber preform manufacturing method
WO1999016718A1 (en) Method of drawing base glass material
KR100281958B1 (en) Connected Glass Heating Device and Method
JP2005272234A (en) Working method of glass preform for optical fiber and working device
JP3141546B2 (en) Drawing method and drawing apparatus for preform for optical fiber
JPH11199261A (en) Glass rod stretching method
JP3318156B2 (en) Manufacturing method of optical fiber preform
JP4376100B2 (en) Optical fiber preform drawing method
JP3833003B2 (en) Glass base material stretching method
JP3375547B2 (en) Method and apparatus for manufacturing optical fiber preform
JP2003277092A (en) Glass base material stretching method
JP4325165B2 (en) Drawing method of glass base material
JP6136554B2 (en) Glass base material stretching apparatus and glass base material manufacturing method
JP3909977B2 (en) Glass base material stretching method and stretching apparatus
JP3932585B2 (en) Drawing method of glass base material
JP3864463B2 (en) Stretching method
JP3020919B2 (en) Stretching apparatus and stretching method for optical fiber preform
JPH10310443A (en) Fiber preform drawing equipment
JP3625632B2 (en) Drawing method of glass base material for optical fiber
JP2003212576A (en) Glass base material stretching method
JPH0930827A (en) Production of optical fiber preform
JP2005225704A (en) Drawing method of glass base material

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050615

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050628

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050829

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060627

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060705

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090714

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100714

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110714

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110714

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120714

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120714

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130714

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees