[go: up one dir, main page]

JP3823696B2 - Magnetic recording / reproducing device - Google Patents

Magnetic recording / reproducing device Download PDF

Info

Publication number
JP3823696B2
JP3823696B2 JP2000206836A JP2000206836A JP3823696B2 JP 3823696 B2 JP3823696 B2 JP 3823696B2 JP 2000206836 A JP2000206836 A JP 2000206836A JP 2000206836 A JP2000206836 A JP 2000206836A JP 3823696 B2 JP3823696 B2 JP 3823696B2
Authority
JP
Japan
Prior art keywords
recording
head
magnetic
magnetic recording
recording medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000206836A
Other languages
Japanese (ja)
Other versions
JP2001093103A5 (en
JP2001093103A (en
Inventor
和悦 吉田
広明 根本
秀樹 嵯峨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2000206836A priority Critical patent/JP3823696B2/en
Publication of JP2001093103A publication Critical patent/JP2001093103A/en
Publication of JP2001093103A5 publication Critical patent/JP2001093103A5/ja
Application granted granted Critical
Publication of JP3823696B2 publication Critical patent/JP3823696B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Recording Or Reproducing By Magnetic Means (AREA)
  • Magnetic Heads (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は光を用いて信号を磁気情報として記録し、さらに情報の再生を磁気ヘッドを用いて行なう手段を有する磁気記録再生装置に関わり、高密度記録においても高い分解能と優れた信号対出力比(S/N)を有する磁気記録再生装置に関わる。
【0002】
【従来の技術】
近年の情報量の増大には目覚ましいものがあり、ファイルメディアとして用いられる磁気ディスクやフロッピーディスク、磁気テープ、また光記憶装置の記憶容量は飛躍的な発展を遂げている。特に磁気ディスク装置においては、年率40〜60%の割合で記録密度が向上しており、既に4 Gb/in2の面記録密度を持つ装置が実用化されている。このような磁気記録装置の高密度化は、磁気ディスクの高分解能化、高S/N化、磁気ヘッドの高感度化等の技術的革新によってなされている。しかし磁気ディスクを見た場合、その高分解能化と高S/N化は、磁気ディスクを構成する磁性薄膜粒子の微細化によって達成されてきているが、それには熱揺らぎという物理的な限界が存在する。すなわち、磁気記録媒体磁性薄膜のノイズを低減するには磁性粒子を微細化する必要があるが、あまり微細化し過ぎると熱的撹乱のため記録した情報が消えてしまう現象が生じる。すなわち、高S/N化と熱的な安定性にはトレードオフの関係がある。これを回避する技術として、垂直磁気記録技術や、熱磁気記録が候補として上がっている。前者は、磁気記録媒体薄膜の厚さが、従来の面内記録用薄膜に比較し厚く出来るため、その分磁性粒子の体積を大きくすることが出来るのが一つの理由である。また、熱磁気記録においては、磁気記録用磁性膜に比較し、記録膜に室温で非常に大きな保磁力を有する磁性膜を用いることが熱揺らぎに対する抵抗が大きくなる理由である。
【0003】
ところで、後者の熱磁気記録方式においては、通常情報の記録はレーザー光を記録層に照射して記録膜の磁化を膜面垂直方向に上下に向けさせることによって行われる。記録情報の再生は、記録された磁化の方向をカー効果を用いて記録膜から直接もしくはその上に形成された転写層から読み出すことによって行われる。
【0004】
この光記録方式では光ビームのスポット径より小さい記録ビットを形成することが出来るが、再生過程では光ビームのスポット径より小さなビットを読み取ることが困難であり、高線記録密度で分解能が劣るという問題点がある。その解決策の一つとして、再生過程で光ヘッドを用いずに、磁気記録再生装置に用いられている磁気ヘッドを用いることが、特開平10―21598等にて開示されている。一般に再生用磁気ヘッドでは、その分解能は磁気ヘッドの空隙長(ギャップ長)によって決定されるが、最近実用化されている磁気抵抗効果型ヘッドでは空隙長は0.2μmにまで詰まっている。これは0.1μmの記録ビットを再生出来る分解能に相当する。したがって、これを用いれば波長660 nmの光源を用いた現状の光ディスクの分解能が約0.5μmであることを考えれば、一挙に5倍の面記録密度の向上を図ることが出来る。しかし現実においては、このような大きな分解能の向上を実現することは難しい。その第1の理由は記録された光スポットの形状が原因している。通常の光記録装置を用いて記録を行い、その記録スポット形状を磁気偏光顕微鏡で観察すると、図4に示したような三日月状になっている。これは記録に用いる光ビームの断面形状が円形であるためである。これに対して磁気再生ヘッドでは、媒体から発生する漏洩磁束を吸収するギャップ部の形状はトラック幅方向に長い長方形をしている。したがって、三日月状の記録スポットから発生する磁束を効率良く再生することが出来ず、その影響は記録ビット長が短くなるほど大きくなる。これが、磁気再生ヘッドを用いても十分高い分解能を得ることが出来なくなる原因である。
【0005】
【発明が解決しようとする課題】
光記録・磁気ヘッド再生方式において、記録ビット長が短くなると再生出力の低下が大きくなり、再生用磁気ヘッドの能力を十分に生かせないという問題がある。
【0006】
【課題を解決するための手段】
上記した問題は、記録媒体上に光磁気記録を行った時、隣接ビット境界線の曲率を出来るだけ大きくし、記録された磁区の形状をほぼ長方形とすることによって解決される。
【0007】
【発明の実施の形態】
<実施例1>
図2に本発明の磁気記録再生装置の概略を示した。21は光記録を行なうためのレーザダイオードである。22はレーザー光を記録層24の上に集光するための対物レンズであり、その光流出側に球面レンズを通して絞り23が設けられている。27は記録膜の磁化方向を信号電流に応じて変調させるための磁界変調用のコイル、28は光レーザーと磁気ヘッドを駆動するための回路である。これらの素子により媒体の記録膜には上方向あるいは下方向を向いた磁化として情報が記録される。情報の読み出しは、記録層の磁化を再生層25に磁気的に転写し、そこから生じる漏洩磁界を磁気ヘッド29で再生することによって実行される。
【0008】
磁気ヘッドによって読み出した信号は信号処理回路210によって元の情報に復調される。本実施例で用いた記録媒体の構造を図3に示す。ポリカーボネイト基板31上に保護層32としてSiNを形成した後、Tb21Fe70Co9の組成を持つ厚さ40 nmの記録層33、Tb35Fe56Co9からなる70nmの再生層34、さらに厚さ20 nmのSiN保護層32を順次形成したものである。磁気再生ヘッドとしては巨大磁気抵抗効果を利用したトラック幅1.0μmで、シールド間隔Gsが0.2μmのGMRヘッドを用いた。ヘッドと媒体表面の間隔は0.04μmとした。また、記録用光源には波長660 nmのレーザーダイオードを用いた。そのスポット径は1.0μmであった。
【0009】
上記した構成からなる磁気記憶装置を用いて、レーザー光の流出側に絞りを設けることにより、それが記録スポット形状と再生出力、分解能に与える影響を調べた。まずトラック方向に0.6μm、トラック幅方向に1.0μmの長方形の絞りを用いて記録ビット長Bを変えてオール“1”の記録を行なった。また比較例として絞りを使わずに記録を行ない同様の測定を行なった。図1に線記録密度と再生出力の関係を示した。図から明らかなように、絞りを用いた場合(11)はビット長約0.10μm(記録マーク周期0.2μm)まで高い再生出力を維持しているのに対して、絞りを用いない場合(12)はビット長0.5μm(記録マーク周期1.0μm)以下になると再生出力は急激に低下する。
【0010】
図4にそれぞれの場合の記録スポット形状を偏光顕微鏡で観察した結果を模式的に示した。絞りを用いてない場合は、記録スポット(41)はトラック幅Tw=0.8μmの三日月状であった。その湾曲した円弧部の曲率半径Rは0.4μmであり、再生出力が急激に低下し始めるビット長B=0.5μmにおいては、ビット真上にGMRヘッドのシールド空隙部(42;図中太線で示す)が来た時に記録ビットからの磁束以外に、逆極性を持つ未記録領域からの磁束を拾い、出力が急激に低下することが理解できる。一方、絞りを用いた場合、記録スポット(43)はトラック幅Tw=0.8μmでビット境界線はやや円弧状になっていたがその曲率半径Rは3. 6 μmであり、絞りの形を反映してほぼ長方形であった。ビット長0.5μmで絞りを用いなかった時と比較するとGMRヘッドのシールド空隙部のほぼ全体が記録ビットの中に入る配置になっている。すなわち、未記録領域から発生する逆方向の磁束を読み込まないために、高い再生出力を得ることが出来、絞りを用いなかった場合に比較し分解能が著しく向上することが分かる。しかしこの場合でもビット長を短くして行き、ビット長Bから円弧をなす部分のトラック方向の長さAを引いた距離(B−A)が実効的なギャップ長(Gs/2)の2/3程度(実施例ではB=0.1 μm)より短くなると、GMRヘッドのギャップ損失特性のため、未記録領域からの磁束を拾う配置ではないにも関らず出力が低下する。ここで、 Gsはシールド間隔である。
【0011】
以上の結果から、光記録、磁気ヘッド再生システムにおいて、高い再生出力と分解能特性を得るには次の2つの要件が必要となることが確認できる。第1の要件は、記録スポットのビット境界線の曲率を出来るだけ大きくして、長方形に近いスポット形状とすること。第2の要件は、GMRヘッドのギャップ損失が少ない条件、すなわちビット長から円弧をなす部分のトラック方向の長さを引いた距離がシールド間隔Gsの2/3程度なり長くすることである。これらの条件をまとめると、本発明の条件式、B−A=B−(R−(R2−(Tw/2)2)0.5) ≧ 2/3・Gs/2 が導かれる。あるいは、より高い再生出力を必要とする場合には、B−(R−(R2−(Tw/2)2)0.5) ≧ Gs/2の関係が成り立つことが望ましい。
【0012】
【発明の効果】
以上のように、本発明によれば光ヘッドを用いて媒体上に熱磁気記録した時のスポット形状をほぼ長方形にすることが出来るため、GMRヘッドを用いて磁気再生する時の再生効率を向上させることが可能となり、GMRヘッドが持つ再生分解能特性を生かすことがことが出来る。その結果、高い線記録密度での高出力、高S/N再生特性を実現することが可能となる。
【図面の簡単な説明】
【図1】絞りを設けた場合と設けなかった場合の、再生出力の記録マーク周期依存性を示す図。
【図2】本発明の磁気記録再生装置の模式図。
【図3】光記録・磁気再生用の媒体構造を示す図。
【図4】記録層に書かれたスポットの形状を示す図。
【符号の説明】
11…絞りを設けた時の再生出力の記録マーク周期依存性
12…絞りを設けなかった時の再生出力の記録マーク周期依存性
21…レーザーダイオード
22…集光レンズ
23…絞り
24…記録層
25…再生層
26…基板
27…磁界変調用コイル
28…光レーザ、磁気ヘッド駆動回路
29…再生用磁気ヘッド
210…信号処理回路
31…基板
32…保護層
33…記録層
34…再生層
41…絞りを設け無かった時の記録スポット形状
42…GMRヘッドの磁気シールド空隙部の形状
43…絞りを設けた時の記録スポット形状。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a magnetic recording / reproducing apparatus having means for recording a signal as light information using light and further reproducing information using a magnetic head, and has high resolution and excellent signal-to-output ratio even in high-density recording. The present invention relates to a magnetic recording / reproducing apparatus having (S / N).
[0002]
[Prior art]
There has been a remarkable increase in the amount of information in recent years, and the storage capacity of magnetic disks, floppy disks, magnetic tapes, and optical storage devices used as file media has undergone dramatic development. Particularly in the magnetic disk device, the recording density is improved at an annual rate of 40 to 60%, and a device having a surface recording density of 4 Gb / in 2 has already been put into practical use. Such a high density of the magnetic recording apparatus has been achieved by technological innovations such as high resolution of the magnetic disk, high S / N, and high sensitivity of the magnetic head. However, when looking at a magnetic disk, high resolution and high S / N have been achieved by miniaturization of magnetic thin film particles constituting the magnetic disk, but this has the physical limitation of thermal fluctuation. To do. That is, it is necessary to make the magnetic particles finer in order to reduce the noise of the magnetic recording medium magnetic thin film. However, if the magnetic particles are made too fine, the recorded information disappears due to thermal disturbance. That is, there is a trade-off between high S / N ratio and thermal stability. As a technique for avoiding this, a perpendicular magnetic recording technique and a thermomagnetic recording have been proposed as candidates. The former is one reason that the magnetic recording medium thin film can be made thicker than a conventional in-plane recording thin film, so that the volume of the magnetic particles can be increased accordingly. In thermomagnetic recording, the use of a magnetic film having a very large coercive force at room temperature for the recording film as compared with the magnetic film for magnetic recording is the reason why the resistance to thermal fluctuation is increased.
[0003]
By the way, in the latter thermomagnetic recording system, recording of information is usually performed by irradiating the recording layer with laser light so that the magnetization of the recording film is directed vertically in the direction perpendicular to the film surface. The reproduction of the recorded information is performed by reading the recorded magnetization direction directly from the recording film or from the transfer layer formed thereon using the Kerr effect.
[0004]
In this optical recording method, a recording bit smaller than the spot diameter of the light beam can be formed, but it is difficult to read a bit smaller than the spot diameter of the light beam in the reproduction process, and the resolution is inferior at a high linear recording density. There is a problem. As one of the solutions, Japanese Patent Laid-Open No. 10-21598 discloses that a magnetic head used in a magnetic recording / reproducing apparatus is used without using an optical head in a reproducing process. Generally, in a reproducing magnetic head, the resolution is determined by the gap length (gap length) of the magnetic head, but in a magnetoresistive head that has recently been put to practical use, the gap length is limited to 0.2 μm. This corresponds to a resolution capable of reproducing a recording bit of 0.1 μm. Therefore, if this is used, the surface recording density can be improved by a factor of 5 at a time, considering that the resolution of the current optical disk using a light source having a wavelength of 660 nm is about 0.5 μm. However, in reality, it is difficult to realize such a large resolution improvement. The first reason is due to the shape of the recorded light spot. When recording is performed using a normal optical recording apparatus and the shape of the recording spot is observed with a magnetic polarization microscope, a crescent shape as shown in FIG. 4 is obtained. This is because the cross-sectional shape of the light beam used for recording is circular. On the other hand, in the magnetic reproducing head, the shape of the gap portion that absorbs the leakage magnetic flux generated from the medium is a rectangle that is long in the track width direction. Therefore, the magnetic flux generated from the crescent-shaped recording spot cannot be efficiently reproduced, and the effect becomes larger as the recording bit length becomes shorter. This is the reason why a sufficiently high resolution cannot be obtained even if a magnetic reproducing head is used.
[0005]
[Problems to be solved by the invention]
In the optical recording / magnetic head reproducing system, there is a problem that when the recording bit length is shortened, the reproduction output is greatly reduced and the ability of the reproducing magnetic head cannot be fully utilized.
[0006]
[Means for Solving the Problems]
The above-mentioned problem can be solved by making the curvature of the adjacent bit boundary line as large as possible and making the shape of the recorded magnetic domain almost rectangular when performing magneto-optical recording on the recording medium.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
<Example 1>
FIG. 2 shows an outline of the magnetic recording / reproducing apparatus of the present invention. Reference numeral 21 denotes a laser diode for optical recording. Reference numeral 22 denotes an objective lens for condensing the laser beam on the recording layer 24, and a diaphragm 23 is provided on the light outflow side through a spherical lens. 27 is a magnetic field modulation coil for modulating the magnetization direction of the recording film in accordance with the signal current, and 28 is a circuit for driving the optical laser and the magnetic head. By these elements, information is recorded on the recording film of the medium as magnetization directed upward or downward. Reading of information is performed by magnetically transferring the magnetization of the recording layer to the reproducing layer 25 and reproducing the leakage magnetic field generated therefrom by the magnetic head 29.
[0008]
The signal read by the magnetic head is demodulated to the original information by the signal processing circuit 210. The structure of the recording medium used in this example is shown in FIG. After forming SiN as a protective layer 32 on the polycarbonate substrate 31, a 40 nm thick recording layer 33 having a composition of Tb 21 Fe 70 Co 9 , a 70 nm reproducing layer 34 made of Tb 35 Fe 56 Co 9 , and a further thickness A 20 nm thick SiN protective layer 32 is sequentially formed. As the magnetic reproducing head, a GMR head having a track width of 1.0 μm using a giant magnetoresistive effect and a shield interval Gs of 0.2 μm was used. The distance between the head and the medium surface was 0.04 μm. A laser diode having a wavelength of 660 nm was used as a recording light source. The spot diameter was 1.0 μm.
[0009]
Using the magnetic storage device having the above-described configuration, the influence on the recording spot shape, reproduction output, and resolution was investigated by providing a diaphragm on the laser beam outflow side. First, all “1” recording was performed by changing the recording bit length B using a rectangular aperture of 0.6 μm in the track direction and 1.0 μm in the track width direction. As a comparative example, recording was performed without using a diaphragm, and the same measurement was performed. FIG. 1 shows the relationship between the linear recording density and the reproduction output. As is apparent from the figure, when the aperture is used (11), a high reproduction output is maintained up to a bit length of about 0.10 μm (record mark period 0.2 μm), whereas when no aperture is used (12). When the bit length becomes 0.5 μm or less (record mark cycle 1.0 μm), the reproduction output rapidly decreases.
[0010]
FIG. 4 schematically shows the result of observation of the recording spot shape in each case with a polarizing microscope. When no diaphragm was used, the recording spot (41) had a crescent shape with a track width Tw = 0.8 μm. The radius of curvature R of the curved arc portion is 0.4 μm, and the bit gap B = 0.5 μm at which the reproduction output starts to drop sharply, the shield gap portion (42; indicated by a bold line in the figure) of the GMR head immediately above the bit. ), The magnetic flux from the non-recorded area having the opposite polarity is picked up in addition to the magnetic flux from the recording bit, and it can be understood that the output sharply decreases. On the other hand, when the aperture is used, the recording spot (43) has a track width Tw = 0.8 μm and the bit boundary line has a slightly arc shape, but its curvature radius R is 3.6 μm, which reflects the shape of the aperture. It was almost rectangular. Compared with the case where the bit length is 0.5 μm and no diaphragm is used, almost the entire shield gap of the GMR head is placed in the recording bit. That is, it can be seen that since a reverse magnetic flux generated from an unrecorded area is not read, a high reproduction output can be obtained, and the resolution is significantly improved as compared with the case where no diaphragm is used. In this case, however, the bit length is shortened, and the distance (BA) obtained by subtracting the length A in the track direction of the arc portion from the bit length B is 2/2 of the effective gap length (Gs / 2). When the length is shorter than about 3 (B = 0.1 μm in the embodiment), the output is lowered due to the gap loss characteristic of the GMR head, although it is not arranged to pick up the magnetic flux from the unrecorded area. Where Gs is the shield interval.
[0011]
From the above results, it can be confirmed that the following two requirements are necessary to obtain high reproduction output and resolution characteristics in the optical recording and magnetic head reproducing system. The first requirement is to increase the curvature of the bit boundary line of the recording spot as much as possible to obtain a spot shape close to a rectangle. The second requirement is that the gap loss of the GMR head is small, that is, the distance obtained by subtracting the length in the track direction of the arc portion from the bit length is about 2/3 of the shield interval Gs. Summarizing these conditions, the conditional expression of the present invention, B−A = B− (R− (R 2 − (Tw / 2) 2 ) 0.5 ) ≧ 2/3 · Gs / 2 is derived. Alternatively, when a higher reproduction output is required, it is desirable that a relationship of B− (R− (R 2 − (Tw / 2) 2 ) 0.5 ) ≧ Gs / 2 holds.
[0012]
【The invention's effect】
As described above, according to the present invention, since the spot shape when thermomagnetic recording is performed on a medium using an optical head can be made substantially rectangular, the reproduction efficiency when magnetic reproduction is performed using a GMR head is improved. Therefore, the reproduction resolution characteristic of the GMR head can be utilized. As a result, it is possible to achieve high output and high S / N reproduction characteristics at a high linear recording density.
[Brief description of the drawings]
FIG. 1 is a diagram showing the dependence of reproduction output on a recording mark period when a diaphragm is provided and when an aperture is not provided.
FIG. 2 is a schematic diagram of a magnetic recording / reproducing apparatus of the present invention.
FIG. 3 is a diagram showing a medium structure for optical recording and magnetic reproduction.
FIG. 4 is a diagram showing the shape of a spot written on a recording layer.
[Explanation of symbols]
11... Recording mark cycle dependency of reproduction output when an aperture is provided 12... Recording mark cycle dependency of reproduction output when no aperture is provided 21... Laser diode 22. ... reproducing layer 26 ... substrate 27 ... magnetic field modulation coil 28 ... optical laser, magnetic head drive circuit 29 ... reproducing magnetic head 210 ... signal processing circuit 31 ... substrate 32 ... protective layer 33 ... recording layer 34 ... reproducing layer 41 ... stop Recording spot shape 42 when no aperture is provided ... GMR head magnetic shield gap shape 43 ... recording spot shape when a diaphragm is provided.

Claims (3)

磁気記録層を有する磁気記録媒体、該磁気記録媒体に情報を書き込む熱磁気記録ヘッドと該磁気記録媒体から記録情報を読み出す磁気抵抗効果型再生ヘッドまたは巨大磁気抵抗効果型再生ヘッドとを有するヘッド及び前記磁気記録媒体とヘッドとを相対運動させる駆動装置を有する装置において、
前記熱磁気記録ヘッドは、形状が長方形である絞りを光流出側に有し、
前記絞りを用いて記録された記録ビットの境界線に前記絞りの形状が反映され、
該磁気記録層に記録した磁区形状の曲率半径R、記録トラック幅TW、記録ビット長Bと(巨大)磁気抵抗効果型再生ヘッドのシールド間隔Gsが、B−(R−(R2−(Tw/2)2)0.5) ≧ k・Gs/2なる関係を満たし、kが2/3であることを特徴とする磁気記録再生装置。
A magnetic recording medium having a magnetic recording layer, a thermomagnetic recording head for writing information to the magnetic recording medium, and a magnetoresistive reproducing head or a giant magnetoresistive reproducing head for reading recorded information from the magnetic recording medium; In an apparatus having a drive device for relatively moving the magnetic recording medium and the head,
The thermomagnetic recording head has a diaphragm having a rectangular shape on the light outflow side,
The shape of the aperture is reflected on the boundary line of the recording bits recorded using the aperture,
The radius of curvature R of the magnetic domain shape recorded on the magnetic recording layer, the recording track width T W , the recording bit length B, and the shield interval Gs of the (giant) magnetoresistive head are B− (R− (R 2 − ( Tw / 2) 2 ) 0.5 ) ≥ k · Gs / 2 The relationship is satisfied, and k is 2/3.
磁気記録層を有する磁気記録媒体、該磁気記録媒体に情報を書き込む熱磁気記録ヘッドと該磁気記録媒体から記録情報を読み出す磁気抵抗効果型再生ヘッドまたは巨大磁気抵抗効果型再生ヘッドとを有するヘッド及び前記磁気記録媒体とヘッドとを相対運動させる駆動装置を有する装置において、
前記熱磁気記録ヘッドは、形状が長方形である絞りを光流出側に有し、
前記絞りを用いて記録された記録ビットの境界線に前記絞りの形状が反映され、
該磁気記録層に記録した磁区形状の曲率半径R、記録トラック幅TW、記録ビット長Bと(巨大)磁気抵抗効果型再生ヘッドのシールド間隔Gsが、B−(R−(R2−(Tw/2)2)0.5) ≧ k・Gs/2なる関係を満たし、kが1であることを特徴とする磁気記録再生装置。
A magnetic recording medium having a magnetic recording layer, a thermomagnetic recording head for writing information to the magnetic recording medium, and a magnetoresistive reproducing head or a giant magnetoresistive reproducing head for reading recorded information from the magnetic recording medium; In an apparatus having a drive device for relatively moving the magnetic recording medium and the head,
The thermomagnetic recording head has a diaphragm having a rectangular shape on the light outflow side,
The shape of the aperture is reflected on the boundary line of the recording bits recorded using the aperture,
The radius of curvature R of the magnetic domain shape recorded on the magnetic recording layer, the recording track width T W , the recording bit length B, and the shield interval Gs of the (giant) magnetoresistive head are B− (R− (R 2 − ( Tw / 2) 2 ) 0.5 ) ≥ k · Gs / 2 The relationship is satisfied, and k is 1.
前記(巨大)磁気抵抗効果型再生ヘッドの実効的なギャップ長は、Gs/2であることを特徴とする請求項1又は2記載の磁気記録再生装置。  3. The magnetic recording / reproducing apparatus according to claim 1, wherein an effective gap length of the (giant) magnetoresistive read head is Gs / 2.
JP2000206836A 1999-07-22 2000-07-04 Magnetic recording / reproducing device Expired - Lifetime JP3823696B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000206836A JP3823696B2 (en) 1999-07-22 2000-07-04 Magnetic recording / reproducing device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP20721999 1999-07-22
JP11-207219 1999-07-22
JP2000206836A JP3823696B2 (en) 1999-07-22 2000-07-04 Magnetic recording / reproducing device

Publications (3)

Publication Number Publication Date
JP2001093103A JP2001093103A (en) 2001-04-06
JP2001093103A5 JP2001093103A5 (en) 2005-02-10
JP3823696B2 true JP3823696B2 (en) 2006-09-20

Family

ID=26516128

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000206836A Expired - Lifetime JP3823696B2 (en) 1999-07-22 2000-07-04 Magnetic recording / reproducing device

Country Status (1)

Country Link
JP (1) JP3823696B2 (en)

Also Published As

Publication number Publication date
JP2001093103A (en) 2001-04-06

Similar Documents

Publication Publication Date Title
KR100431017B1 (en) Recording/reproducing head and recording/reproducing apparatus incorporating the same
US6288981B1 (en) Magneto-optical recording device using magneto-resistive head
JP3823696B2 (en) Magnetic recording / reproducing device
KR100702090B1 (en) Magnetic recording device
JPS5841451A (en) Vertical magnetic recording medium
JP3496113B2 (en) Information recording medium, information recording medium reproducing method, and information recording medium reproducing apparatus
JP3441417B2 (en) Magnetic recording head and magnetic recording device using the same
TWI277069B (en) High-density thermo-magnetic recording medium and system thereof
JPS61214258A (en) Write and reproducing integrated magnetic head
JP3648628B2 (en) INFORMATION REPRODUCING ELEMENT, INFORMATION REPRODUCING HEAD INCLUDING THE SAME, INFORMATION REPRODUCING DEVICE, AND INFORMATION REPRODUCING METHOD
KR100447159B1 (en) magneto-optical recording medium
US20010040841A1 (en) Recording method and medium for optical near-field writing and magnetic flux reading
JP2555891B2 (en) Magneto-optical recording medium
JP3363936B2 (en) How to read information
JPS5819753A (en) Vertical magnetic recording medium and reproducing method of vertical magnetizing signal using said recording medium
JP4328840B2 (en) Surface readout type optical recording medium
TW498321B (en) A recording method for optical super-resolution writing and magnetic flux detection
Kamimura et al. Thermally Assisted Magnetic Recording Using an Optical Head with NA= 0.85
JP2000021041A (en) Floating type magnetic head device, signal reproducing method and recording and reproducing method using the head
CN1306510C (en) High-density hot-write magnetic read recording medium and its system
JP2001195702A (en) Information recording method, information record reproducing method and information recording medium
JP2607476B2 (en) Magneto-optical recording method
JPH0887702A (en) Magnetic recording signal reproducing method
JP2000215402A (en) Information recording medium, and method and device for recording and reproducing information
JPS5922252A (en) Vertical magnetic recording medium and magnetic recording and reproducing method

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040304

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040304

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050908

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051004

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060228

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060418

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060420

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060606

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060619

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090707

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090707

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090707

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100707

Year of fee payment: 4