JP3823203B2 - Semi-dry exhaust gas desulfurization / desalination method - Google Patents
Semi-dry exhaust gas desulfurization / desalination method Download PDFInfo
- Publication number
- JP3823203B2 JP3823203B2 JP2000249658A JP2000249658A JP3823203B2 JP 3823203 B2 JP3823203 B2 JP 3823203B2 JP 2000249658 A JP2000249658 A JP 2000249658A JP 2000249658 A JP2000249658 A JP 2000249658A JP 3823203 B2 JP3823203 B2 JP 3823203B2
- Authority
- JP
- Japan
- Prior art keywords
- exhaust gas
- reaction tower
- fluidized bed
- gas
- lime
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Treating Waste Gases (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、例えば石炭焚きボイラの排ガスに含まれる亜硫酸ガスの除去や都市ごみ焼却炉の排ガスに含まれる塩化水素の除去の技術、すなわち排ガスの脱硫/脱塩技術のうち、半乾式排ガス脱硫/脱塩方法に関するものである。
【0002】
【従来の技術】
従来、半乾式の排ガス脱硫/脱塩方法は既に知られており、この技術は簡易脱硫/脱塩方法に属し、装置の構造が簡単であるため、初期投資が少なく、かつ脱硫/脱塩率が良好で、運転費も安いという利点がある。
【0003】
従来の半乾式排ガス脱硫/脱塩方法は、亜硫酸ガスや塩化水素ガスよりなる有害ガス成分を含む排ガスを、反応塔の下部から上方に向かって上昇流で通過させ、反応塔下部の流動層に循環灰を導入するとともに、反応塔下部の流動層に石灰スラリーと排ガス調湿用水とを圧縮空気を用いて噴霧する。そして、流動層の循環灰に石灰スラリーを付着させ、排ガスが反応塔内を上昇する間に、排ガス中の亜硫酸ガス/塩化水素ガスと石灰との接触により、亜硫酸カルシウム/硫酸カルシウムまたは塩化カルシウムを生成させる。こうして、排ガス中の有害ガス成分を固形物側に移行させ、反応塔からの排出物を集塵機に導いて、ガスと固形物とに分離する。清浄となされた排ガスを大気に放出し、また集塵機において集められた粉塵、反応生成物および未反応石灰の混合物よりなる捕集物の一部を系外に排出するとともに、捕集物の残部を循環灰として反応塔下部の流動層に再循環していた。
【0004】
そして、このような半乾式排ガス脱硫/脱塩方法は、通常、発電所用等の大型ボイラの排ガスに適用されることは少なく、主体として排ガス流量10,000〜100,000(Nm3/h)程度の中、小型産業ボイラらや都市ごみ焼却炉の排ガス処理に適用されていた。
【0005】
【発明が解決しようとする課題】
しかしながら、上記のような小型産業ボイラや都市ごみ焼却炉では、排ガス流量の変動が大きい場合が多い。一方、従来の排ガス脱硫/脱塩方法によれば、排ガス中に多量の循環灰を浮遊させ、循環灰表面に石灰スラリーをコーチングし、ガスとの接触表面積を増加させた状態で、排ガス中の酸性成分と石灰とを反応させるものであるから、ガス量が変動し、とくにガス流量が一定値以下に低下すると、循環灰が反応塔内を落下し、反応塔下部に堆積するという問題が生じ、ガス流量の変動に弱いという問題があった。
【0006】
ここで、図2は、本発明者らが、小型の産業用ボイラに付設した半乾式排ガス脱硫装置において計測した排ガス流量計測チャートの例を示す曲線図ものであるが、このようなボイラは、蒸気の需要に応じて自動運転されているため、蒸気需要が少ないと、運転が一時停止され、排ガス流量がゼロまで低下する場合が生じている(図2の矢印部分参照)。
【0007】
このような状態になると、従来の排ガス脱硫装置では、循環灰が落下し、反応塔底に堆積するとともに、噴霧された石灰スラリーと調湿用の水が反応塔の下部に飛散して、下部内壁に付着し、巨大な塊となるため、ガス流量が回復しても脱硫装置の運転を再開し、継続することができなくなるという問題があった。
【0008】
本発明者らは、上記の点に鑑み鋭意研究を重ねた結果、いわゆる循環形式の排ガスの脱硫/脱塩方法では、反応塔下部の流動層に供給する排ガスの流量が一定値以下に低下した場合に、反応塔下部の流動層への循環灰、石灰スラリーおよび排ガス調湿用水の供給を、同時に停止し、排ガス流量が一定値以上に回復した場合に、反応塔下部の流動層への循環灰、排ガス調湿用水および石灰スラリーの供給を、この順序で再開することにより、上記の従来技術の課題を全て解決し得ることを見い出し、本発明を完成するに至った。
【0009】
本発明の目的は、循環形式の排ガス脱硫/脱塩方法において、排ガス流量の変動が大きい小型産業ボイラや都市ごみ焼却炉に適用した場合に、石灰スラリーおよび循環灰が反応塔内を落下して、巨大な塊を形成することなく、ガス流量が回復した際に、装置の運転を確実に再開し、継続することができて、ガス流量の変動に強い、半乾式排ガス脱硫/脱塩方法を提供しようとすることにある。
【0010】
【課題を解決するための手段】
上記の目的を達成するために、本発明による半乾式排ガス脱硫/脱塩方法は、いわゆる循環形式で、排ガス中に含まれる亜硫酸ガス/塩化水素ガスよりなる有害ガス成分を除去する排ガスの脱硫/脱塩方法であって、有害ガス成分を含む排ガスを反応塔の下部から上方に向かって上昇流で通過させ、反応塔下部の流動層に循環灰を導入するとともに、反応塔下部の流動層に石灰スラリーと排ガス調湿用水とを噴霧して、流動層の循環灰に石灰スラリーを付着させ、排ガスが反応塔内を上昇する間に、排ガス中の亜硫酸ガス/塩化水素ガスと石灰との接触により、亜硫酸カルシウム/硫酸カルシウムまたは塩化カルシウムを生成して、排ガス中の有害ガス成分が固形物側に移行し、反応塔からの排出物を集塵機に導いて、ガスと固形物とに分離し、清浄となされた排ガスを大気に放出し、かつ集塵された粉塵、反応生成物および未反応石灰の混合物よりなる捕集物の一部を系外に排出するとともに、捕集物の残部を循環灰として反応塔下部の流動層に再循環する半乾式排ガス脱硫/脱塩方法において、反応塔下部の流動層に供給する排ガスの流量が一定値以下に低下した場合に、反応塔下部の流動層への循環灰、石灰スラリーおよび排ガス調湿用水の供給を、同時に停止し、排ガス流量が一定値以上に回復した場合に、反応塔下部の流動層への循環灰、排ガス調湿用水および石灰スラリーの供給を、この順序で再開することを特徴としている。
【0011】
また、反応塔下部の流動層に供給する排ガスの流量が、設計値の20%以上、50%以下に低下した場合に、反応塔下部の流動層への循環灰、石灰スラリーおよび排ガス調湿用水の供給を停止するのが、好ましい。
【0012】
さらに、排ガス流量の一定値以下に低下する時間が10秒以上継続された場合に、反応塔下部の流動層への循環灰、石灰スラリーおよび排ガス調湿用水の供給を停止するのが、好ましい。
【0013】
【発明の実施の形態】
つぎに、本発明の実施の形態を、図面を参照して説明する。
【0014】
本発明の方法を実施する装置を示す図1を参照すると、本発明の方法においては、石炭焚きボイラからの亜硫酸ガスを含む排ガスや都市ごみ焼却炉からの塩化水素を含む排ガスを、排ガス導入管(1)から反応塔(2)下部の流動層に導入する。排ガスは反応塔(2)内を上方に向かって流れる上昇流として通過する。
【0015】
一方、生石灰または消石灰(以下、石灰という)を、石灰供給管(3)よりホッパー(4)に供給し、必要量だけ石灰搬送コンベア(5)から乳化機(6)に導入する。乳化機(6)には水供給管(7)によって水を供給して、石灰を水に溶解して所定濃度の石灰スラリーを調整する。この石灰スラリーを、ポンプ(9)の作動により石灰スラリー流送管(8)から塔(2)下部に具備されたスラリー噴霧ノズル(10)に供給して、反応塔(2)内を上昇する排ガス中に吹き込む。
【0016】
この実施形態では、この石灰スラリーの噴霧用媒体として、圧縮空気を使用するものである。すなわち、石灰スラリー流送管(8)の先端寄り部分に流量調整バルブ(23)が設けられるとともに、コンプレッサ(30)からの圧縮空気供給管(11)の先端寄り部分に流量調整バルブ(24)が設けられており、これらのバルブ(23)(24)により石灰スラリーと圧縮空気の流量を調整して、スラリー噴霧ノズル(10)から反応塔(2)内を上昇する排ガス中に吹き込むものである。
【0017】
また反応塔(2)下部の流動層には、排ガス調湿用の水を、調湿水専用のノズルを具備する導入管(12)から吹き込む。
【0018】
なお、図示は省略したが、場合によっては、排ガス調湿用水を、石灰スラリーおよび圧縮空気と一緒に、噴霧ノズル(10)から吹き込むようにしても良い。
【0019】
反応塔(2)内を上昇する排ガスには、塔(2)下部において供給管(13)から流動層の循環灰(後述する)の一部を、さらに供給して混合する。
【0020】
スラリー噴霧ノズル(10)から圧縮空気と共に噴霧された石灰スラリーは、当然ながら流動層の循環灰にも吹き付けられ、流動層の循環灰に石灰スラリーが付着する。そして排ガスが反応塔(2)内を上昇する間に、排ガス中の亜硫酸ガスあるいは塩化水素ガスは、流動層の循環灰の表面においてすなわち反応表面積が増大した状態で、スラリー中の石灰と接触し、亜硫酸カルシウム/硫酸カルシウムまたは塩化カルシウムを生成して、排ガス中の有害ガス成分が固形物側に移行するため、排ガスを浄化することができる。
【0021】
つぎに、反応塔(2)の頂部より流出する排ガスのガス成分と、排ガス中の粉塵と、反応後の上記カルシウム化合物と、未反応石灰とよりなる流出物をサイクロンよりなる集塵機(14)に導入し、ガス成分と固形物とに分離する。有害ガスおよび粉塵のほとんどが除去されたガス成分を、さらにバグフィルター(15)に送って除塵した後、誘引ファン(16)により排出管(17)を経て、清浄ガスとして煙突から大気に放出する。
【0022】
サイクロン(14)で集塵した粉塵と反応後の上記カルシウム化合物と未反応石灰との混合物よりなる循環灰を、サイクロン(14)下部から循環ボックス(18)に導入し、循環灰の一部を循環管(13)から反応塔(2)下部の流動層に再導入するとともに、循環灰の残部をコンベア(19)により取り出して、バグフィルター捕集灰取出し管(20)からの捕集灰と混合した後、系外排出コンベア(21)から副生物ヤード(22)に貯蔵し、副生物として利用する。
【0023】
上記実施形態においては、本発明によるいわゆる循環形式の排ガス脱硫/脱塩方法を、排ガス流量の変動が大きい小型産業ボイラや都市ごみ焼却炉に適用した場合に、反応塔(2)下部の流動層に供給する排ガスの流量が一定値以下に低下した場合に、反応塔(2)下部の流動層への循環灰、石灰スラリーおよび排ガス調湿用水の供給を、この順序で再開する。
また、反応塔(2)下部の流動層に供給する排ガスの流量が、設計値の20%以上、50%以下に、好ましくは25%以上、40%以下に低下した場合に、反応塔(2)下部の流動層への循環灰、石灰スラリーおよび排ガス調湿用水の供給を停止するのが、好ましい。
【0024】
さらに、排ガス流量の一定値以下に低下する時間が10秒以上継続された場合に、反応塔(2)下部の流動層への循環灰、石灰スラリーおよび排ガス調湿用水の供給を停止するのが、好ましい。
【0025】
本発明の上記実施形態の循環形式の排ガス脱硫/脱塩方法によれば、排ガス流量の変動が大きい小型産業ボイラや都市ごみ焼却炉に適用した場合に、石灰スラリーあるいは石灰スラリーおよび循環灰が反応塔(2)内を落下して、巨大な塊を形成することなく、ガス流量が回復した際に、装置の運転を確実に再開し、継続することができる。従って、排ガス脱硫/脱塩方法は、ガス流量の変動に強いものである。
【0026】
【発明の効果】
本発明は、上述のように、いわゆる循環形式の排ガス脱硫/脱塩方法において、有害ガス成分を含む排ガスを反応塔の下部から上方に向かって上昇流で通過させ、反応塔下部の流動層に循環灰を導入するとともに、反応塔下部の流動層に石灰スラリーと排ガス調湿用水とを噴霧して、流動層の循環灰に石灰スラリーを付着させ、排ガスが反応塔内を上昇する間に、排ガス中の亜硫酸ガス/塩化水素ガスと石灰との接触により、亜硫酸カルシウム/硫酸カルシウムまたは塩化カルシウムを生成して、排ガス中の有害ガス成分が固形物側に移行し、反応塔からの排出物を集塵機に導いて、ガスと固形物とに分離し、清浄となされた排ガスを大気に放出し、かつ集塵された粉塵、反応生成物および未反応石灰の混合物よりなる捕集物の一部を系外に排出するとともに、捕集物の残部を循環灰として反応塔下部の流動層に再循環する半乾式排ガス脱硫/脱塩方法であって、反応塔下部の流動層に供給する排ガスの流量が一定値以下に低下した場合に、反応塔下部の流動層への循環灰、石灰スラリーおよび排ガス調湿用水の供給を、同時に停止し、排ガス流量が一定値以上に回復した場合に、反応塔下部の流動層への循環灰、排ガス調湿用水および石灰スラリーの供給を、この順序で再開するものであり、本発明によれば、循環形式の排ガス脱硫/脱塩方法について、排ガス流量の変動が大きい小型産業ボイラや都市ごみ焼却炉に適用した場合に、石灰スラリーおよび循環灰が反応塔内を落下して、巨大な塊を形成することなく、ガス流量が回復した際に、装置の運転を確実に再開し、継続することができて、ガス流量の変動に強いという効果を奏する。
【図面の簡単な説明】
【図1】 本発明方法を実施する装置の実施形態を示すフローシートである。
【図2】 産業用ボイラに付設した半乾式排ガス脱硫装置において計測した排ガス流量計測チャートの例を示す曲線図である。
【符号の説明】
1 排ガス導入管
2 反応塔
3 石灰供給管
4 ホッパー
5 石灰搬送コンベア
6 乳化機
7 水供給管
8 石灰スラリー流送管
9 ポンプ
10 スラリー噴霧ノズル
11 圧縮空気供給管
12 排ガス調湿用水供給管
13 循環灰供給管
14 集塵機(サイクロン)
15 バグフィルター
16 誘引ファン
17 清浄ガス排出管
18 循環ボックス
19 排出コンベア
20 バグフィルター捕集灰取出し管
21 系外排出コンベア
22 副生物ヤード
23 バルブ
24 バルブ
25 バルブ
30 コンプレッサ[0001]
BACKGROUND OF THE INVENTION
The present invention is, for example, a semi-dry exhaust gas desulfurization / desulfurization technology among technologies for removing sulfurous acid gas contained in the exhaust gas of coal fired boilers and hydrogen chloride contained in the exhaust gas of municipal waste incinerators, that is, desulfurization / desalination technology of exhaust gas. The present invention relates to a desalting method .
[0002]
[Prior art]
Conventionally, a semi-dry type exhaust gas desulfurization / desalination method is already known. This technology belongs to a simple desulfurization / desalination method , and the structure of the apparatus is simple, so the initial investment is small, and the desulfurization / desalination rate. Has the advantages of good operation and low operating costs.
[0003]
The conventional semi-dry type exhaust gas desulfurization / desalination method allows exhaust gas containing a harmful gas component made of sulfurous acid gas or hydrogen chloride gas to pass upwardly from the lower part of the reaction tower to the fluidized bed at the lower part of the reaction tower. While circulating ash is introduced, the lime slurry and the exhaust gas humidity conditioning water are sprayed onto the fluidized bed below the reaction tower using compressed air. Then, the lime slurry is attached to the circulating ash of the fluidized bed, and while the exhaust gas rises in the reaction tower, calcium sulfite / calcium sulfate or calcium chloride is brought into contact with the sulfite gas / hydrogen chloride gas and lime in the exhaust gas. Generate. In this way, the harmful gas component in the exhaust gas is transferred to the solid matter side, and the discharge from the reaction tower is guided to the dust collector to be separated into gas and solid matter. The cleaned exhaust gas is discharged to the atmosphere, and a part of the collected matter consisting of a mixture of dust, reaction products and unreacted lime collected in the dust collector is discharged out of the system, and the remainder of the collected matter is removed. Recirculated as ash to the fluidized bed at the bottom of the reaction tower.
[0004]
Such a semi-dry type exhaust gas desulfurization / desalination method is rarely applied to the exhaust gas of large boilers for power plants and the like, and mainly has an exhaust gas flow rate of 10,000 to 100,000 (Nm 3 / h). To some extent, it was applied to the exhaust gas treatment of small industrial boilers and municipal waste incinerators.
[0005]
[Problems to be solved by the invention]
However, in the small industrial boilers and municipal waste incinerators as described above, there are many cases where the fluctuation of the exhaust gas flow rate is large. On the other hand, according to the conventional exhaust gas desulfurization / desalination method , a large amount of circulating ash is suspended in the exhaust gas, lime slurry is coated on the surface of the circulating ash, and the contact surface area with the gas is increased. Because it reacts acidic components with lime, the amount of gas fluctuates, especially when the gas flow rate drops below a certain value, there is a problem that circulating ash falls in the reaction tower and accumulates at the bottom of the reaction tower. There was a problem that it was vulnerable to fluctuations in gas flow rate.
[0006]
Here, FIG. 2 is a curve diagram illustrating an example of an exhaust gas flow rate measurement chart measured by the present inventors in a semi-dry exhaust gas desulfurization apparatus attached to a small industrial boiler. Since the automatic operation is performed according to the demand for steam, when the demand for steam is small, the operation is temporarily stopped and the exhaust gas flow rate may be reduced to zero (see the arrow portion in FIG. 2).
[0007]
In such a state, in the conventional exhaust gas desulfurization apparatus, the circulating ash falls and accumulates on the bottom of the reaction tower, and the sprayed lime slurry and the water for humidity control are scattered in the lower part of the reaction tower. Since it adheres to the inner wall and becomes a huge lump, there is a problem that the operation of the desulfurization apparatus cannot be resumed even if the gas flow rate is recovered.
[0008]
The present inventors have made intensive studies in view of the above points, the so-called Ru circulation type exhaust gas desulfurization / desalting method, the flow rate of the exhaust gas supplied to the fluidized bed reaction tower bottom below a certain value When the supply of circulating ash, lime slurry, and exhaust gas humidity control water to the fluidized bed below the reaction tower is stopped at the same time, and the exhaust gas flow rate recovers to a certain value or more, the fluidized bed below the reaction tower It was found that all the problems of the above prior art can be solved by restarting the supply of the circulating ash, the exhaust gas humidity conditioning water, and the lime slurry to this in this order, and the present invention has been completed.
[0009]
An object of the present invention, falls FGD / desalting methods smell of circular fashion Te, when applied to a small industrial boilers and municipal waste incinerators large variation of the exhaust gas flow rate, lime slurry and circulating ash in the reaction tower Thus, when the gas flow rate is recovered without forming a huge lump, the operation of the apparatus can be reliably restarted and continued, and it is resistant to fluctuations in the gas flow rate. Is to provide a way .
[0010]
[Means for Solving the Problems]
To achieve the above object, semidry FGD / desalting how by the present invention is a so-called circular fashion, the exhaust gas for removing harmful gas components composed of sulfur dioxide / hydrogen chloride gas contained in the exhaust gas This is a desulfurization / desalting method , in which exhaust gas containing harmful gas components is passed upwardly from the lower part of the reaction tower to introduce circulating ash into the fluidized bed at the lower part of the reaction tower, and the flow at the lower part of the reaction tower The lime slurry and water for conditioning the exhaust gas are sprayed on the bed, the lime slurry is adhered to the circulating ash of the fluidized bed, and while the exhaust gas rises in the reaction tower, the sulfurous acid gas / hydrogen chloride gas and lime in the exhaust gas To produce calcium sulfite / calcium sulfate or calcium chloride, the harmful gas components in the exhaust gas move to the solids side, the exhaust from the reaction tower is led to the dust collector, and separated into gas and solids The exhaust gas that has been cleaned is released to the atmosphere, and a part of the collected matter consisting of the collected dust, reaction product and unreacted lime is discharged out of the system, and the remainder of the collected matter is removed. In the semi-dry type exhaust gas desulfurization / desalination method that recirculates as circulating ash to the fluidized bed at the bottom of the reaction tower, when the flow rate of exhaust gas supplied to the fluidized bed at the bottom of the reaction tower drops below a certain value, circulating ashes to the layer, the supply of lime slurry and the exhaust gas humidity water, simultaneously stopped, when the exhaust gas flow rate is restored above a certain value, the circulation ash into the reaction tower bottom of the fluidized bed, gas humidity water and The supply of the lime slurry is resumed in this order.
[0011]
In addition, when the flow rate of exhaust gas supplied to the fluidized bed at the bottom of the reaction tower is reduced to 20% or more and 50% or less of the design value, circulating ash, lime slurry, and exhaust gas humidity control water to the fluidized bed at the bottom of the reaction tower Is preferably stopped.
[0012]
Furthermore, it is preferable to stop the supply of circulating ash, lime slurry and exhaust gas conditioning water to the fluidized bed at the bottom of the reaction tower when the time during which the exhaust gas flow rate decreases to a certain value or less is continued for 10 seconds or more.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Next, embodiments of the present invention will be described with reference to the drawings.
[0014]
Referring to Figure 1 showing an apparatus for implementing the method of the present invention, in the method of the present invention, an exhaust gas containing hydrogen chloride from the exhaust gas and municipal waste incinerators, including sulfur dioxide from coal-fired boiler, the exhaust gas inlet tube It is introduced from (1) into the fluidized bed at the bottom of the reaction tower (2). The exhaust gas passes through the reaction tower (2) as an upward flow flowing upward.
[0015]
On the other hand, quick lime or slaked lime (hereinafter referred to as lime) is supplied from the lime supply pipe (3) to the hopper (4), and the necessary amount is introduced from the lime transport conveyor (5) into the emulsifier (6). Water is supplied to the emulsifier (6) through a water supply pipe (7), and lime is dissolved in water to prepare a lime slurry having a predetermined concentration. This lime slurry is supplied to the slurry spray nozzle (10) provided at the lower part of the tower (2) from the lime slurry flow pipe (8) by the operation of the pump (9), and rises in the reaction tower (2). Inject into the exhaust gas.
[0016]
In this embodiment, compressed air is used as the spray medium for the lime slurry. That is, a flow rate adjusting valve (23) is provided near the tip of the lime slurry flow pipe (8), and a flow rate adjusting valve (24) near the tip of the compressed air supply pipe (11) from the compressor (30). The flow rate of lime slurry and compressed air is adjusted by these valves (23) and (24), and blown into the exhaust gas rising from the slurry spray nozzle (10) into the reaction tower (2). is there.
[0017]
Further, the exhaust gas humidity control water is blown into the fluidized bed below the reaction tower (2) from the introduction pipe (12) provided with a nozzle dedicated to the humidity control water.
[0018]
In addition, although illustration is abbreviate | omitted, depending on the case, you may make it blow off exhaust gas humidity-control water from a spray nozzle (10) with a lime slurry and compressed air.
[0019]
In the exhaust gas rising in the reaction tower (2), a part of circulating ash (described later) in the fluidized bed is further supplied and mixed from the supply pipe (13) at the lower part of the tower (2).
[0020]
The lime slurry sprayed with the compressed air from the slurry spray nozzle (10) is naturally sprayed on the circulating ash of the fluidized bed, and the lime slurry adheres to the circulating ash of the fluidized bed. While the exhaust gas rises in the reaction tower (2), the sulfurous acid gas or hydrogen chloride gas in the exhaust gas contacts the lime in the slurry on the surface of the circulating ash in the fluidized bed, that is, with the reaction surface area increased. Calcium sulfite / calcium sulfate or calcium chloride is generated, and harmful gas components in the exhaust gas shift to the solid side, so that the exhaust gas can be purified.
[0021]
Next, the gas component of the exhaust gas flowing out from the top of the reaction tower (2), the dust in the exhaust gas, the calcium compound after the reaction, and the effluent consisting of unreacted lime are put into a dust collector (14) made of a cyclone. Introduced and separated into gas components and solids. The gas components from which most of the harmful gases and dusts have been removed are further sent to the bag filter (15) for dust removal, and then discharged from the chimney to the atmosphere as clean gas through the exhaust pipe (17) by the induction fan (16). .
[0022]
Circulating ash consisting of a mixture of the dust collected by the cyclone (14) and the above-mentioned calcium compound after reaction and unreacted lime is introduced into the circulation box (18) from the lower part of the cyclone (14), and a part of the circulating ash is introduced. Re-introduced from the circulation pipe (13) to the fluidized bed at the bottom of the reaction tower (2), and the remainder of the circulating ash is taken out by the conveyor (19) to collect the collected ash from the bag filter collection ash removal pipe (20). After mixing, it is stored in the byproduct yard (22) from the outside discharge conveyor (21) and used as a byproduct.
[0023]
In the above embodiment, when the so-called circulation-type exhaust gas desulfurization / desalination method according to the present invention is applied to a small industrial boiler or municipal waste incinerator having a large fluctuation in exhaust gas flow rate, the fluidized bed below the reaction tower (2) If the flow rate of the exhaust gas supplied falls below a predetermined value, the reaction column (2) circulating ash to the lower fluidized bed, the supply of lime slurry and the exhaust gas humidity water, it resumed in the order of this.
Further, when the flow rate of the exhaust gas supplied to the fluidized bed below the reaction tower (2) is reduced to 20% or more and 50% or less of the designed value, preferably 25% or more and 40% or less, the reaction tower (2 It is preferable to stop the supply of circulating ash, lime slurry, and exhaust gas humidity conditioning water to the lower fluidized bed.
[0024]
Furthermore, when the time during which the exhaust gas flow rate falls below a certain value continues for 10 seconds or longer, the supply of circulating ash, lime slurry, and exhaust gas conditioning water to the fluidized bed below the reaction tower (2) may be stopped. ,preferable.
[0025]
According to the circulation type exhaust gas desulfurization / desalination method of the above embodiment of the present invention, when applied to a small industrial boiler or municipal waste incinerator having a large fluctuation in exhaust gas flow rate, lime slurry or lime slurry and circulating ash react. When the gas flow rate is recovered without falling into the tower (2) and forming a huge lump, the operation of the apparatus can be reliably resumed and continued. Therefore, the exhaust gas desulfurization / desalination method is resistant to fluctuations in the gas flow rate.
[0026]
【The invention's effect】
The present invention, as described above, the so-called Te FGD / desalting methods smell of a circular fashion, the exhaust gas containing toxic gas components from the bottom of the reaction column is passed upflow upward, the reaction tower bottom of In addition to introducing circulating ash into the fluidized bed, spraying lime slurry and exhaust gas humidity conditioning water onto the fluidized bed at the bottom of the reaction tower to attach the lime slurry to the circulating ash in the fluidized bed, and the exhaust gas rises in the reaction tower. In the meantime, contact between sulfite gas / hydrogen chloride gas and lime in the exhaust gas produces calcium sulfite / calcium sulfate or calcium chloride, and harmful gas components in the exhaust gas move to the solids side, from the reaction tower. The waste is guided to a dust collector, separated into gas and solids, the cleaned exhaust gas is released to the atmosphere, and the collected matter consisting of a mixture of dust, reaction products and unreacted lime collected. Some out of the system As well as out, a semidry FGD / desalting process for recycling into the fluidized bed reaction tower bottom of the remainder of the collected matter as circulating ash, flow rate of the exhaust gas supplied to the fluidized bed reaction tower bottom fixed value When the flow rate drops below, the supply of circulating ash, lime slurry, and exhaust gas humidity conditioning water to the fluidized bed at the bottom of the reaction tower is stopped at the same time. circulating ashes to the layer, the supply of the exhaust gas humidity water and lime slurry, is intended to resume in that order, according to the present invention, with the FGD / desalting method circular fashion, a large fluctuation of the exhaust gas flow rate when applied to a small industrial boilers and municipal waste incinerators, lime slurry over contact and circulating ash may fall within the reaction column, without forming a huge mass in the gas flow is restored, operation of the apparatus Surely resume and continue It and be an effect that strong fluctuations of gas flow rate.
[Brief description of the drawings]
FIG. 1 is a flow sheet showing an embodiment of an apparatus for carrying out the method of the present invention.
FIG. 2 is a curve diagram showing an example of an exhaust gas flow rate measurement chart measured in a semi-dry exhaust gas desulfurization apparatus attached to an industrial boiler.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Exhaust
15
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000249658A JP3823203B2 (en) | 2000-08-21 | 2000-08-21 | Semi-dry exhaust gas desulfurization / desalination method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000249658A JP3823203B2 (en) | 2000-08-21 | 2000-08-21 | Semi-dry exhaust gas desulfurization / desalination method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2002058957A JP2002058957A (en) | 2002-02-26 |
JP3823203B2 true JP3823203B2 (en) | 2006-09-20 |
Family
ID=18739370
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000249658A Expired - Fee Related JP3823203B2 (en) | 2000-08-21 | 2000-08-21 | Semi-dry exhaust gas desulfurization / desalination method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3823203B2 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101145202B1 (en) * | 2009-10-27 | 2012-05-24 | 주식회사 이메디원 | The Noxious gas cleaning system |
US20140065559A1 (en) * | 2012-09-06 | 2014-03-06 | Alstom Technology Ltd. | Pressurized oxy-combustion power boiler and power plant and method of operating the same |
KR101606257B1 (en) * | 2014-01-28 | 2016-03-24 | 주식회사 포스코아이씨티 | Apparatus and Method for Denitrifying and Desulfurizing Exhaust Gas using Fluidized Bed |
CZ307620B6 (en) * | 2017-09-19 | 2019-01-16 | Vysoká Škola Báňská-Technická Univerzita Ostrava | A method for treating a product after flue gas desulphurisation by a semi-dry limestone method and an apparatus for performing the method |
CN112892198A (en) * | 2021-03-03 | 2021-06-04 | 江苏宝净环境科技有限公司 | Efficient spraying and emulsifying double-effect tower |
-
2000
- 2000-08-21 JP JP2000249658A patent/JP3823203B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2002058957A (en) | 2002-02-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2040823B1 (en) | Reduced liquid discharge in wet flue gas desulfurization | |
US7641876B2 (en) | Reduced liquid discharge in wet flue gas desulfurization | |
CN101648099B (en) | Purifying treatment device and purifying treatment method for flue gas multicomponent pollutant generated by incinerating refuse | |
AU2007258119B2 (en) | Integrated dry and wet flue gas cleaning process and system | |
JP3881375B2 (en) | Flue gas cleaning device | |
US8277545B2 (en) | Method of reducing an amount of mercury in a flue gas | |
CN1962034A (en) | Method and apparatus for removing sulfur, nitrate and mercury simultaneously from boiler flue gas | |
CN1896591A (en) | Smoke purifier of domestic refuse incinerator | |
WO2016011682A1 (en) | Equipment and method for circulating fluidized bed semidry simultaneous desulfurization, denitration, demercuration, and removal of dioxins of sintering flue gas | |
CN102794090A (en) | Flue gas purifier utilizing combination of spray-drying method and hydrated lime powder injection | |
US4670238A (en) | Recycled sorbent flue gas desulfurization | |
US5964921A (en) | Method and device for removing harmful substances, in particular, dioxin | |
CN204502789U (en) | A kind of incinerator smoke denitration desulfurizer | |
JP3823203B2 (en) | Semi-dry exhaust gas desulfurization / desalination method | |
JP2004167406A (en) | Exhaust gas cleaning apparatus | |
CN211328702U (en) | Incineration flue gas treatment device | |
JP2002045644A (en) | Semi-dry exhaust gas desulfurization / desalting method | |
Felsvang et al. | The GSA dry scrubbing technology for retrofit applications | |
JPH04135617A (en) | Dry desulfurizing method with spout fluidized bed | |
Licata et al. | New FGD Developments In Europe | |
JPH04176318A (en) | Waste gas desulfurizer | |
Reissner et al. | TURBOSORP®: Emission Limits After 17th BimSchV (German Federal Immission Act) at Lowest Costs in a Simple Dry Process—Comparison of Dry/Semi Dry Processes and Results of Mercury and Dioxin Separation in a One Step Process | |
CN106139845A (en) | A kind of fire coal boiler fume denitration in the stove two-grade desulfurizing device | |
WO2023112863A1 (en) | Waste material incineration facility | |
Olsen et al. | Experience with FLS-GSA dry scrubbing technology for waste-to-energy applications |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20040625 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20050825 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20050906 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20051104 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20060516 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20060612 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090707 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100707 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110707 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120707 Year of fee payment: 6 |
|
LAPS | Cancellation because of no payment of annual fees |