[go: up one dir, main page]

JP3823037B2 - Discharge plasma processing equipment - Google Patents

Discharge plasma processing equipment Download PDF

Info

Publication number
JP3823037B2
JP3823037B2 JP2001298026A JP2001298026A JP3823037B2 JP 3823037 B2 JP3823037 B2 JP 3823037B2 JP 2001298026 A JP2001298026 A JP 2001298026A JP 2001298026 A JP2001298026 A JP 2001298026A JP 3823037 B2 JP3823037 B2 JP 3823037B2
Authority
JP
Japan
Prior art keywords
electrode
discharge
substrate
plasma
solid dielectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001298026A
Other languages
Japanese (ja)
Other versions
JP2003093869A (en
Inventor
卓也 屋良
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP2001298026A priority Critical patent/JP3823037B2/en
Publication of JP2003093869A publication Critical patent/JP2003093869A/en
Application granted granted Critical
Publication of JP3823037B2 publication Critical patent/JP3823037B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Plasma Technology (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、放電プラズマ処理装置に関し、特に、電圧印加電極と基材との間の異状放電を抑制し、プラズマ発生空間外にある基材を処理する放電プラズマ処理装置に関する。
【0002】
【従来の技術】
従来から、低圧条件下でグロー放電プラズマを発生させて被処理体の表面改質、又は被処理体上に薄膜形成を行う方法が実用化されている。しかし、これらの低圧条件下における処理装置は、真空チャンバー、真空排気装置等が必要であり、表面処理装置は高価なものとなり、大面積基板等を処理する際にはほとんど用いられていなかった。このため、特開平6−2149号公報、特開平7−85997号公報等に記載されているような大気圧近傍の圧力下で放電プラズマを発生させる常圧プラズマ処理装置が提案されてきている。
【0003】
しかしながら、常圧プラズマ処理方法においても、固体誘電体等で被覆した平行平板型等の電極間に被処理体を設置し、電極間に電圧を印加し、発生したプラズマで被処理体を処理する装置では、被処理体全体を放電空間に置くこととなり、被処理体にダメージを与えることになりやすいという問題があった。
【0004】
このような問題を解決するものとして、被処理体を放電空間中に配置するのではなく、その近傍に配置し、放電空間から被処理体にプラズマを吹き付けるリモート型の装置が提案されている。特開平11−251304号公報及び特開平11−260597号公報には外側電極を備えた筒状の反応管及び反応管の内部に内側電極を具備し、両電極に冷却手段を設け、反応管内部でグロー放電を発生させ、反応管からプラズマジェットを吹き出して被処理体に吹きつけるプラズマ処理装置が、特開平11−335868号公報には平行平板型の電極を用い、さらに被処理体近傍の排気手段によって、プラズマを被処理体に接触させるプラズマ処理装置が開発されている。
【0005】
しかしながら、これらの装置は、放電空間から被処理体までの距離が遠く、このため、生成したプラズマを効率的に被処理体に接触させることができない。一方、電極を被処理体に近付けると、電極間のみでなく、印加電極と被処理体との間でも放電が起こりやすくなり、放電が安定しにくく、基材上に形成される薄膜にスジ状の模様が入って、膜質不良となるという問題を生じていた。
【0006】
【発明が解決しようとする課題】
本発明は、上記問題に鑑み、高速処理及び大面積処理に対応可能でかつ、基材にダメージを与えず、基材上に形成される薄膜等に影響を与えない放電プラズマ処理装置を提供することを目的とする。
【0007】
【課題を解決するための手段】
本発明者らは、上記課題を解決すべく鋭意研究した結果、電圧印加電極と接地電極の基材対向面を固体誘電体で被覆し、さらに、電圧印加電極と接地電極の基材に対向とする面を固体誘電体で被覆し、対向電極間でグロー放電プラズマを発生させ、放電空間外に配置した被処理基材に接触させることにより、均一で、高速処理が可能で、かつ基材にダメージを与えズ、良質な薄膜等を形成する処理を行うことができることを見出し、本発明を完成させた。
【0008】
すなわち、本発明の第1の発明は、電圧印加電極と接地電極からなる対向電極を有し、前記対向電極の少なくとも一方の電極対向面が固体誘電体で被覆され、前記対向電極間に電界を印加することにより前記対向電極間に発生するグロー放電プラズマを、プラズマ発生空間外に配置された基材に導いて処理を行う処理装置であって、前記電圧印加電極及び接地電極の基材に対向する面が、固体誘電体によって覆われていることを特徴とする放電プラズマ処理装置である。
【0009】
また、本発明の第2の発明は、電圧印加電極及び接地電極の基材に対向する面の周縁が曲面によって形成されることを特徴とする第1の発明に記載の放電プラズマ処理装置である。
【0010】
また、本発明の第3の発明は、電極と基材との間隔が10mm以下であることを特徴とする第1又は2の発明に記載の放電プラズマ処理装置である。
【0011】
また、本発明の第4の発明は、電圧印加電極と接地電極からなる対向電極が、3枚以上の電極により2つ以上の放電空間を形成する対向電極であることを特徴とする第1〜3のいずれかの発明に記載の放電プラズマ処理装置である。
【0012】
また、本発明の第5の発明は、接地電極(1)、電圧印加電極、接地電極(2)からなり、接地電極(1)と電圧印加電極との間の空間、接地電極(2)と電圧印加電極との間の空間が共に放電空間となされるように配置されることを特徴とする第4の発明に記載の放電プラズマ処理装置である。
【0013】
また、本発明の第6の発明は、放電空間の幅方向に垂直に基材を運搬する機構を備えた第1〜5のいずれかの発明に記載の放電プラズマ処理装置である。
【0014】
また、本発明の第7の発明は、電界が、パルス立ち上がり及び/又は立ち下がり時間が10μs以下、電界強度が10〜1000kV/cmのパルス電界であることを特徴とする第1〜6のいずれかの発明に記載の放電プラズマ処理装置である。
【0015】
【発明の実施の形態】
本発明は、対向する電極の少なくとも一方の対向面を固体誘電体で被覆した電圧印加電極と接地電極からなる対向電極間に電界を印加し、当該電極間に処理ガスを導入して発生するグロー放電プラズマを放電空間から離れた位置に配置された被処理基材に誘導して接触させて処理する放電プラズマ処理装置において、電極と基材間のアーク放電等を阻止するために、電圧印加電極と接地電極の基材に対向する面を固体誘電体で被覆した放電プラズマ処理装置である。以下に詳細に本発明を説明する。
【0016】
本発明の装置の一例を図で説明する。図1は、本発明のプラズマ放電装置の例を説明するための模式的装置図である。図1において、電圧印加電極2と接地電極3は、対向して設置され、基材に対向する面は、それぞれ固体誘電体6で被覆されている。処理ガスは、矢印方向に電圧印加電極2と接地電極3で形成される放電空間4に導入され、プラズマ化され、プラズマ吹き出し口5から基材10に向かって吹き出される。電圧印加電極2の基材10に対向する面が固体誘電体6で覆われているため、基材に向けてのアーク放電が起きにくい。すなわち、電圧印加電極に発生した小ストリーマは接地電極に落ち、基材表面は避雷し、その結果、基材上に形成される薄膜等に及ぼす影響がなくなる利点を有する。電圧印加電極2と接地電極3の対向面は固体誘電体6で被覆され、電圧印加電極2と接地電極3の基材に対向する面と側面との境界は、アーク放電の原因となりやすい角部は丸められ、曲面によって形成されている。
【0017】
図2は、3枚以上の電極により2つ以上の放電空間を形成する対向電極からなる本発明のプラズマ処理装置を説明するための模式的装置図である。図2において、接地電極3、電圧印加電極2、接地電極3’は、それぞれ対向するように設置され、接地電極3と電圧印加電極2との間の空間を放電空間4とし、接地電極3’と電圧印加電極2との間の空間を放電空間4’とし、電圧印加電極2と接地電極3の基材10に対向する面は固体誘電体で被覆されている。処理ガスは、矢印方向に放電空間4及び4’にそれぞれ導入され、放電空間内4及び4’でプラズマ化され、プラズマ吹き出し口5及び5’から基材10に向かって吹き出される。本装置においては、3枚の電極を対向させ、真ん中に電圧印加電極を配置し、両側に接地電極を配置することにより、1台の電源で2ヶ所にプラズマを発生させることができ、より高速に基材を処理することができる。また、図2においても、電圧印加電極2の基材10に対向する面が固体誘電体6で覆われているため、基材に向けてのアーク放電が起きにくい。すなわち、電圧印加電極に発生した小ストリーマは接地電極に落ち、基材表面は避雷し、その結果、基材上に形成される薄膜等に及ぼす影響がなくなる利点を有する。なお、電圧印加電極2と接地電極3及び接地電極3’との対向面は固体誘電体6で被覆されており、基材側の面はその周縁が全て曲面で形成されている。
【0018】
また、本発明のプラズマ処理装置は、主として平行平板型電極間で発生する処理ガスのグロー放電プラズマを放電空間から離れた位置に配置された被処理基材に誘導して接触させて処理する装置であって、放電空間のプラズマ吹き出し口からプラズマを基材に向かって垂直に吹き出させるようにすると、より効果的に基材を処理できる。したがって、放電空間の幅方向に垂直に基材を運搬させる機構を併設することが好ましい。
【0019】
上記電極の材質としては、銅、アルミニウム等の金属単体、ステンレス、真鍮等の合金、金属間化合物等からなるものが挙げられる。電極の形状としては、プラズマ放電が安定にできれば、特に限定されないが、電界集中によるアーク放電の発生を避けるために、対向電極間の距離が一定となる構造であることが好ましく、より好ましくは電圧印加電極と接地電極間の間が平行平坦部分を有する形状であり、特に好ましくは、両電極が略平面形状であるのが好ましい。
【0020】
本発明の装置においては、電圧印加電極と接地電極の対向面の一方又は双方は固体誘電体で被覆されており、さらに電圧印加電極と接地電極の基材対向面は完全に固体誘電体で被覆されている。この際、固体誘電体と被覆される側の電極が密着し、かつ、接する電極の対向面を完全に覆うようにする。固体誘電体によって覆われずに電極同士が直接対向する部位があると、そこからアーク放電が生じやすい。
【0021】
上記電極同士の対向面の固体誘電体の厚みは、0.01〜4mmであることが好ましい。厚すぎると放電プラズマを発生するのに高電圧を要することがあり、薄すぎると電圧印加時に絶縁破壊が起こり、アーク放電が発生することがある。上記被処理基材に対向する面を被覆する固体誘電体の厚みは、上記電極対向面の固体誘電体よりも厚く、0.5〜8mmであることが好ましい。薄すぎるとアーク放電防止の効果が期待できず、厚すぎると放電空間から被処理基材までの距離を小さくする効果が期待できなくなる。
【0022】
固体誘電体の材質としては、例えば、ポリテトラフルオロエチレン、ポリエチレンテレフタレート等のプラスチック、ガラス、二酸化珪素、酸化アルミニウム、二酸化ジルコニウム、二酸化チタン等の金属酸化物、チタン酸バリウム等の複酸化物等が挙げられる。
【0023】
特に、25℃環境下における比誘電率が10以上のものである固体誘電体を用いれば、低電圧で高密度の放電プラズマを発生させることができ、処理効率が向上する。比誘電率の上限は特に限定されるものではないが、現実の材料では18,500程度のものが入手可能であり、本発明に使用出来る。特に好ましくは比誘電率が10〜100の固体誘電体である。上記比誘電率が10以上である固体誘電体の具体例としては、二酸化ジルコニウム、二酸化チタン等の金属酸化物、チタン酸バリウム等の複酸化物を挙げることが出来る。
【0024】
上記電極間の距離は、固体誘電体の厚さ、印加電圧の大きさ、プラズマを利用する目的等を考慮して適宜決定されるが、0.1〜10mmであることが好ましく、より好ましくは0.1〜5mmである。0.1mm未満では、電極間の間隔を置いて設置するのに充分でないことがあり、一方、10mmを超えると、均一な放電プラズマを発生させにくい。
【0025】
上記電極と被処理基材の距離は、10mm以下であることが好ましい。10mmを超えると、発生した放電プラズマを効率よく被処理基材に接触させることができない。
【0026】
本発明では、上記電極間に、高周波電界やパルス電界の電界が印加され、プラズマを発生させるが、パルス電界を印加することが好ましく、特に、電界の立ち上がり及び/又は立ち下がり時間が、10μs以下である電界が好ましい。10μsを超えると放電状態がアークに移行しやすく不安定なものとなり、パルス電界による高密度プラズマ状態を保持しにくくなる。また、立ち上がり時間及び立ち下がり時間が短いほどプラズマ発生の際のガスの電離が効率よく行われるが、40ns未満の立ち上がり時間のパルス電界を実現することは、実際には困難である。より好ましくは50ns〜5μsである。なお、ここでいう立ち上がり時間とは、電圧(絶対値)が連続して増加する時間、立ち下がり時間とは、電圧(絶対値)が連続して減少する時間を指すものとする。
【0027】
上記パルス電界の電界強度は、10〜1000kV/cmとなるようにするのが好ましく、より好ましくは20〜1000kV/cmである。電界強度が10kV/cm未満であると処理に時間がかかりすぎ、1000kV/cmを超えるとアーク放電が発生しやすくなる。
【0028】
上記パルス電界の周波数は、0.5kHz以上であることが好ましい。0.5kHz未満であるとプラズマ密度が低いため処理に時間がかかりすぎる。上限は特に限定されないが、常用されている13.56MHz、試験的に使用されている500MHzといった高周波帯でも構わない。負荷との整合のとり易さや取り扱い性を考慮すると、500kHz以下が好ましい。このようなパルス電界を印加することにより、処理速度を大きく向上させることができる。
【0029】
また、上記パルス電界におけるひとつのパルス継続時間は、200μs以下であることが好ましい。200μsを超えるとアーク放電に移行しやすくなる。ここで、ひとつのパルス継続時間とは、ON、OFFの繰り返しからなるパルス電界における、ひとつのパルスの連続するON時間を言う。
【0030】
本発明の放電プラズマ処理装置は、どのような圧力下でも用いることができるが、常圧放電プラズマ処理に用いるとその効果を十分に発揮でき、特に、大気圧近傍下の圧力下で用いるとその効果が十分に発揮される。
【0031】
上記大気圧近傍の圧力下とは、1.333×104〜10.664×104Paの圧力下を指す。中でも、圧力調整が容易で、装置が簡便になる9.331×104〜10.397×104Paの範囲が好ましい。
【0032】
大気圧近傍の圧力下では、ヘリウム、ケトン等の特定のガス以外は安定してプラズマ放電状態が保持されずに瞬時にアーク放電状態に移行することが知られているが、パルス状の電界を印加することにより、アーク放電に移行する前に放電を止め、再び放電を開始するというサイクルが実現されると考えられる。
【0033】
本発明で処理できる被処理基材としては、ポリエチレン、ポリプロピレン、ポリスチレン、ポリカーボネート、ポリエチレンテレフタレート、ポリテトラフルオロエチレン、アクリル樹脂等のプラスチック、ガラス、セラミック、金属等が挙げられる。基材の形状としては、板状、フィルム状等のものが挙げられるが、特にこれらに限定されない。本発明の表面処理方法によれば、様々な形状を有する基材の処理に容易に対応することができる。
【0034】
本発明で用いる処理ガスとしては、電界を印加することによってプラズマを発生するガスであれば、特に限定されず、処理目的により種々のガスを使用できる。
【0035】
上記処理用ガスとして、CF4、C26、CClF3、SF6等のフッ素含有化合物ガスを用いることによって、撥水性表面を得ることができる。
【0036】
また、処理用ガスとして、O2、O3、水、空気等の酸素元素含有化合物、N2、NH3等の窒素元素含有化合物、SO2、SO3等の硫黄元素含有化合物を用いて、基材表面にカルボニル基、水酸基、アミノ基等の親水性官能基を形成させて表面エネルギーを高くし、親水性表面を得ることができる。また、アクリル酸、メタクリル酸等の親水基を有する重合性モノマーを用いて親水性重合膜を堆積することもできる。
【0037】
さらに、Si、Ti、Sn等の金属の金属−水素化合物、金属−ハロゲン化合物、金属アルコラート等の処理用ガスを用いて、SiO2、TiO2、SnO2等の金属酸化物薄膜を形成させ、基材表面に電気的、光学的機能を与えることができ、ハロゲン系ガスを用いてエッチング処理、ダイシング処理を行ったり、酸素系ガスを用いてレジスト処理や有機物汚染の除去を行ったり、アルゴン、窒素等の不活性ガスによるプラズマで表面クリーニングや表面改質を行うこともできる。
【0038】
経済性及び安全性の観点から、上記処理用ガス単独雰囲気よりも、以下に挙げるような希釈ガスによって希釈された雰囲気中で処理を行うことが好ましい。希釈ガスとしては、ヘリウム、ネオン、アルゴン、キセノン等の希ガス、窒素気体等が挙げられる。これらは単独でも2種以上を混合して用いてもよい。また、希釈ガスを用いる場合、処理用ガスの割合は0.01〜10体積%であることが好ましい。
【0039】
なお、本発明の装置によれば、プラズマ発生空間中に存在する気体の種類を問わずグロー放電プラズマを発生させることが可能である。公知の低圧条件下におけるプラズマ処理はもちろん、特定のガス雰囲気下の大気圧プラズマ処理においても、外気から遮断された密閉容器内で処理を行うことが必須であったが、本発明のグロー放電プラズマ処理装置を用いた方法によれば、開放系、あるいは、気体の自由な流失を防ぐ程度の低気密系での処理が可能となる。
【0040】
本発明のパルス電界を用いた大気圧放電処理装置によると、全くガス種に依存せず、電極間において直接大気圧下で放電を生じせしめることが可能であり、より単純化された電極構造、放電手順による大気圧プラズマ装置、及び処理手法でかつ高速処理を実現することができる。また、パルス周波数、電圧、電極間隔等のパラメータにより処理に関するパラメータも調整できる。
【0041】
【実施例】
本発明を実施例に基づいてさらに詳細に説明するが、本発明はこれら実施例のみに限定されるものではない。
【0042】
実施例1
図1に示す装置を用い、放電プラズマ処理を行った。電圧印加電極2及び接地電極3として、長さ100mm×高さ50mm×厚み10mmのSUS製平行平板電極を用い、各電極対向面には固体誘電体としてチタン酸バリウム0.6mmに重ねてアルミナ0.6mmを溶射し、2mmの間隔をおいて設置した。さらに両電極の基材側の側面に厚み1mmのアルミナセラミックス板を配置した。基材として、表面に銅箔のついたポリイミド基材を用い、アルミナセラミックス板6との間隔を0.5mmになるように配置し、200mm/minで搬送するよにした。処理ガスとして、乾燥空気を15L/minの速度で放電空間4に導入し、パルス立ち上がり速度5μs、電極間に電圧18kVPP、周波数10kHzのパルス電界を印加したところ、放電状態は、均一に良好であり、基材との異常放電も生ぜず、電極部からの落雷は見られず、基材を処理できた。プラズマ処理前後のイオン交換水に対する接触角の変化を測定したところ、銅箔表面の接触角が90°から20°に変わって処理がなされたことが確認された。
【0043】
比較例1
電圧印加電極と接地電極の基材対向面側にアルミナセラミックス板を設けない以外は、実施例1と同様にして基材を処理した。放電開始後、基材の銅箔表面に向かって電圧印加電極先端部から、針状の微少な落雷が見られ、基材の落雷箇所に打痕状の跡が認められた。
【0044】
実施例2
図2に示す装置を用い、放電プラズマ処理を行った。電圧印加電極2及び接地電極3として、長さ100mm×高さ50mm×厚み10mmのSUS製平行平板電極を用い、各電極対向面には固体誘電体としてアルミナ1mmを溶射し、各2mmの間隔をおいて設置した。さらに各電極の基材側の側面に厚み1mmのアルミナセラミックス板を配置した。基材として、金電極およびソルダーレジストを有する電子基板を用い、アルミナセラミックス板6との間隔を0.5mmになるように配置し、200mm/minで搬送するよにした。処理ガスとして、乾燥空気を15L/minの速度で両放電空間に導入し、電圧印加電極にパルス立ち上がり速度5μs、電圧18kVPP、周波数10kHzのパルス電界を印加したところ、放電状態は、均一に良好であり、電極部からの落雷は見られず、基材を処理できた。電子基板の金電極およびソルダーレジスト表面の濡れ性を、プラズマ処理前後のイオン交換水に対する接触角の変化を測定したところ、金電極の接触角が85°から31°に変わり、ソルダーレジスト部の接触角が83°から32°に変わり、処理が有効に行われたことを確認した。
【0045】
【発明の効果】
本発明の常圧プラズマ処理装置は、被処理基材に熱的、電気的ダメージを与えず、かつ異常放電が起きない簡便な処理装置であるので、高速処理及び大面積処理に対応可能でかつ半導体製造工程で用いられる種々の方法を始めとして、あらゆるプラズマ処理方法において、インライン化及び高速化を実現するのに有効に用いることができる。これにより、処理時間の短縮化、コスト低下が可能になり、従来では不可能あるいは困難であった様々な用途への展開が可能となる。
【図面の簡単な説明】
【図1】本発明の放電プラズマ処理装置の例を説明する模式的図である。
【図2】本発明の放電プラズマ処理装置の例を説明する模式的図である。
【符号の説明】
1 電源(高電圧パルス電源)
2 電圧印加電極
3、3’ 接地電極
4、4’ 放電空間
5、5’ プラズマ吹き出し口
6 固体誘電体
10 基材
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a discharge plasma processing apparatus, and more particularly to a discharge plasma processing apparatus that suppresses abnormal discharge between a voltage application electrode and a base material and processes a base material outside the plasma generation space.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, a method for generating a glow discharge plasma under a low pressure condition to perform surface modification of a target object or forming a thin film on a target object has been put into practical use. However, the processing apparatus under these low-pressure conditions requires a vacuum chamber, an evacuation apparatus, and the like, and the surface processing apparatus becomes expensive, and is hardly used when processing a large area substrate or the like. For this reason, there has been proposed an atmospheric pressure plasma processing apparatus for generating discharge plasma under a pressure in the vicinity of atmospheric pressure as described in JP-A-6-2149, JP-A-7-85997, and the like.
[0003]
However, even in the atmospheric pressure plasma processing method, an object to be processed is installed between parallel plate type electrodes coated with a solid dielectric or the like, a voltage is applied between the electrodes, and the object to be processed is processed with the generated plasma. In the apparatus, there is a problem that the entire object to be processed is placed in the discharge space, and the object to be processed is likely to be damaged.
[0004]
In order to solve such a problem, a remote type apparatus has been proposed in which the object to be processed is not disposed in the discharge space but is disposed in the vicinity thereof, and plasma is blown from the discharge space to the object to be processed. In JP-A-11-251304 and JP-A-11-260597, a cylindrical reaction tube provided with an outer electrode, an inner electrode inside the reaction tube, a cooling means provided on both electrodes, and the inside of the reaction tube Japanese Patent Application Laid-Open No. 11-335868 uses a parallel plate type electrode to generate a glow discharge in the reactor, blows out a plasma jet from a reaction tube, and blows it on the object to be processed. A plasma processing apparatus for bringing plasma into contact with an object to be processed has been developed.
[0005]
However, these apparatuses have a long distance from the discharge space to the object to be processed, and thus the generated plasma cannot be brought into contact with the object to be processed efficiently. On the other hand, when the electrode is brought close to the object to be processed, discharge is likely to occur not only between the electrodes but also between the applied electrode and the object to be processed, and the discharge is difficult to stabilize, and the thin film formed on the substrate has a streak shape. As a result, the problem of poor film quality occurred.
[0006]
[Problems to be solved by the invention]
In view of the above problems, the present invention provides a discharge plasma processing apparatus that can cope with high-speed processing and large-area processing, does not damage the base material, and does not affect the thin film formed on the base material. For the purpose.
[0007]
[Means for Solving the Problems]
As a result of diligent research to solve the above problems, the inventors of the present invention covered the base material facing surfaces of the voltage application electrode and the ground electrode with a solid dielectric, and further opposed the base material of the voltage application electrode and the ground electrode. The surface to be coated is covered with a solid dielectric, glow discharge plasma is generated between the counter electrodes, and contacted with the substrate to be processed placed outside the discharge space, so that uniform and high-speed processing is possible and the substrate is coated. The present invention has been completed by finding out that it is possible to perform a process of forming a good quality thin film or the like by giving damage.
[0008]
That is, the first invention of the present invention has a counter electrode composed of a voltage application electrode and a ground electrode, and at least one electrode facing surface of the counter electrode is covered with a solid dielectric, and an electric field is generated between the counter electrodes. A processing apparatus that conducts a process by introducing glow discharge plasma generated between the counter electrodes by applying the glow discharge plasma to a substrate disposed outside the plasma generation space, and facing the substrate of the voltage application electrode and the ground electrode The discharge plasma processing apparatus is characterized in that the surface to be covered is covered with a solid dielectric.
[0009]
According to a second aspect of the present invention, there is provided the discharge plasma processing apparatus according to the first aspect, characterized in that the peripheral edges of the surfaces of the voltage application electrode and the ground electrode facing the base material are formed by curved surfaces. .
[0010]
According to a third aspect of the present invention, there is provided the discharge plasma processing apparatus according to the first or second aspect, wherein the distance between the electrode and the substrate is 10 mm or less.
[0011]
According to a fourth aspect of the present invention, the counter electrode comprising the voltage application electrode and the ground electrode is a counter electrode in which two or more discharge spaces are formed by three or more electrodes. 4. The discharge plasma processing apparatus according to any one of the inventions.
[0012]
The fifth aspect of the present invention comprises a ground electrode (1), a voltage application electrode, and a ground electrode (2). The space between the ground electrode (1) and the voltage application electrode, the ground electrode (2) and The discharge plasma processing apparatus according to the fourth aspect of the present invention, wherein the discharge plasma processing apparatus is arranged such that a space between the voltage application electrodes is a discharge space.
[0013]
Moreover, 6th invention of this invention is a discharge plasma processing apparatus as described in any one of 1st-5th invention provided with the mechanism which conveys a base material perpendicularly | vertically to the width direction of discharge space.
[0014]
According to a seventh aspect of the present invention, in any one of the first to sixth aspects, the electric field is a pulse electric field having a pulse rise and / or fall time of 10 μs or less and an electric field strength of 10 to 1000 kV / cm. The discharge plasma processing apparatus according to the invention.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
According to the present invention, a glow is generated by applying an electric field between a voltage applying electrode and a ground electrode, which are at least one of the opposing electrodes covered with a solid dielectric, and introducing a processing gas between the electrodes. In a discharge plasma processing apparatus for inducing and contacting a discharge plasma with a substrate to be processed disposed at a position away from a discharge space, a voltage application electrode is used to prevent arc discharge between the electrode and the substrate. And the surface of the ground electrode facing the base material is a discharge plasma processing apparatus coated with a solid dielectric. The present invention is described in detail below.
[0016]
An example of the apparatus of the present invention will be described with reference to the drawings. FIG. 1 is a schematic device diagram for explaining an example of a plasma discharge device of the present invention. In FIG. 1, the voltage application electrode 2 and the ground electrode 3 are installed facing each other, and the surfaces facing the base material are each covered with a solid dielectric 6. The processing gas is introduced into the discharge space 4 formed by the voltage application electrode 2 and the ground electrode 3 in the direction of the arrow, is turned into plasma, and is blown out from the plasma outlet 5 toward the substrate 10. Since the surface of the voltage application electrode 2 facing the base material 10 is covered with the solid dielectric 6, arc discharge is less likely to occur toward the base material. That is, the small streamer generated in the voltage application electrode falls to the ground electrode, and the surface of the base material is protected from lightning. As a result, there is an advantage that there is no influence on the thin film formed on the base material. The opposing surface of the voltage application electrode 2 and the ground electrode 3 is covered with a solid dielectric 6, and the boundary between the surface of the voltage application electrode 2 and the ground electrode 3 facing the base material and the side surface is a corner that is likely to cause arc discharge. Is rounded and formed by a curved surface.
[0017]
FIG. 2 is a schematic diagram for explaining the plasma processing apparatus of the present invention comprising counter electrodes in which two or more discharge spaces are formed by three or more electrodes. In FIG. 2, the ground electrode 3, the voltage application electrode 2, and the ground electrode 3 ′ are installed so as to face each other, the space between the ground electrode 3 and the voltage application electrode 2 is a discharge space 4, and the ground electrode 3 ′. The space between the voltage application electrode 2 and the voltage application electrode 2 is defined as a discharge space 4 ′, and the surfaces of the voltage application electrode 2 and the ground electrode 3 facing the substrate 10 are covered with a solid dielectric. The processing gas is introduced into the discharge spaces 4 and 4 ′ in the direction of the arrows, respectively, is converted into plasma in the discharge spaces 4 and 4 ′, and is blown out toward the substrate 10 from the plasma outlets 5 and 5 ′. In this device, plasma can be generated at two locations with a single power source by arranging three electrodes facing each other, placing a voltage application electrode in the middle, and placing ground electrodes on both sides. The substrate can be treated. Also in FIG. 2, since the surface of the voltage application electrode 2 facing the substrate 10 is covered with the solid dielectric 6, arc discharge toward the substrate is unlikely to occur. That is, the small streamer generated in the voltage application electrode falls to the ground electrode, and the surface of the base material is protected from lightning. As a result, there is an advantage that there is no influence on the thin film formed on the base material. The opposing surfaces of the voltage application electrode 2, the ground electrode 3, and the ground electrode 3 'are covered with a solid dielectric 6, and the periphery of the surface on the base material side is formed with a curved surface.
[0018]
Further, the plasma processing apparatus of the present invention is an apparatus for inducing and contacting the glow discharge plasma of the processing gas mainly generated between the parallel plate electrodes with the substrate to be processed disposed at a position away from the discharge space. And if a plasma is blown out perpendicularly | vertically toward a base material from the plasma blowing outlet of discharge space, a base material can be processed more effectively. Therefore, it is preferable to provide a mechanism for transporting the substrate perpendicular to the width direction of the discharge space.
[0019]
Examples of the material of the electrode include a single metal such as copper and aluminum, an alloy such as stainless steel and brass, and an intermetallic compound. The shape of the electrode is not particularly limited as long as the plasma discharge can be stabilized. However, in order to avoid the occurrence of arc discharge due to electric field concentration, a structure in which the distance between the counter electrodes is constant is preferable, and voltage is more preferable. It is a shape having a parallel flat portion between the application electrode and the ground electrode, and it is particularly preferable that both electrodes have a substantially planar shape.
[0020]
In the apparatus of the present invention, one or both of the opposing surfaces of the voltage application electrode and the ground electrode are covered with a solid dielectric, and the substrate opposing surfaces of the voltage application electrode and the ground electrode are completely covered with a solid dielectric. Has been. At this time, the solid dielectric and the electrode on the side to be coated are in close contact with each other, and the opposing surface of the electrode in contact is completely covered. If there is a portion where the electrodes directly face each other without being covered by the solid dielectric, arc discharge is likely to occur therefrom.
[0021]
The thickness of the solid dielectric on the facing surfaces of the electrodes is preferably 0.01 to 4 mm. If it is too thick, a high voltage may be required to generate discharge plasma, and if it is too thin, dielectric breakdown may occur when a voltage is applied, and arc discharge may occur. The thickness of the solid dielectric covering the surface facing the substrate to be treated is preferably 0.5 to 8 mm thicker than the solid dielectric on the electrode facing surface. If it is too thin, the effect of preventing arc discharge cannot be expected, and if it is too thick, the effect of reducing the distance from the discharge space to the substrate to be treated cannot be expected.
[0022]
Examples of the material of the solid dielectric include plastics such as polytetrafluoroethylene and polyethylene terephthalate, glass, metal oxides such as silicon dioxide, aluminum oxide, zirconium dioxide, and titanium dioxide, and double oxides such as barium titanate. Can be mentioned.
[0023]
In particular, if a solid dielectric having a relative dielectric constant of 10 or more in a 25 ° C. environment is used, a high-density discharge plasma can be generated at a low voltage, and the processing efficiency is improved. The upper limit of the relative dielectric constant is not particularly limited, but actual materials having about 18,500 are available and can be used in the present invention. Particularly preferred is a solid dielectric having a relative dielectric constant of 10 to 100. Specific examples of the solid dielectric having a relative dielectric constant of 10 or more include metal oxides such as zirconium dioxide and titanium dioxide, and double oxides such as barium titanate.
[0024]
The distance between the electrodes is appropriately determined in consideration of the thickness of the solid dielectric, the magnitude of the applied voltage, the purpose of using plasma, etc., preferably 0.1 to 10 mm, more preferably 0.1 to 5 mm. If it is less than 0.1 mm, it may not be sufficient to install with an interval between the electrodes, whereas if it exceeds 10 mm, it is difficult to generate uniform discharge plasma.
[0025]
The distance between the electrode and the substrate to be treated is preferably 10 mm or less. If it exceeds 10 mm, the generated discharge plasma cannot be efficiently brought into contact with the substrate to be treated.
[0026]
In the present invention, a high-frequency electric field or a pulsed electric field is applied between the electrodes to generate plasma. However, it is preferable to apply a pulsed electric field, and in particular, the rise and / or fall time of the electric field is 10 μs or less. An electric field is preferred. If it exceeds 10 μs, the discharge state tends to shift to an arc and becomes unstable, and it becomes difficult to maintain a high-density plasma state by a pulse electric field. Also, the shorter the rise time and fall time, the more efficiently ionization of the gas during plasma generation, but it is actually difficult to realize a pulsed electric field with a rise time of less than 40 ns. More preferably, it is 50 ns to 5 μs. The rise time here refers to the time during which the voltage (absolute value) increases continuously, and the fall time refers to the time during which the voltage (absolute value) decreases continuously.
[0027]
The electric field strength of the pulse electric field is preferably 10 to 1000 kV / cm, and more preferably 20 to 1000 kV / cm. When the electric field strength is less than 10 kV / cm, it takes too much time for processing, and when it exceeds 1000 kV / cm, arc discharge tends to occur.
[0028]
The frequency of the pulse electric field is preferably 0.5 kHz or more. If it is less than 0.5 kHz, the plasma density is low, and the process takes too much time. The upper limit is not particularly limited, but it may be a high frequency band such as 13.56 MHz that is commonly used and 500 MHz that is used experimentally. In consideration of ease of matching with the load and handleability, 500 kHz or less is preferable. By applying such a pulse electric field, the processing speed can be greatly improved.
[0029]
Further, one pulse duration in the pulse electric field is preferably 200 μs or less. If it exceeds 200 μs, it tends to shift to arc discharge. Here, one pulse duration refers to the continuous ON time of one pulse in a pulse electric field consisting of repetition of ON and OFF.
[0030]
The discharge plasma processing apparatus of the present invention can be used under any pressure, but when used in atmospheric discharge plasma processing, the effect can be sufficiently exerted, especially when used under a pressure near atmospheric pressure. The effect is fully demonstrated.
[0031]
The pressure under the atmospheric pressure refers to a pressure of 1.333 × 10 4 to 10.664 × 10 4 Pa. Among them, easy pressure adjustment range of the apparatus is simplified 9.331 × 10 4 ~10.397 × 10 4 Pa is preferred.
[0032]
Under pressures near atmospheric pressure, it is known that the plasma discharge state is not stably maintained except for specific gases such as helium and ketone, and the state immediately changes to the arc discharge state. By applying, it is considered that a cycle of stopping the discharge before starting the arc discharge and starting the discharge again is realized.
[0033]
Examples of the substrate to be treated that can be treated in the present invention include plastics such as polyethylene, polypropylene, polystyrene, polycarbonate, polyethylene terephthalate, polytetrafluoroethylene, and acrylic resin, glass, ceramic, and metal. Examples of the shape of the substrate include a plate shape and a film shape, but are not particularly limited thereto. According to the surface treatment method of the present invention, it is possible to easily cope with the treatment of base materials having various shapes.
[0034]
The processing gas used in the present invention is not particularly limited as long as it is a gas that generates plasma by applying an electric field, and various gases can be used depending on the processing purpose.
[0035]
A water-repellent surface can be obtained by using a fluorine-containing compound gas such as CF 4 , C 2 F 6 , CClF 3 , or SF 6 as the processing gas.
[0036]
Further, as the processing gas, oxygen element-containing compounds such as O 2 , O 3 , water and air, nitrogen element-containing compounds such as N 2 and NH 3 , and sulfur element-containing compounds such as SO 2 and SO 3 are used, A hydrophilic surface such as a carbonyl group, a hydroxyl group, and an amino group can be formed on the surface of the substrate to increase the surface energy, thereby obtaining a hydrophilic surface. Alternatively, a hydrophilic polymer film can be deposited using a polymerizable monomer having a hydrophilic group such as acrylic acid or methacrylic acid.
[0037]
Furthermore, a metal oxide thin film such as SiO 2 , TiO 2 , or SnO 2 is formed using a processing gas such as metal metal-hydrogen compound, metal-halogen compound, metal alcoholate such as Si, Ti, or Sn, Electrical and optical functions can be given to the substrate surface. Etching treatment and dicing treatment using halogen gas, resist treatment and removal of organic matter contamination using oxygen gas, argon, Surface cleaning and surface modification can also be performed with plasma using an inert gas such as nitrogen.
[0038]
From the viewpoints of economy and safety, it is preferable to perform the treatment in an atmosphere diluted with a diluent gas as described below, rather than the above-mentioned atmosphere for the processing gas alone. Examples of the diluent gas include rare gases such as helium, neon, argon, and xenon, nitrogen gas, and the like. These may be used alone or in admixture of two or more. Moreover, when using dilution gas, it is preferable that the ratio of the gas for processing is 0.01-10 volume%.
[0039]
In addition, according to the apparatus of this invention, it is possible to generate glow discharge plasma irrespective of the kind of gas which exists in plasma generation space. In the atmospheric pressure plasma treatment under a specific gas atmosphere as well as the plasma treatment under a known low-pressure condition, it was essential to carry out the treatment in a sealed container that is shielded from the outside air. According to the method using the processing apparatus, it is possible to perform processing in an open system or a low airtight system that prevents free flow of gas.
[0040]
According to the atmospheric pressure discharge treatment apparatus using a pulsed electric field of the present invention, it is possible to cause a discharge directly under atmospheric pressure between the electrodes without depending on the gas type at all, and a more simplified electrode structure, High-speed processing can be realized with an atmospheric pressure plasma apparatus and a processing technique based on a discharge procedure. In addition, parameters relating to processing can be adjusted by parameters such as pulse frequency, voltage, and electrode interval.
[0041]
【Example】
EXAMPLES Although this invention is demonstrated further in detail based on an Example, this invention is not limited only to these Examples.
[0042]
Example 1
A discharge plasma treatment was performed using the apparatus shown in FIG. As the voltage application electrode 2 and the ground electrode 3, SUS parallel plate electrodes having a length of 100 mm, a height of 50 mm, and a thickness of 10 mm were used, and each electrode facing surface was overlapped with 0.6 mm of barium titanate as a solid dielectric. .6 mm was sprayed and installed with an interval of 2 mm. Further, an alumina ceramic plate having a thickness of 1 mm was disposed on the side surface of both electrodes on the base material side. A polyimide base material with a copper foil on the surface was used as the base material, and the distance from the alumina ceramic plate 6 was 0.5 mm, and the substrate was transported at 200 mm / min. As a treatment gas, dry air was introduced into the discharge space 4 at a rate of 15 L / min, a pulse rising speed of 5 μs, a pulse electric field of 18 kV PP and a frequency of 10 kHz was applied between the electrodes, and the discharge state was uniformly good. There was no abnormal discharge with the substrate, no lightning strikes were seen from the electrodes, and the substrate could be treated. When the change of the contact angle with respect to the ion-exchanged water before and after the plasma treatment was measured, it was confirmed that the contact angle on the surface of the copper foil was changed from 90 ° to 20 °.
[0043]
Comparative Example 1
The substrate was treated in the same manner as in Example 1 except that the alumina ceramic plate was not provided on the substrate facing surface side of the voltage application electrode and the ground electrode. After the discharge was started, a fine needle-shaped lightning strike was observed from the tip of the voltage application electrode toward the copper foil surface of the base material, and a dent-like trace was observed at the lightning strike location of the base material.
[0044]
Example 2
Discharge plasma treatment was performed using the apparatus shown in FIG. As the voltage application electrode 2 and the ground electrode 3, SUS parallel plate electrodes having a length of 100 mm × a height of 50 mm × a thickness of 10 mm were used, and 1 mm of alumina was sprayed as a solid dielectric on each electrode facing surface, with a spacing of 2 mm each. Installed. Further, an alumina ceramic plate having a thickness of 1 mm was disposed on the side surface of each electrode on the substrate side. An electronic substrate having a gold electrode and a solder resist was used as a base material, and the gap between the substrate and the alumina ceramic plate 6 was 0.5 mm, and the substrate was transported at 200 mm / min. As processing gas, dry air was introduced into both discharge spaces at a rate of 15 L / min, and a pulse electric field with a pulse rising speed of 5 μs, a voltage of 18 kV PP and a frequency of 10 kHz was applied to the voltage application electrode, and the discharge state was uniformly good. The lightning from the electrode part was not seen, and the substrate could be processed. The wettability of the gold electrode on the electronic substrate and the solder resist surface was measured by measuring the change in contact angle with ion-exchanged water before and after plasma treatment. The contact angle of the gold electrode changed from 85 ° to 31 °, and the contact of the solder resist portion The angle changed from 83 ° to 32 °, confirming that the treatment was performed effectively.
[0045]
【The invention's effect】
Since the atmospheric pressure plasma processing apparatus of the present invention is a simple processing apparatus that does not cause thermal or electrical damage to the substrate to be processed and does not cause abnormal discharge, it is compatible with high-speed processing and large-area processing. Any plasma processing method including various methods used in the semiconductor manufacturing process can be effectively used to achieve in-line and high-speed operation. As a result, the processing time can be shortened and the cost can be reduced, and it is possible to develop various applications that were impossible or difficult in the past.
[Brief description of the drawings]
FIG. 1 is a schematic diagram illustrating an example of a discharge plasma processing apparatus of the present invention.
FIG. 2 is a schematic diagram illustrating an example of a discharge plasma processing apparatus of the present invention.
[Explanation of symbols]
1 Power supply (High voltage pulse power supply)
2 Voltage application electrode 3, 3 'Ground electrode 4, 4' Discharge space 5, 5 'Plasma outlet 6 Solid dielectric 10 Base material

Claims (2)

電圧印加電極と接地電極からなる対向電極を有し、前記対向電極の少なくとも一方の電極対向面が固体誘電体で被覆され、前記電極間に電界を印加することにより前記対向電極間発生するグロー放電プラズマを、プラズマ発生空間外に配置された基材に導いて処理を行う処理装置であって、
前記電圧印加電極の基材に対向する面が、固体誘電体で覆われており、
上記基材に対向する面の固体誘電体の厚みは、上記電極対向面の固体誘電体の厚みよりも厚いことを特徴とする放電プラズマ処理装置。
It has a counter electrode made of the voltage application electrode and the ground electrode, at least one electrode facing surface of the counter electrode is covered with a solid dielectric, generated between the opposed electrodes by applying an electric field between the electrodes glow A processing apparatus that conducts treatment by guiding discharge plasma to a substrate disposed outside the plasma generation space,
The surface of the voltage application electrode facing the substrate is covered with a solid dielectric,
The discharge plasma processing apparatus, wherein the thickness of the solid dielectric on the surface facing the substrate is thicker than the thickness of the solid dielectric on the electrode facing surface.
上記電極対向面の固体誘電体の厚みが、0.01〜4mmであり、上記基材に対向する面の固体誘電体の厚みが、0.5〜8mmであることを特徴とする請求項1に記載の放電プラズマ処理装置。  The thickness of the solid dielectric on the electrode facing surface is 0.01 to 4 mm, and the thickness of the solid dielectric on the surface facing the substrate is 0.5 to 8 mm. The discharge plasma processing apparatus described in 1.
JP2001298026A 2001-09-27 2001-09-27 Discharge plasma processing equipment Expired - Lifetime JP3823037B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001298026A JP3823037B2 (en) 2001-09-27 2001-09-27 Discharge plasma processing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001298026A JP3823037B2 (en) 2001-09-27 2001-09-27 Discharge plasma processing equipment

Publications (2)

Publication Number Publication Date
JP2003093869A JP2003093869A (en) 2003-04-02
JP3823037B2 true JP3823037B2 (en) 2006-09-20

Family

ID=19118994

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001298026A Expired - Lifetime JP3823037B2 (en) 2001-09-27 2001-09-27 Discharge plasma processing equipment

Country Status (1)

Country Link
JP (1) JP3823037B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI741984B (en) 2015-05-28 2021-10-11 日商可樂麗股份有限公司 Polyvinyl alcohol polymer film and its manufacturing method, optical film and its manufacturing method

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3853803B2 (en) * 2004-02-04 2006-12-06 積水化学工業株式会社 Plasma processing apparatus and manufacturing method thereof
EP1631128A4 (en) * 2003-05-14 2010-07-28 Sekisui Chemical Co Ltd Plasma processing apparatus and method for producing same
JP2005302681A (en) * 2003-05-14 2005-10-27 Sekisui Chem Co Ltd Plasma processing device
JP3686662B1 (en) * 2003-05-14 2005-08-24 積水化学工業株式会社 Plasma processing equipment
JP4202292B2 (en) * 2004-03-22 2008-12-24 シャープ株式会社 Plasma processing equipment
EP1689216A1 (en) * 2005-02-04 2006-08-09 Vlaamse Instelling Voor Technologisch Onderzoek (Vito) Atmospheric-pressure plasma jet
JP4902842B2 (en) * 2005-09-16 2012-03-21 国立大学法人東北大学 Plasma generation method and plasma generation apparatus
JP2009119356A (en) * 2007-11-14 2009-06-04 Toshiba Corp Discharge surface treatment apparatus and discharge surface treatment method
US8994270B2 (en) 2008-05-30 2015-03-31 Colorado State University Research Foundation System and methods for plasma application
US9288886B2 (en) 2008-05-30 2016-03-15 Colorado State University Research Foundation Plasma-based chemical source device and method of use thereof
US8697197B2 (en) 2009-07-08 2014-04-15 Plasmasi, Inc. Methods for plasma processing
EP2554028B1 (en) * 2010-03-31 2016-11-23 Colorado State University Research Foundation Liquid-gas interface plasma device
US8765232B2 (en) 2011-01-10 2014-07-01 Plasmasi, Inc. Apparatus and method for dielectric deposition
JP2012094523A (en) * 2011-11-21 2012-05-17 Tohoku Univ Plasma generating device
US9299956B2 (en) 2012-06-13 2016-03-29 Aixtron, Inc. Method for deposition of high-performance coatings and encapsulated electronic devices
US10526708B2 (en) 2012-06-19 2020-01-07 Aixtron Se Methods for forming thin protective and optical layers on substrates
KR101542897B1 (en) 2013-02-04 2015-08-07 한국기계연구원 Dielectric barrier discharge reactor for surface treatment
US9532826B2 (en) 2013-03-06 2017-01-03 Covidien Lp System and method for sinus surgery
US9555145B2 (en) 2013-03-13 2017-01-31 Covidien Lp System and method for biofilm remediation
KR101731856B1 (en) * 2014-11-06 2017-05-02 호서대학교 산학협력단 Water Treatment Device using High Voltage Impulse
US20160329192A1 (en) * 2015-05-05 2016-11-10 Eastman Kodak Company Radial-flow plasma treatment system
US10441349B2 (en) 2015-10-29 2019-10-15 Covidien Lp Non-stick coated electrosurgical instruments and method for manufacturing the same
US10368939B2 (en) 2015-10-29 2019-08-06 Covidien Lp Non-stick coated electrosurgical instruments and method for manufacturing the same
US10973569B2 (en) 2017-09-22 2021-04-13 Covidien Lp Electrosurgical tissue sealing device with non-stick coating
US10709497B2 (en) 2017-09-22 2020-07-14 Covidien Lp Electrosurgical tissue sealing device with non-stick coating
US20190348261A1 (en) * 2018-05-09 2019-11-14 Asm Ip Holding B.V. Apparatus for use with hydrogen radicals and method of using same
US11207124B2 (en) 2019-07-08 2021-12-28 Covidien Lp Electrosurgical system for use with non-stick coated electrodes
US11369427B2 (en) 2019-12-17 2022-06-28 Covidien Lp System and method of manufacturing non-stick coated electrodes

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI741984B (en) 2015-05-28 2021-10-11 日商可樂麗股份有限公司 Polyvinyl alcohol polymer film and its manufacturing method, optical film and its manufacturing method

Also Published As

Publication number Publication date
JP2003093869A (en) 2003-04-02

Similar Documents

Publication Publication Date Title
JP3823037B2 (en) Discharge plasma processing equipment
JP5021877B2 (en) Discharge plasma processing equipment
JP2003019433A (en) Discharge plasma treating apparatus and treating method using the same
JP2003217898A (en) Discharge plasma processing device
JP3962280B2 (en) Discharge plasma processing equipment
JP2003218099A (en) Method and system for discharge plasma processing
JP3782708B2 (en) Discharge plasma processing apparatus and discharge plasma processing method using the same
JP2003318000A (en) Discharge plasma treatment apparatus
JP3722733B2 (en) Discharge plasma processing equipment
JP2003166065A (en) Discharge plasma treatment apparatus
JP2002151494A (en) Normal pressure plasma processing method and device therefor
JP2003338398A (en) Discharge plasma processing method and apparatus therefor
JP2003208999A (en) Discharge plasma processing method and its equipment
JP2003317998A (en) Discharge plasma treatment method and apparatus therefor
JP2004207145A (en) Discharge plasma processing device
JP3793451B2 (en) Discharge plasma processing equipment
JP2003129246A (en) Discharge plasma treatment apparatus
JP4772215B2 (en) Atmospheric pressure plasma processing equipment
JP2003142298A (en) Glow discharge plasma processing device
JP2003049276A (en) Discharge plasma treatment device and treatment method using the same
JP2002151476A (en) Method and apparatus for removing resist
JP2004115896A (en) Discharge plasma treatment device, and discharge plasma treatment method
JP2010174325A (en) Discharge electrode unit, discharge electrode assembly and discharge treatment apparatus
JP2002151543A (en) Method for removing oxide film of metal electrode
JP2003171768A (en) Discharge plasma processor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040108

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040420

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040707

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040903

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050907

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050914

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20050927

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060607

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060626

R151 Written notification of patent or utility model registration

Ref document number: 3823037

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090630

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100630

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100630

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110630

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110630

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120630

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120630

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130630

Year of fee payment: 7