JP3820686B2 - Melting method of low nitrogen stainless steel - Google Patents
Melting method of low nitrogen stainless steel Download PDFInfo
- Publication number
- JP3820686B2 JP3820686B2 JP18368797A JP18368797A JP3820686B2 JP 3820686 B2 JP3820686 B2 JP 3820686B2 JP 18368797 A JP18368797 A JP 18368797A JP 18368797 A JP18368797 A JP 18368797A JP 3820686 B2 JP3820686 B2 JP 3820686B2
- Authority
- JP
- Japan
- Prior art keywords
- decarburization
- stainless steel
- nitrogen
- molten steel
- gas
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Treatment Of Steel In Its Molten State (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、低窒素ステンレス鋼の溶製方法に関し、詳しくは、大気圧下で予備脱炭精錬、減圧下で仕上げ脱炭精錬を行い、高生産性を確保しつつ、安価に低窒素ステンレス鋼を溶製する技術である。
【0002】
【従来の技術】
フェライト系ステンレス鋼のような高クロム鋼は、炭素、窒素等の不純物元素含有量を低減することで、その耐食性、靭性、加工性並びに溶接性を改良している。しかしながら、クロム(以下、Cr)は、溶鉄中への窒素の溶解度を増加させる性質を持つため、高Cr鋼からの脱窒は、極めて難しいことである。
【0003】
従来より、一般に低窒素ステンレス鋼を溶製するには、まず、大気圧下での予備脱炭精錬で比較的低い窒素濃度までにし、その後、さらに仕上げ脱炭精錬を行って、最終目標の窒素含有量まで脱窒する方法がとられている。具体的には、高炭素含Cr溶湯を転炉又は所謂AOD(アルゴン酸素脱炭)炉を用いて、酸素で予備脱炭精錬し、得られた粗溶鋼を、RH(還流式)やVOD(真空酸素脱炭)等の真空脱ガス装置内の減圧下のもと酸素吹錬脱炭するのである。ところが、近年、ステンレス鋼の溶製コストを低減するため、Crの酸化ロスを抑えて脱炭を優先させる工夫が種々試みられ、「酸素と不活性ガスの混合ガスを用いて脱炭精錬する方法」、「炉底に設けた羽口から不活性ガスや酸素を吹き込んで溶湯の撹拌を強化し脱炭する方法」、及び「これらを併用する方法」が開発され、実用されるようになった。
【0004】
しかしながら、これら転炉やAOD炉での改良脱炭精錬法では、不活性ガスが多量に使用され、しかも、低窒素ステンレス鋼の溶製に際しては、吸窒を防止するため、該不活性ガスとして、高価なArガスを多量に使用するようになった。そのため、精錬コストが大幅に増加するという問題が生じた。
そこで、種々の対策が図られ、例えば、特公昭56−17405号公報に開示されたように、大気中で不活性ガスを使用せずに脱炭精錬した後、スラグの還元処理を行わずに、溶鋼を真空脱ガス装置へ移し、そこで脱ガス処理をすることで、低窒素濃度を実現する方法も考えられる。ところが、この方法は、大気下での脱炭中に生成する酸化Crを還元せずに出鋼するので、Crの回収を真空脱ガス装置内で行う必要があった。そのため、真空脱ガス装置での処理時間が長くなり、生産性の面から見て不利という欠点がある。また、スラグ中への酸化Crの移行量が、不活性ガスをほとんど使わず酸化精錬するため、多量となり、吹錬中に生じるスラグの系外への飛散等によるCr歩留の低下、あるいはスラグ還元によるCr回収コストの増加等,別の欠点もあった。
【0005】
【発明が解決しようとする課題】
本発明は、かかる事情に鑑み、溶鋼からのクロム酸化ロスを抑制しつつ、短時間で脱炭及び脱窒を行うと共に、高生産性の維持が可能な低窒素ステンレス鋼の溶製方法を提供することを目的としている。
【0006】
【課題を解決するための手段】
発明者は、上記目的を達成するため、不活性ガスとして高価なアルゴン・ガスを使用せずに、大気圧下での予備脱炭と真空脱炭処理を組み合わせた従来技術を改良することに鋭意努力した。そして、特に、後半の真空脱炭処理中での脱窒速度の向上に着眼し、本発明を完成させた。
【0007】
すなわち、本発明は、ステンレス鋼の粗溶湯に、大気圧下で酸素ガスと不活性ガスとを吹き付け、あるいは吹込み予備脱炭し、引き続き減圧下で仕上げ脱炭して低窒素ステンレス鋼を溶製するに際して、前記ステンレス鋼の粗溶湯として[S]≧0.019wt%以上のものを使用し、前記予備脱炭で不活性ガスとして窒素ガスを使用し、前記予備脱炭後、仕上げ脱炭前に、スラグの還元処理を行い、溶鋼中硫黄濃度[S]の低下を促進させることによって、仕上げ脱炭前の溶湯中の硫黄及び炭素濃度を、それぞれ[S]≦0.010wt%及び[C]を、0.10〜0.20wt%とすることを特徴とする低窒素ステンレス鋼の溶製方法である。
【0009】
本発明によれば、予備脱炭終了時における溶鋼中硫黄及び炭素濃度を、仕上げ脱炭で高い脱窒速度を確保する範囲に抑えるようにしたので、仕上げ脱炭での脱窒が十分に行われるようになる。また、予備脱炭後、仕上げ脱炭前にスラグの還元処理を行うようにしたので、Crの酸化ロスが抑制された状態で、脱窒が行える。その結果、Cr歩留が高い状態で、低窒素ステンレス鋼が安価に製造できるようになった。以下に、本発明の実施の形態を、発明に至る経緯も含めて詳述する。
【0010】
【発明の実施の形態】
本発明で対象とするステンレス鋼は、Crを5wt%以上、好ましくは11wt%以上を含有し、特に不純物元素としての窒素が低く、N≦200ppmの低窒素ステンレス鋼である。また、本発明で用いる精錬容器としては、大気圧下での予備脱炭に転炉あるいはAOD炉が好適に使用されるが、フードを載せて簡易に脱炭できるようにした取鍋や、ランスや羽口を備え、酸素吹き込み機能を付与した電気炉を用いても良い。仕上げ脱炭で使用する装置は、真空脱ガス装置であり、主として、VOD装置であるが、RH、DH法等の公知の真空脱ガス装置を用いても良い。その際、溶鋼中の炭素を酸化除去するために、ランスや羽口等の吹き込み手段を備え、酸素ガスや酸化物を供給することが望ましい。
【0011】
まず、発明者は、仕上げ脱炭、つまり真空脱炭処理中の脱窒速度について、前記装置を用い、種々の実験を行った。その結果、前記脱窒速度と処理前溶鋼中の成分との間に、図1に示すような関係を得た。すなわち、真空脱炭処理中の脱窒速度は、該真空脱炭処理前の溶鋼中の硫黄濃度[S]に大きく影響され、S≦0.010%の領域で大幅に向上することを見出した。これは、溶鋼中の硫黄が表面活性元素であるため、それが高濃度であると、該硫黄元素は、溶鋼内で脱炭中に生じるCOガス気泡の周りに集まり、窒素元素が気泡中に侵入することを阻害する現象が起こることに起因すると思われる。
【0012】
そこで、発明者は、脱窒を促進するためには、脱炭反応である程度のCO気泡発生量を確保すると共に、溶鋼中の硫黄濃度を低減し、窒素元素を十分にCO気泡に取り入れる必要があると考え、この考えを確認する実験を行った。その結果を図2に示す。図2により、真空脱炭処理前の溶鋼中の硫黄濃度[S]が低いほど、脱窒が有効に行われることがわかった。そして、溶鋼中の硫黄濃度[S]が0.010wt%以下と低くなった場合でも、溶鋼中の炭素濃度[C]が0.10wt%未満であると、200ppm以下の低窒素が安定して達成されないことも明らかになった。これは、脱窒には、CO気泡をある程度確保する必要があるという前記の考えを立証するものである。
【0013】
本発明は、上記実験結果を具現化したものであり、真空脱炭処理前の溶鋼中の硫黄濃度[S]及び炭索濃度[C]を、S≦0.010wt%、Cを、0.10〜0.20wt%とするものである。該真空脱炭処理前の溶鋼中の炭素濃度[C]は、前記した実験結果から0.10wt%以上であれば良い。但し、真空脱炭時の溶鋼中の炭素濃度[C]が余り高すぎると、低窒素にすることは確実となるが、真空脱炭処理自体に時間がかかり過ぎて経済的でない。そのため、本発明では、真空脱炭前の溶鋼中の炭素濃度[C]は、0.10wt%〜0.20wt%とする。さらに、本発明では、予備脱炭終了後の出鋼時に溶鋼中の硫黄濃度[S]を0.010wt%とする方法として、炉内にFe−Si等の還元剤を投入し、スラグの還元を行うようにした。これによって、溶鋼中硫黄濃度の低下を促進させるばかりでなく、スラグ中に酸化ロスしたCrを溶鋼中に還元回収し、Cr歩留りの点からも有利となる。その際、所謂スラグ/メタル反応を良好ならしめるため、不活性ガスによる攪拌を行うのが一般的であるが、本発明では、この際にも不活性ガスとして窒素ガスを使用することにした。Arガスを使用しないでも、その後の真空脱炭で十分に脱窒が可能だからである。
【0014】
本発明では、大気圧下の予備脱炭で使用する不活性ガスをArガスではなく全て窒素ガスとすることで、予備脱炭終了後の溶鋼中窒素は、1000ppmを超す非常に高い値を示す。しかしながら、その後に行う真空脱ガス処理前の溶鋼中の硫黄濃度[S]を0.010wt%以下とし、且つ炭素濃度を0.10wt%以上に確保することで、減圧下脱炭中におけるCOボイリングに伴う脱窒能力を最大限に引き出し、目的達成が可能となる。従って、従来技術で行っていたような大気圧下での脱炭後の溶鋼中窒素濃度[N]の低減、出鋼時の吸窒抑制の必要がない。また、スラグ還元により高Cr歩留が確保され、生産性が高い水準に維持できるので、従来より低窒素ステンレス鋼を安価に製造できるようになる。なお、脱炭時には、通常鋼中炭素が低下するに従ってCrが酸化され易くなるので、脱炭反応の進行につれ酸素ガス/窒素ガスの比率を減らして行くのが良い。これは、ステンレス鋼のAOD炉や転炉を用いた精錬で、通常行われている酸素ガス/Arガスの比率を順次減じていく方法と同様である。
【0015】
【実施例】
16wt%のCrを含有し、炭素が0.06〜0.07wt%、窒素が0.0200wt%以下のステンレス鋼を溶製するに当り、上底吹転炉を用いた大気圧下での予備脱炭の希釈ガスを全て窒素ガスとした。得られた粗溶鋼を取鍋に出鋼し、VOD式の真空脱ガス装置を用いて、減圧下で酸素吹精を行った。実施条件及び実施成績を、従来法によるものと一緒に表1に示す。
【0016】
【表1】
【0017】
表1から明らかなように、転炉での予備脱炭で希釈ガスを窒素ガスとしたことにより、転炉から出鋼した溶鋼中の窒素は、1700ppmと従来より高い値を示している。しかしながら、その後に行う仕上げ脱炭に使用する溶鋼中の硫黄濃度[S]を0.010wt%以下、炭素濃度[C]を0.10wt%以上とすることで、最終の溶鋼中窒素を200ppm以下とすることができた。また、溶製時間は、従来と同程度であり、高い生産性を維持して安価に低窒素ステンレス鋼が製造できるようになった。
【0018】
【発明の効果】
以上述べたように、本発明により、低窒素ステンレス鋼が、高価なArガスを使用せずに、Cr歩留高く、高生産性を維持して安価に溶製できるようになった。
【図面の簡単な説明】
【図1】真空脱炭前の溶鋼中硫黄濃度[S]と、真空脱炭時における脱窒速度との関係を示す図である。
【図2】真空脱炭前の溶鋼中硫黄濃度[S]と、真空脱炭後に到達した溶鋼中の窒素濃度[N]との関係を示す図である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for melting low nitrogen stainless steel, and more particularly, preliminary decarburization refining under atmospheric pressure, finish decarburization refining under reduced pressure, and low nitrogen stainless steel at low cost while ensuring high productivity. Is a technology to melt.
[0002]
[Prior art]
High chromium steels such as ferritic stainless steels have improved corrosion resistance, toughness, workability and weldability by reducing the content of impurity elements such as carbon and nitrogen. However, since chromium (hereinafter referred to as Cr) has a property of increasing the solubility of nitrogen in molten iron, denitrification from high Cr steel is extremely difficult.
[0003]
Conventionally, in general, in order to melt low nitrogen stainless steel, first, the preliminary decarburization and refining at atmospheric pressure is used to achieve a relatively low nitrogen concentration, and then final decarburization and refining are performed to obtain the final target nitrogen. A method of denitrification to the content is taken. Specifically, a high-carbon Cr-containing molten metal is preliminarily decarburized and refined with oxygen using a converter or a so-called AOD (argon oxygen decarburization) furnace, and the resulting crude molten steel is treated with RH (reflux type) or VOD ( Oxygen blowing decarburization is performed under reduced pressure in a vacuum degassing apparatus such as vacuum oxygen decarburization. However, in recent years, in order to reduce the melting cost of stainless steel, various attempts have been made to prioritize decarburization by suppressing the oxidation loss of Cr, and “a method of decarburizing and refining using a mixed gas of oxygen and inert gas” ”,“ Method of decarburizing by strengthening the stirring of molten metal by blowing inert gas or oxygen from the tuyeres provided at the bottom of the furnace ”, and“ Method of using these together ”have been developed and put into practical use. .
[0004]
However, in the improved decarburization refining method in these converters and AOD furnaces, a large amount of inert gas is used, and in addition, in order to prevent nitrogen absorption when melting low nitrogen stainless steel, Therefore, a large amount of expensive Ar gas is used. Therefore, the problem that refining cost increases significantly arises.
Therefore, various countermeasures have been taken, for example, as disclosed in Japanese Patent Publication No. 56-17405, after decarburizing and refining without using an inert gas in the atmosphere, without performing slag reduction treatment. A method of realizing a low nitrogen concentration by transferring the molten steel to a vacuum degassing apparatus and performing degassing treatment there is also conceivable. However, in this method, Cr oxide generated during decarburization in the atmosphere is produced without reduction, so it was necessary to recover Cr in a vacuum degassing apparatus. Therefore, there is a disadvantage that the processing time in the vacuum degassing apparatus becomes long, which is disadvantageous from the viewpoint of productivity. In addition, the amount of Cr oxide transferred into the slag is oxidatively refined using almost no inert gas, so that the amount of Cr oxide is increased, resulting in a decrease in Cr yield due to scattering of slag generated during blowing outside the system, or slag. There were other disadvantages such as an increase in Cr recovery cost due to reduction.
[0005]
[Problems to be solved by the invention]
In view of such circumstances, the present invention provides a method for melting low nitrogen stainless steel capable of decarburization and denitrification in a short time while maintaining high productivity while suppressing chromium oxidation loss from molten steel. The purpose is to do.
[0006]
[Means for Solving the Problems]
In order to achieve the above object, the inventor has eagerly improved the conventional technique that combines the pre-decarburization and the vacuum decarburization treatment under the atmospheric pressure without using an expensive argon gas as an inert gas. Made an effort. In particular, the present invention was completed by focusing on improving the denitrification rate during the latter vacuum decarburization treatment.
[0007]
That is, the present invention melts low-nitrogen stainless steel by spraying oxygen gas and inert gas under atmospheric pressure or preliminarily blowing decarburization to a crude stainless steel melt, followed by finish decarburization under reduced pressure. At the time of manufacturing, the above stainless steel crude melt with [S] ≧ 0.019 wt% or more is used, nitrogen gas is used as an inert gas in the preliminary decarburization, and after the preliminary decarburization, finish decarburization Before the reduction treatment of slag is performed and the sulfur concentration in molten steel [S] is accelerated , the sulfur and carbon concentrations in the molten metal before finishing decarburization are reduced to [S] ≦ 0.010 wt% and [ C] is 0.10 to 0.20 wt%, and is a method for melting low nitrogen stainless steel.
[0009]
According to the present invention, the sulfur and carbon concentrations in the molten steel at the end of preliminary decarburization are limited to a range that ensures a high denitrification rate by finish decarburization, so that denitrification by finish decarburization is sufficiently performed. Will come to be. In addition, since the slag reduction treatment is performed after preliminary decarburization and before finish decarburization, denitrification can be performed in a state where Cr oxidation loss is suppressed. As a result, low nitrogen stainless steel can be manufactured at low cost with a high Cr yield. Hereinafter, embodiments of the present invention will be described in detail including the background to the invention.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
The stainless steel to be used in the present invention is a low nitrogen stainless steel containing 5 wt% or more, preferably 11 wt% or more of Cr, particularly having low nitrogen as an impurity element and N ≦ 200 ppm. Moreover, as a refining vessel used in the present invention, a converter or an AOD furnace is preferably used for preliminary decarburization under atmospheric pressure, but a ladle or a lance that can be easily decarburized by placing a hood. Alternatively, an electric furnace provided with a tuyere and provided with an oxygen blowing function may be used. The apparatus used in the final decarburization is a vacuum degassing apparatus, which is mainly a VOD apparatus, but a known vacuum degassing apparatus such as an RH or DH method may be used. At that time, in order to oxidize and remove carbon in the molten steel, it is desirable to provide blowing means such as a lance or tuyere and supply oxygen gas or oxide.
[0011]
First, the inventor conducted various experiments using the above-described apparatus for the finish decarburization, that is, the denitrification rate during the vacuum decarburization treatment. As a result, the relationship shown in FIG. 1 was obtained between the denitrification rate and the components in the molten steel before treatment. That is, it has been found that the denitrification rate during the vacuum decarburization treatment is greatly influenced by the sulfur concentration [S] in the molten steel before the vacuum decarburization treatment and is greatly improved in the region of S ≦ 0.010%. . This is because sulfur in the molten steel is a surface active element, and when it is at a high concentration, the sulfur element collects around the CO gas bubbles generated during decarburization in the molten steel, and the nitrogen element is contained in the bubbles. It seems to be caused by a phenomenon that prevents entry.
[0012]
Therefore, in order to promote denitrification, the inventor needs to secure a certain amount of CO bubble generation in the decarburization reaction, reduce the sulfur concentration in the molten steel, and sufficiently incorporate nitrogen element into the CO bubble. An experiment was conducted to confirm this idea. The result is shown in FIG. From FIG. 2, it was found that the denitrification is more effectively performed as the sulfur concentration [S] in the molten steel before the vacuum decarburization treatment is lower. Even when the sulfur concentration [S] in the molten steel is as low as 0.010 wt% or less, if the carbon concentration [C] in the molten steel is less than 0.10 wt%, low nitrogen of 200 ppm or less is stabilized. It became clear that it was not achieved. This proves the above idea that denitrification requires a certain amount of CO bubbles.
[0013]
The present invention embodies the experimental results described above. The sulfur concentration [S] and the shoreline concentration [C] in the molten steel before the vacuum decarburization treatment are set to S ≦ 0.010 wt%, C is set to 0.0. 10 to 0.20 wt%. The carbon concentration [C] in the molten steel before the vacuum decarburization process may be 0.10 wt% or more from the above experimental results . However, and the carbon concentration in the molten steel during the vacuum decarburization [C] is too much high, but the certainty that the low nitrogen, economical, such taking too long to vacuum decarburization itself. For this reason, in the present invention, the carbon concentration in the vacuum decarburization before the molten steel [C] shall be the 0.10wt% ~0.20wt%. Et al is, in the present invention, as a method to 0.010 wt% sulfur concentration [S] in the molten steel during the preliminary decarburization after the end of tapping, was charged with a reducing agent such as Fe-Si in the furnace, the slag The reduction was done. This not only promotes the reduction of the sulfur concentration in the molten steel, but also reduces and recovers the oxidation loss in the slag into the molten steel, which is advantageous in terms of Cr yield. At that time, in order to improve the so-called slag / metal reaction, stirring with an inert gas is generally performed, but in the present invention, nitrogen gas is also used as the inert gas. This is because denitrification is sufficiently possible by subsequent vacuum decarburization without using Ar gas.
[0014]
In the present invention, nitrogen in the molten steel after completion of preliminary decarburization shows a very high value exceeding 1000 ppm by making all inert gas used in preliminary decarburization under atmospheric pressure nitrogen gas instead of Ar gas. . However, CO boiling during decarburization under reduced pressure is ensured by setting the sulfur concentration [S] in the molten steel before the vacuum degassing process to be 0.010 wt% or less and ensuring the carbon concentration to be 0.10 wt% or more. The maximum denitrification capacity is achieved, and the purpose can be achieved. Therefore, there is no need to reduce the nitrogen concentration [N] in the molten steel after decarburization under atmospheric pressure and to suppress the nitrogen absorption during the steel output as has been done in the prior art. Moreover, since high Cr yield is ensured by slag reduction | restoration and productivity can be maintained at the high level, low nitrogen stainless steel can be manufactured cheaply conventionally. At the time of decarburization, Cr tends to be oxidized as the carbon in steel is lowered. Therefore, it is preferable to reduce the ratio of oxygen gas / nitrogen gas as the decarburization reaction proceeds. This is the same as the method of sequentially reducing the ratio of oxygen gas / Ar gas which is normally performed by refining using a stainless steel AOD furnace or converter.
[0015]
【Example】
When melting stainless steel containing 16 wt% Cr, 0.06 to 0.07 wt% carbon, and 0.0200 wt% or less nitrogen, it was preparatory under atmospheric pressure using an upper bottom blowing converter. All dilution gases for decarburization were nitrogen gas. The obtained crude molten steel was taken out in a ladle and subjected to oxygen blowing under reduced pressure using a VOD type vacuum degassing apparatus. The implementation conditions and results are shown in Table 1 together with those according to the conventional method.
[0016]
[Table 1]
[0017]
As is clear from Table 1, by using nitrogen gas as the dilution gas in the preliminary decarburization in the converter, the nitrogen in the molten steel discharged from the converter is 1700 ppm, which is higher than the conventional value. However, the sulfur concentration [S] in the molten steel used in the subsequent decarburization performed thereafter is 0.010 wt% or less, and the carbon concentration [C] is 0.10 wt% or more, so that the final nitrogen in the molten steel is 200 ppm or less. And was able to. In addition, the melting time is about the same as in the past, and low nitrogen stainless steel can be manufactured at low cost while maintaining high productivity.
[0018]
【The invention's effect】
As described above, according to the present invention, low nitrogen stainless steel can be melted at low cost while maintaining high productivity and high yield without using expensive Ar gas.
[Brief description of the drawings]
FIG. 1 is a graph showing the relationship between the sulfur concentration [S] in molten steel before vacuum decarburization and the denitrification rate during vacuum decarburization.
FIG. 2 is a diagram showing a relationship between sulfur concentration [S] in molten steel before vacuum decarburization and nitrogen concentration [N] in molten steel reached after vacuum decarburization.
Claims (1)
前記ステンレス鋼の粗溶湯として[S]≧0.019wt%以上のものを使用し、前記予備脱炭で不活性ガスとして窒素ガスを使用し、前記予備脱炭後、仕上げ脱炭前に、スラグの還元処理を行い、溶鋼中硫黄濃度[S]の低下を促進させることによって、仕上げ脱炭前の溶湯中の硫黄及び炭素濃度を、それぞれ[S]≦0.010wt%及び[C]を、0.10〜0.20wt%とすることを特徴とする低窒素ステンレス鋼の溶製方法。When a low-nitrogen stainless steel is melted by blowing oxygen gas and inert gas under atmospheric pressure or pre-decarburizing by blowing into a stainless steel crude molten metal, followed by finish decarburization under reduced pressure.
[S] ≧ 0.019 wt% or more is used as the stainless steel crude melt, and nitrogen gas is used as an inert gas in the preliminary decarburization. After the preliminary decarburization, before the final decarburization, slag is used. By reducing the sulfur concentration [S] in the molten steel, the sulfur and carbon concentrations in the molten metal before finishing decarburization are reduced to [S] ≦ 0.010 wt% and [C], respectively . A method for melting low nitrogen stainless steel, characterized by being 0.10 to 0.20 wt%.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18368797A JP3820686B2 (en) | 1997-07-09 | 1997-07-09 | Melting method of low nitrogen stainless steel |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18368797A JP3820686B2 (en) | 1997-07-09 | 1997-07-09 | Melting method of low nitrogen stainless steel |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH1129819A JPH1129819A (en) | 1999-02-02 |
JP3820686B2 true JP3820686B2 (en) | 2006-09-13 |
Family
ID=16140184
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP18368797A Expired - Fee Related JP3820686B2 (en) | 1997-07-09 | 1997-07-09 | Melting method of low nitrogen stainless steel |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3820686B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100523106B1 (en) * | 2001-12-17 | 2005-10-19 | 주식회사 포스코 | method for refining a stainless steel sheet with low nitrogen |
-
1997
- 1997-07-09 JP JP18368797A patent/JP3820686B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH1129819A (en) | 1999-02-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2575827B2 (en) | Manufacturing method of ultra low carbon steel for continuous casting with excellent cleanliness | |
JP5910579B2 (en) | Melting method of ultra-low nitrogen pure iron | |
JP5386825B2 (en) | Method for melting Mn-containing ultra-low carbon steel | |
JP3176374B2 (en) | Method for producing low carbon molten steel by vacuum degassing decarburization | |
EP0331751B1 (en) | PROCESS FOR DECARBURIZING HIGH-Cr MOLTEN PIG IRON | |
JP3606170B2 (en) | Method for producing low nitrogen-containing chromium steel | |
JP4057942B2 (en) | Method for producing ultra-low Ti molten steel | |
JP3820686B2 (en) | Melting method of low nitrogen stainless steel | |
JP3752801B2 (en) | Method for melting ultra-low carbon and ultra-low nitrogen stainless steel | |
JP3843589B2 (en) | Melting method of high nitrogen stainless steel | |
JP3473388B2 (en) | Refining method of molten stainless steel | |
JP3220233B2 (en) | Refining method of ultra-low carbon / ultra low sulfur chromium-containing molten steel | |
JPH10140227A (en) | Production of high alloy steel by joining two molten steels | |
JP3241910B2 (en) | Manufacturing method of extremely low sulfur steel | |
JPH07310110A (en) | Stainless steel manufacturing method | |
JP3390478B2 (en) | Melting method of high cleanliness steel | |
JPH08134528A (en) | Ultra low carbon steel manufacturing method | |
JP3757435B2 (en) | Method for decarburizing and refining chromium-containing molten steel | |
JP2674041B2 (en) | Manufacturing method of low nitrogen stainless steel | |
JP3684445B2 (en) | Manufacturing method of high purity high Ni steel | |
JP2855333B2 (en) | Modification method of molten steel slag | |
JP2764339B2 (en) | Method of treating hot metal for high chromium low P low S steel | |
JPH06256836A (en) | Production of high cleanliness and ultra-low carbon steel | |
JPS6239205B2 (en) | ||
JPS6212301B2 (en) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20050221 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060228 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060428 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20060530 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20060612 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100630 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110630 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120630 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120630 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130630 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140630 Year of fee payment: 8 |
|
LAPS | Cancellation because of no payment of annual fees |