[go: up one dir, main page]

JP3819701B2 - Core substrate for build-up multilayer printed wiring boards - Google Patents

Core substrate for build-up multilayer printed wiring boards Download PDF

Info

Publication number
JP3819701B2
JP3819701B2 JP2000343628A JP2000343628A JP3819701B2 JP 3819701 B2 JP3819701 B2 JP 3819701B2 JP 2000343628 A JP2000343628 A JP 2000343628A JP 2000343628 A JP2000343628 A JP 2000343628A JP 3819701 B2 JP3819701 B2 JP 3819701B2
Authority
JP
Japan
Prior art keywords
core substrate
weight
resin
build
printed wiring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000343628A
Other languages
Japanese (ja)
Other versions
JP2002151848A (en
Inventor
紳月 山田
浩一郎 谷口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Plastics Inc
Original Assignee
Mitsubishi Plastics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Plastics Inc filed Critical Mitsubishi Plastics Inc
Priority to JP2000343628A priority Critical patent/JP3819701B2/en
Publication of JP2002151848A publication Critical patent/JP2002151848A/en
Application granted granted Critical
Publication of JP3819701B2 publication Critical patent/JP3819701B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Production Of Multi-Layered Print Wiring Board (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、ビルドアップ法によって製造される多層プリント配線基板のコア基板に関し、詳しくは、耐マイグレーション性、耐ヒートサイクル性およびドリル穴加工性に優れたビルドアップ多層プリント配線基板用コア基板に関する。
【0002】
【従来の技術】
電子機器の小型化および多機能化は、年々加速度的に進行しているが、その技術を支えているのは主として「半導体パッケージ」に関する技術であり、具体的には電子部品を実装したプリント配線板であるといえる。
【0003】
すなわち、プリント配線板の小型化および多機能化の要請に伴って、多層配線基板も緊急に軽薄短小化および多機能化させる必要が生じ、そのなかで多層配線板の革新的製造方法であるビルドアップ配線板が注目されてきた。そして、1991年に最初のビルドアップ配線板の実用化がIBMより発表され、その後、急速に実用化が進んできた。
【0004】
因みに、一般的なビルドアップ配線板の構成について説明すると、例えば図1に示すようなビルドアップ多層プリント配線基板は、その中心部にコア基板1を有している。
【0005】
コア基板1は、従来、ガラスエポキシ材(エポキシ樹脂等をガラスクロス等に含浸して硬化させた層)からなる絶縁層に、銅などの導電性材料がめっきされたスルーホール(貫通孔)2を有しており、ビルドアップ層3の支持とプリント配線板に部品を支持する機能を持たせるための所定の厚みに設計されたものである。なお、図1中の符号4は、接続用ランドであり、符号5はバイアホールを示し、前記のスルーホール2は、ドリル穴加工によって形成した孔内面に銅等の導電材をめっきしたものである。
【0006】
ビルドアップ工法に関する技術としては、1996年または1997年をピークに各社より数多くの方式が発表されたが、製造工程の違いによって、コア基板の上にビルドアップ層として熱硬化性樹脂を用いるタイプ、感光性樹脂を用いるタイプまたは樹脂付き銅箔を用いるタイプに大別される。
【0007】
以下に、感光性樹脂を用いたビルドアップ工法の一例を示す。
【0008】
まず、図2(a)に示すように、接続用ランド4を有するガラスエポキシ基板からなるコア基板1上に、感光性樹脂からなるビルドアップ絶縁層6を、スピンコーティング法、スクリーン印刷法等によって塗布して設ける。
【0009】
そして、図2(b)に示すように、ビルドアップ絶縁層6を所定のパターンで露光、現像、エッチングしてランド上にバイアホール5を形成する。
【0010】
その後、図2(c)に示すように、バイアホール5の上に導電材料によるめっき層7を形成する。さらに図2(d)に示すように、この上に次の絶縁樹脂層8を形成して複層とし、さらに図2(a)〜(d)の工程をこの順に繰り返して多層化されたパターンを形成する。
【0011】
そして、従来のビルドアップ配線基板のコア基板は、基本的にガラス繊維で強化されたエポキシ樹脂を使用しているものが多い。
【0012】
【発明が解決しようとする課題】
しかし、従来のビルドアップ配線基板用のコア基板は、スルーホールのめっきにクラックが発生したり、ガラスクロスに沿って銅のマイグレーションが発生する場合がある。
【0013】
因みに、上記のマイグレーションとは、導体層金属イオンが時間の経過とともに絶縁層内に拡散し、絶縁層を隔てて形成された別の導体層との間に導電路を形成し、これによって短絡を起こす現象をいう。そして、ガラスクロスを含有するガラスエポキシプリント配線板は、耐マイグレーション性を確保するために、穴間ピッチを0.40mm以上確保することが必要であるが、配線パターンの高密度化を進めるためには、さらに穴間ピッチを狭く設定する必要があり、高信頼性(マイグレーションが起こり難い特性)を確保すると共に高密度化を進める必要があった。
【0014】
また、ガラスエポキシプリント配線板は、銅めっきスルホール周辺の樹脂部がスルーホールそのものより熱膨張係数が高いので、それらの差がビルドアップ層にストレスを与え、ビルドアップ層にクラックを発生させることがある。
【0015】
また、コア基板にスルーホールを形成する際、ドリル穴加工を作業効率よく行なうために高速回転ドリルを用いると、摩擦熱で高温となった絶縁層が軟化して孔内面が荒れる場合があり、そのようなコア基板は孔内面に緻密なめっきを行なえない不良品であり、歩留まりが低下する。
【0016】
そこで、この発明の課題は、上記した問題点を解決して多層プリント配線基板用コア基板を、耐マイグレーション性、耐ヒートサイクル性およびドリル穴加工性に優れ、これによって配線の高密度化に対応すると共に、高信頼性の得られるビルドアップ多層配線基板用コア基板とし、また環境に対する負荷が少ない熱可塑性樹脂で形成された絶縁層を有する多層プリント配線基板用コア基板を提供することである。
【0017】
【課題を解決するための手段】
上記の課題を解決するために、この発明は、結晶融解ピーク温度が260℃以上であるポリアリールケトン樹脂70〜25重量%と、非晶性ポリエーテルイミド樹脂30〜75重量%とからなる熱可塑性樹脂組成物100重量部に対して、無機充填材を20〜50重量部配合した組成物からなる絶縁層を有するビルドアップ多層プリント配線基板用コア基板としたのである。
【0018】
また、さらに好ましい手段として、上記のビルドアップ多層プリント配線基板用コア基板において、無機充填材として鱗片状無機充填材を採用することができる。また、鱗片状無機充填材としては、平均粒径15μm以下、平均アスペクト比(平均粒径/平均厚み)が30以上の鱗片状無機充填材を用いることが好ましい。
【0019】
【発明の実施の形態】
この発明におけるビルドアップ多層プリント配線基板用コア基板に用いる樹脂組成物は、結晶性ポリアリールケトン樹脂70〜25重量%と非晶性ポリエーテルイミド樹脂30〜75重量%とからなる樹脂組成物100重量部に対し、さらに無機充填材を20〜50重量部混合したものであり、フィルム状に成形したものがコア基板用素材になる。
【0020】
結晶性ポリアリールケトン樹脂は、その構造単位に芳香核結合、エーテル結合およびケトン結合を含む熱可塑性樹脂であり、その代表例としては、ポリエーテルケトン、ポリエーテルエーテルケトン、ポリエーテルケトンケトン等がある。これらのうち、ポリエーテルエーテルケトンの市販品としては、VICTREX社製の商品名「PEEK151G」、「PEEK381G」または「PEEK450G」などがある。
【0021】
この発明に用いる非晶性ポリエーテルイミド樹脂は、構造単位に芳香核結合、エーテル結合およびイミド結合を含む非晶性熱可塑性樹脂であり、その他の条件では、特に制限されたものではなく、市販品としてゼネラルエレクトリック社製:Ultem CRS5001(商品名)、同社製:Ultem 1000(商品名)などがある。
【0022】
上記樹脂組成物の結晶性ポリアリールケトン樹脂の配合割合が、70重量%を越える場合や、非晶性ポリエーテルイミド樹脂の配合割合が30重量%未満の場合は、組成物のガラス転移温度が低くなり、ドリル穴加工時の発熱による穴あけ不良率がかなり増加して歩留まりが低下する。すなわち、穿孔された穴部に切削屑が残ったり、ドリル刃部に切削屑が巻き付くと、穴形状や穴の壁面が粗くなり、確実にめっきを付着させることができずに不良品となってしまうからである。
【0023】
また、上記樹脂組成物の結晶性ポリアリールケトン樹脂の配合割合が、25重量%未満であったり、非晶性ポリエーテルイミド樹脂の配合割合が75重量%を越えると、組成物全体として結晶性が低くなり、結晶融解温度が260℃以上であっても弾性率が低くなって、はんだ浸漬試験等で評価されるはんだ耐熱性が低下するので好ましくない。
【0024】
以上のような理由により、この発明におけるコア基板を構成する混合樹脂としては、上記ポリアリールケトン樹脂70〜25重量%と非晶性ポリエーテルイミド樹脂30〜75重量%とからなる組成物が好ましい。
【0025】
また、上述した樹脂組成物に対して充填される鱗片状の無機充填材は、周知の鱗片状無機充填材を特に制限なく使用できる。例えば、タルク、マイカ、雲母、ガラスフレーク、窒化ホウ素(BN)、板状炭酸カルシウム、板状水酸化アルミニウム、板状シリカ、板状チタン酸カリウムなどである。
【0026】
これらは1種類を単独で用いたり、または2種類以上を組み合わせて用いることもできる。特に、平均粒径が15μm以下、アスペクト比(粒径/厚み)が30以上の無機充填材が好ましい、なぜなら、平面方向と厚み方向の線膨張係数比を低く押えることができるため、熱衝撃サイクル試験時のビルドアップ絶縁層のクラック発生を抑制できるからである。
【0027】
また、上述した無機充填材の配合量は、樹脂組成物100重量部に対して20〜50重量部である。なぜなら、50重量部を超えると、無機充填材の分散不良の問題が発生し、線膨張係数がばらつきやすくなる。また無機充填材の配合量が20重量部未満では、所期したように線膨張係数を低下させて寸法安定性を向上させる効果が小さく、部品搭載工程であるリフロー工程やフロー工程において、線膨張係数差起因の内部応力が発生し、基板のそりやねじれが発生するからである。
【0028】
また、鱗片状の無機充填剤の他にも球状シリカやテトラポット状の硫化亜鉛(ZnS)、ウィスカ状のチタン酸カリウム、有機繊維であるアラミド不織布なども上述した鱗片状フィラーと併用することも可能である。
【0029】
この発明を構成する樹脂組成物には、その性質を損なわない程度に、他の樹脂や無機充填剤以外の各種添加剤を添加しても良く、例えば、そのような例として熱安定剤、紫外線吸収剤、光安定剤、核剤、着色剤、滑剤、難燃剤等を適宜配合してもかまわない。
【0030】
また無機充填剤を含めた各種添加剤の混合方法は、周知の方法を採用すればよく、例えば(a)各種添加剤をポリアリールケトン樹脂及び/または非晶性ポリエーテルイミド樹脂などの適当なベース樹脂に高濃度(代表的な含有量としては10〜60重量%程度)に混合したマスターバッチを別途作製しておき、これを使用する樹脂に濃度を調整して混合し、ニーダーや押出機等を用いて機械的にブレンドする方法、(b)使用する樹脂に直接各種添加剤をニーダーや押出機等を用いて機械的にブレンドする方法などが挙げられる。
【0031】
上記混合方法のうち、(a)のように、マスターバッチを作製して混合する方法が分散性や作業性の点から好ましい。さらに、フィルムの表面にはハンドリング性の改良等のために、エンボス加工やコロナ処理等を適宜に施しても良い。
【0032】
この発明のビルドアップ多層配線基板用コア基板を構成する組成物は、通常、フィルムまたはシート状の素材として提供される。フィルムの成形方法としては、周知の方法、例えばTダイを用いる押出キャスト法やカレンダー法等を採用することができ、特にシートの製膜性や安定生産性等の面から、Tダイを用いる押出キャスト法を採用することが好ましい。Tダイを用いる押出キャスト法での成形温度は、組成物の流動特性や製膜性等によって適宜に調整するが、おおよそ融点以上でありかつ430℃以下である。また、このフィルムの厚みは、通常25〜800μmである。
【0033】
次に、この発明のビルドアップ多層配線基板用コア基板の製造方法は、フィルムの少なくとも片面に接着層を介することなく導体箔を熱融着・結晶化処理し、この導体箔に導電性回路を形成して基板とする。絶縁層の厚みを300μm以上にする場合は、導体箔と熱融着する際にフィルムを積層することも可能である。
【0034】
コア基板の製造過程において、上述したフィルムと導体箔を接着層を介することなく熱融着させる方法としては、加熱加圧できる方法であれば周知の方法を採用することができ、特に限定されるものではない。例えば、熱プレス法や熱ラミネートロール法、またはこれらを組み合わせた方法を適宜に採用することができる。
【0035】
また、導体箔に導電性回路を形成させる方法についても、特に限定されるものではなく、例えば、サブトラクティブ法(エッチング)、アディティブ法(メッキ),ダイスタンプ法(金型)、導体印刷法(導電ペースト)などの周知の方法を採用することができる。
【0036】
この発明に使用できる導体箔としては、例えば銅、金、銀、アルミニウム、ニッケル、錫等であって、厚さ5〜70μm程度の金属箔が挙げられる。通常、金属箔としては、銅箔が使用されるが、このような導体箔は、接着性を良くするためにフィルムとの接触面(重ねる面)側を予め化学的または機械的に粗化したものを用いることが好ましい。表面粗化処理された導体箔の具体例としては、電解銅箔を製造する際に電気化学的に処理された粗化銅箔などが挙げられる。
【0037】
【実施例および比較例】
〔実施例1〕
表1に示すように、ポリエーテルエーテルケトン樹脂[ビクトレックス社製、PEEK450G、Tg:147.6℃、Tm:334℃](以下、単にPEEKと略記する。)30重量部と、ポリエーテルイミド樹脂[ゼネラルエレクトリック社製、Ultem−CRS5001、Tg:232.3℃](以下、単にPEIと略記する。)70重量部および市販のマイカ(平均粒径:10μm、アスペクト比:40)50重量部とからなる混合組成物を、Tダイを備えた押出機を用いて設定温度380℃で厚さ100μmのフィルム状に押出成形した。得られたフィルムをカッティングしてその両面に銅箔(厚さ:18μm、表面粗面化)を重ね、250℃で30分間の熱プレスをすることにより、結晶化処理済銅箔積層板(コア基板用素板)を得た。
【0038】
得られたコア基板用素板またはパターンを形成したコア基板を試験片として用い、以下の熱特性や信頼性試験などについての試験1〜6を行ない、これらの結果を表1中に併記した。
(1)ガラス転移温度(Tg)
熱応力歪み測定装置(セイコーインスツルメント社製:TMA/SS6100を用い、昇温過程の熱膨張量の温度依存性を求め、ガラス転移点の前後の曲線に接線を引き、この接線の交点からTgを求めた。
(2)線膨張係数(αx、αy、αz)
熱応力歪み測定装置(セイコーインスツルメント社製:TMA/SS6100)により線膨張係数を求めた。フィルムのX方向、Y方向の線膨張係数の測定は、フィルムを短冊状として試験片(長さ10mm、断面積1mm2)を作製し、引っ張り荷重0.1gで固定し、室温から5℃/分の割合で昇温させ、熱膨張量の温度依存性を求めた。また、Z方向の線膨張係数の測定は、フィルム状の試験片のZ方向に一定圧力(荷重0.1g)を加え、室温から5℃/分の割合で昇温させ、熱膨張量の温度依存性を求めた。
(3)ドリル穴加工性試験
銅箔18μm/絶縁性樹脂層700μm/銅箔18μmの3層構造を有するコア基板用素板に、ユニオンツール社製:MV−E720のドリルを用い、2083回/秒の回転数、91.44m/秒の送り速度で、穴径φ0.2mmの穴を4000箇所開け、この穴加工済み素板を投射器の上に載せて、切削詰まりの無い穴数を数え、穴あけ歩留まりを算出した。
(4)熱衝撃サイクル試験
ビルドアップ絶縁層のクラック発生状況を調べた。すなわち、コア基板用素板(銅箔18μm/絶縁性樹脂層700μm/ 銅箔18μmの3層構造を有するコア基板用素板)に、ドリル穴加工でスルーホールを形成し、パターンエッチングを行ない、その後にスルホール銅めっきを形成してコア基板を作製した。このコア基板の上に、感光性の絶縁樹脂をスクリーン印刷法により30μmの厚さで塗布し、光硬化させたものを試験サンプルとした。この試験サンプルを、−65℃×30分〜125℃×30分/1サイクルの条件で100サイクル実施した。評価は、感光性樹脂層に発生するクラック発生の有無をデジタルマイクロスコープで調べた。
(5)マイグレーション評価
図3、図4に示すように、コア基板用素板に対してエッチングにより導体間距離0.2mmの銅製の櫛形パターン10(幅620μm、高さ18μm)を形成し、この上にコア基板9に用いたものと同一組成のフィルムからなるカバーレイ層11を熱プレスにより形成した。得られたプリント配線基板におけるマイグレーション発生の有無を確認する実験は、加速寿命試験装置を用い、120℃で100%相対湿度(RH)の環境下で試料に100Vの直流電圧を印加して絶縁抵抗値を計測することにより行ない、その評価は200hr後に初期値の1/10以下になったものを不良品と判定した。
(6)熱衝撃試験(はんだ浸漬試験)
コア基板用素板(銅箔18μm/絶縁性樹脂層700μm/銅箔18μmの3層構造を有するコア基板用素板)に試験パターンを設け、260℃のはんだ浴に20秒間、浴面と垂直に浸漬するという浸漬処理を20回繰り返した後、素板の変形、膨れ、はがれ、反りの有無などを目視により観察し、良否の判定を良(○印)、否(×印)2段階に評価した。
【0039】
【表1】

Figure 0003819701
【0040】
[実施例2]
表1に示すように、実施例1において無機充填材(マイカ)の充填量を25重量部に変更したこと以外は、実施例1と同様にしてコア基板用素板およびパターンを形成したコア基板を得た。得られたコア基板用素板またはパターンを形成したコア基板を試験片として用い、熱特性や信頼性試験などについて前記した試験1〜6を同じ条件で行ない、これらの結果を表1中に併記した。
[実施例3]
表1に示すように、実施例1においてPEEKとPEIの混合重量比を60/40重量部に変更したこと以外は、実施例1と同様にしてコア基板用素板およびパターンを形成したコア基板を得た。得られたコア基板用素板またはパターンを形成したコア基板を試験片として用い、熱特性や信頼性試験などについて前記した試験1〜6を同じ条件で行ない、これらの結果を表1中に併記した。
[比較例1〜6]
比較例1では、実施例1においてPEEKとPEIの混合重量比を20/80重量部に変更したこと以外は、実施例1と同様にしてコア基板用素板およびパターンを形成したコア基板を得た。
【0041】
比較例2では、実施例1において用いる無機充填材(マイカ)の平均アスペクト比が20のものを用いたこと以外は、実施例1と同様にしてコア基板用素板およびパターンを形成したコア基板を得た。
【0042】
比較例3では、実施例1において用いる無機充填材(マイカ)の平均粒径を20ミクロンとし、アスペクト比が35のものを用いたこと以外は、実施例1と同様にしてコア基板用素板およびパターンを形成したコア基板を得た。
【0043】
比較例4では、実施例1において無機充填材(マイカ)の充填量を15重量部にしたこと以外は、実施例1と同様にしてコア基板用素板およびパターンを形成したコア基板を得た。
【0044】
比較例5では、実施例1において無機充填材(マイカ)の充填量を70重量部にしたこと以外は、実施例1と同様にしてコア基板用素板およびパターンを形成したコア基板を得た。
【0045】
比較例6では、実施例1においてPEEKとPEIの混合重量比を80/20重量部に変更したこと以外は、実施例1と同様にしてコア基板用素板およびパターンを形成したコア基板を得た。
[比較例7]
表1に示すようにガラスエポキシ樹脂を用いてコア基板用素板およびパターンを形成したコア基板を得た。
【0046】
比較例1〜7のコア基板用素板またはパターンを形成したコア基板を試験片として用い、熱特性や信頼性試験などについて前記した試験1〜6を同じ条件で行ない、これらの結果を表1中に併記した。
【0047】
表1の結果からも明らかなように、比較例1のように、ポリアリールケトン樹脂と非晶性ポリエーテルイミド樹脂の配合割合が所定範囲でない場合は、熱衝撃試験(はんだ浸漬試験)の結果が不良であった。
【0048】
また、比較例2のように、マイカのアスペクト比が所定値未満の場合は、線膨張係数のα1(Z)の値が大きくなり、熱衝撃サイクル試験におけるクラックを抑制できなかった。
【0049】
また、比較例3のように、マイカの平均粒径が所定値より大きい場合、または比較例4のように所定の形態条件を満足するマイカの配合割合が所定量より少ない場合も、熱衝撃サイクル試験におけるクラックを抑制できなかった。
【0050】
そして、比較例5のように、所定の形態条件を満足するマイカの配合割合が所定量より多い場合は、X,Y,Z方向の線膨張係数にばらつきが大きくなり、平面方向と厚み方向の線膨張係数比を確実に低くできなかった。
【0051】
比較例6のように、PEEKの配合割合が過量の場合は、ドリル穴加工時の発熱によって穴あけ不良率が高くなった。
【0052】
また、比較例7のように、コア基板の材料としてガラス繊維強化のエポキシ樹脂を用いた場合は、X,Y,Z方向の線膨張係数にばらつきが大きくて平面方向と厚み方向の線膨張係数比を低くできず、熱衝撃サイクル試験におけるクラックを抑制できず、導体パターンが200μm間隔の条件でマイグレーションが発生し、高密度のパターン形成が困難であった。
【0053】
これに対して、全ての条件を満足する実施例1〜3は、X,Y,Z方向の線膨張係数にばらつきが小さくて平面方向と厚み方向の線膨張係数比が確実に低く安定し、熱衝撃サイクル試験におけるクラックが抑制でき、導体パターンが200μm間隔の条件でのマイグレーションを防止でき、高密度のパターン形成ができるものであることが確認できた。
【0054】
【発明の効果】
この発明は、以上説明したように、所定の結晶融解ピーク温度を有するポリアリールケトン樹脂と非晶性ポリエーテルイミド樹脂を所定量混合した熱可塑性樹脂組成物に、所定物性の無機充填材であって、好ましくは平均粒径15ミクロン以下、平均アスペクト比30以上の鱗片状無機充填材を所定量混合したビルドアップ多層プリント配線基板用コア基板としたので、耐マイグレーション性、耐ヒートサイクル性およびドリル穴加工性に優れたものとなり、これによって配線の高密度化に対応すると共に高信頼性の得られるビルドアップ多層配線基板用コア基板になるという利点がある。
【図面の簡単な説明】
【図1】感光性樹脂を用いたビルドアップ多層プリント配線基板の断面図
【図2】ビルドアップ多層プリント配線基板用コア基板の製造工程を順に示す断面図
【図3】熱衝撃試験に用いた回路パターンの平面図
【図4】熱衝撃試験に用いたコア基板の断面図
【符号の説明】
1、9 コア基板
2 スルーホール
3 ビルドアップ層
4 接続用ランド
5 バイアホール
6、8 ビルドアップ絶縁層
7 めっき層
10 櫛形パターン[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a core substrate of a multilayer printed wiring board manufactured by a build-up method, and particularly relates to a core substrate for a build-up multilayer printed wiring board excellent in migration resistance, heat cycle resistance, and drill hole workability.
[0002]
[Prior art]
The downsizing and multi-functionalization of electronic devices are accelerating year by year, but the technology is mainly supported by technology related to "semiconductor packages", specifically printed wiring with electronic components mounted. It can be said that it is a board.
[0003]
In other words, with the demand for miniaturization and multi-functionality of printed wiring boards, it is necessary to urgently make multilayer wiring boards lighter, thinner, multi-functional and build, which is an innovative manufacturing method for multilayer wiring boards. Up-wiring boards have attracted attention. Then, in 1991, the first practical use of the build-up wiring board was announced by IBM, and thereafter, the practical use has rapidly progressed.
[0004]
Incidentally, the configuration of a general build-up wiring board will be described. For example, a build-up multilayer printed wiring board as shown in FIG. 1 has a core substrate 1 at the center thereof.
[0005]
The core substrate 1 is conventionally a through hole (through hole) 2 in which a conductive material such as copper is plated on an insulating layer made of a glass epoxy material (a layer obtained by impregnating a glass cloth with epoxy resin or the like). And is designed to have a predetermined thickness for supporting the build-up layer 3 and for providing the printed wiring board with a function of supporting components. Reference numeral 4 in FIG. 1 denotes a connection land, reference numeral 5 denotes a via hole, and the through hole 2 is formed by plating a conductive material such as copper on the inner surface of a hole formed by drilling. is there.
[0006]
As a technology related to the build-up method, a number of methods were announced by each company after peaking in 1996 or 1997, but due to the difference in the manufacturing process, a type using a thermosetting resin as a build-up layer on the core substrate, It is roughly classified into a type using a photosensitive resin or a type using a resin-coated copper foil.
[0007]
An example of a build-up method using a photosensitive resin is shown below.
[0008]
First, as shown in FIG. 2A, a build-up insulating layer 6 made of a photosensitive resin is formed on a core substrate 1 made of a glass epoxy substrate having connection lands 4 by a spin coating method, a screen printing method, or the like. Apply and provide.
[0009]
Then, as shown in FIG. 2B, the build-up insulating layer 6 is exposed, developed, and etched in a predetermined pattern to form via holes 5 on the lands.
[0010]
Thereafter, as shown in FIG. 2C, a plating layer 7 made of a conductive material is formed on the via hole 5. Further, as shown in FIG. 2 (d), the next insulating resin layer 8 is formed thereon to form a multilayer, and the steps of FIGS. 2 (a) to 2 (d) are repeated in this order to form a multilayered pattern. Form.
[0011]
Many core substrates of conventional build-up wiring boards basically use an epoxy resin reinforced with glass fibers.
[0012]
[Problems to be solved by the invention]
However, in a conventional core substrate for a build-up wiring board, cracks may occur in the plating of through holes, or copper migration may occur along the glass cloth.
[0013]
By the way, the migration described above is that the conductor layer metal ions diffuse into the insulating layer over time and form a conductive path with another conductor layer formed across the insulating layer, thereby short-circuiting. A phenomenon that occurs. And glass epoxy printed wiring board containing glass cloth needs to secure a pitch between holes of 0.40 mm or more in order to ensure migration resistance, but in order to increase the density of wiring patterns However, it is necessary to set the pitch between holes further narrow, and it is necessary to ensure high reliability (characteristic that migration is difficult to occur) and to increase the density.
[0014]
In addition, since the glass epoxy printed wiring board has a higher thermal expansion coefficient than the through hole itself in the resin part around the copper plating through hole, the difference between them can stress the buildup layer and cause cracks in the buildup layer. is there.
[0015]
Also, when forming a through hole in the core substrate, if a high-speed rotary drill is used to perform drill hole processing efficiently, the insulating layer that has become hot due to frictional heat may soften and the inner surface of the hole may become rough. Such a core substrate is a defective product that cannot be densely plated on the inner surface of the hole, and the yield decreases.
[0016]
Therefore, the object of the present invention is to solve the above-mentioned problems and to make the core substrate for multilayer printed wiring boards excellent in migration resistance, heat cycle resistance and drilling workability, thereby supporting high density wiring. At the same time, it is to provide a core substrate for a multilayer printed wiring board having an insulating layer formed of a thermoplastic resin having a low environmental load as a core substrate for a build-up multilayer wiring board with high reliability.
[0017]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, the present invention provides a heat comprising 70 to 25% by weight of a polyaryl ketone resin having a crystal melting peak temperature of 260 ° C. or higher and 30 to 75% by weight of an amorphous polyetherimide resin. This is a core substrate for a build-up multilayer printed wiring board having an insulating layer made of a composition in which 20 to 50 parts by weight of an inorganic filler is blended with 100 parts by weight of the plastic resin composition.
[0018]
Furthermore, as a more preferable means, a scale-like inorganic filler can be employed as the inorganic filler in the core substrate for a buildup multilayer printed wiring board. Further, as the flaky inorganic filler, it is preferable to use a flaky inorganic filler having an average particle diameter of 15 μm or less and an average aspect ratio (average particle diameter / average thickness) of 30 or more.
[0019]
DETAILED DESCRIPTION OF THE INVENTION
The resin composition used for the core substrate for the build-up multilayer printed wiring board in this invention is a resin composition 100 comprising 70 to 25% by weight of a crystalline polyaryl ketone resin and 30 to 75% by weight of an amorphous polyetherimide resin. In addition, 20 to 50 parts by weight of an inorganic filler is further mixed with respect to parts by weight, and the material formed into a film is the core substrate material.
[0020]
The crystalline polyaryl ketone resin is a thermoplastic resin having an aromatic nucleus bond, an ether bond and a ketone bond in its structural unit, and representative examples thereof include polyether ketone, polyether ether ketone, polyether ketone ketone, and the like. is there. Among these, commercially available products of polyetheretherketone include trade names “PEEK151G”, “PEEK381G” or “PEEK450G” manufactured by VICTREX.
[0021]
The amorphous polyetherimide resin used in the present invention is an amorphous thermoplastic resin containing an aromatic nucleus bond, an ether bond and an imide bond in the structural unit, and is not particularly limited under other conditions. As a product, there are General Electric Co., Ltd .: Ultem CRS5001 (trade name), and the company: Ultem 1000 (trade name).
[0022]
When the blending ratio of the crystalline polyaryl ketone resin of the resin composition exceeds 70% by weight or when the blending ratio of the amorphous polyetherimide resin is less than 30% by weight, the glass transition temperature of the composition is As a result, the drilling defect rate due to heat generation during drilling is considerably increased, and the yield is lowered. In other words, if cutting waste remains in the drilled hole or if cutting waste wraps around the drill blade, the hole shape and the wall surface of the hole become rough, and plating cannot be reliably attached, resulting in a defective product. Because it will end up.
[0023]
When the blending ratio of the crystalline polyaryl ketone resin in the resin composition is less than 25% by weight or the blending ratio of the amorphous polyetherimide resin is more than 75% by weight, the entire composition is crystalline. Even if the crystal melting temperature is 260 ° C. or higher, the elastic modulus is lowered, and the solder heat resistance evaluated by a solder immersion test or the like is lowered, which is not preferable.
[0024]
For the reasons described above, the mixed resin constituting the core substrate in the present invention is preferably a composition comprising 70 to 25% by weight of the polyaryl ketone resin and 30 to 75% by weight of the amorphous polyetherimide resin. .
[0025]
Moreover, the scale-like inorganic filler with which it fills with respect to the resin composition mentioned above can use a well-known scale-like inorganic filler without a restriction | limiting in particular. For example, talc, mica, mica, glass flake, boron nitride (BN), plate calcium carbonate, plate aluminum hydroxide, plate silica, plate potassium titanate and the like.
[0026]
These may be used alone or in combination of two or more. In particular, an inorganic filler having an average particle size of 15 μm or less and an aspect ratio (particle size / thickness) of 30 or more is preferable because the linear expansion coefficient ratio in the plane direction and the thickness direction can be kept low, so that the thermal shock cycle This is because the generation of cracks in the build-up insulating layer during the test can be suppressed.
[0027]
Moreover, the compounding quantity of the inorganic filler mentioned above is 20-50 weight part with respect to 100 weight part of resin compositions. This is because if it exceeds 50 parts by weight, a problem of poor dispersion of the inorganic filler occurs, and the linear expansion coefficient tends to vary. In addition, when the blending amount of the inorganic filler is less than 20 parts by weight, the effect of reducing the linear expansion coefficient and improving the dimensional stability is small as expected, and the linear expansion is performed in the reflow process and the flow process that are component mounting processes. This is because internal stress due to the coefficient difference is generated, and the substrate is warped or twisted.
[0028]
In addition to scale-like inorganic fillers, spherical silica, tetrapotted zinc sulfide (ZnS), whisker-like potassium titanate, organic fiber aramid nonwoven fabric, etc. may be used in combination with the above-mentioned scale-like filler. Is possible.
[0029]
Various additives other than other resins and inorganic fillers may be added to the resin composition constituting this invention to such an extent that the properties are not impaired. Absorbers, light stabilizers, nucleating agents, colorants, lubricants, flame retardants and the like may be appropriately blended.
[0030]
Moreover, the mixing method of various additives including an inorganic filler should just employ | adopt a well-known method, for example, (a) Various additives are suitable for polyaryl ketone resin and / or amorphous polyetherimide resin, etc. A master batch mixed with the base resin at a high concentration (typically about 10 to 60% by weight) is prepared separately, and the concentration is adjusted and mixed with the resin to be used, and then a kneader or an extruder. And (b) a method of mechanically blending various additives directly into a resin to be used using a kneader or an extruder.
[0031]
Among the above mixing methods, as in (a), a method of preparing and mixing a master batch is preferable from the viewpoint of dispersibility and workability. Further, the surface of the film may be appropriately subjected to embossing, corona treatment or the like for improving handling properties.
[0032]
The composition constituting the core substrate for a buildup multilayer wiring board of the present invention is usually provided as a film or sheet material. As a method for forming the film, a well-known method such as an extrusion casting method using a T die or a calendering method can be adopted, and in particular, extrusion using a T die from the standpoint of film forming properties and stable productivity. It is preferable to employ a casting method. The molding temperature in the extrusion casting method using a T-die is appropriately adjusted depending on the flow characteristics and film-forming properties of the composition, but is approximately not lower than the melting point and not higher than 430 ° C. Moreover, the thickness of this film is 25-800 micrometers normally.
[0033]
Next, in the method for manufacturing a core substrate for a build-up multilayer wiring board according to the present invention, a conductive foil is heat-sealed and crystallized without an adhesive layer on at least one surface of the film, and a conductive circuit is formed on the conductive foil. A substrate is formed. When the thickness of the insulating layer is 300 μm or more, a film can be laminated when heat-sealing with the conductor foil.
[0034]
In the manufacturing process of the core substrate, as a method for heat-sealing the above-described film and conductor foil without interposing an adhesive layer, a known method can be adopted as long as it is a method capable of heating and pressing, and is particularly limited. It is not a thing. For example, a hot pressing method, a hot laminating roll method, or a combination of these methods can be appropriately employed.
[0035]
Also, the method for forming the conductive circuit on the conductor foil is not particularly limited, and for example, a subtractive method (etching), an additive method (plating), a die stamp method (mold), a conductor printing method ( A known method such as a conductive paste) can be employed.
[0036]
Examples of the conductive foil that can be used in the present invention include copper, gold, silver, aluminum, nickel, tin, etc., and a metal foil having a thickness of about 5 to 70 μm. Usually, copper foil is used as the metal foil, but in order to improve the adhesion, such a conductor foil has been chemically or mechanically roughened in advance on the contact surface (surface to be overlapped) side with the film. It is preferable to use one. Specific examples of the conductor foil that has been subjected to surface roughening treatment include a roughened copper foil that has been electrochemically treated when an electrolytic copper foil is produced.
[0037]
Examples and Comparative Examples
[Example 1]
As shown in Table 1, 30 parts by weight of polyetheretherketone resin [manufactured by Victrex, PEEK450G, Tg: 147.6 ° C., Tm: 334 ° C.] (hereinafter simply abbreviated as PEEK) and polyetherimide Resin [manufactured by General Electric, Ultem-CRS5001, Tg: 232.3 ° C.] (hereinafter simply abbreviated as PEI) and 70 parts by weight of commercially available mica (average particle size: 10 μm, aspect ratio: 40) Was extruded into a film having a thickness of 100 μm at a set temperature of 380 ° C. using an extruder equipped with a T-die. The obtained film is cut, and copper foil (thickness: 18 μm, surface roughening) is overlapped on both sides thereof, and heat-pressed at 250 ° C. for 30 minutes to obtain a crystallized copper foil laminate (core Substrate for substrate) was obtained.
[0038]
The obtained core substrate plate or core substrate on which a pattern was formed was used as a test piece, and tests 1 to 6 on the following thermal characteristics and reliability tests were conducted. These results are also shown in Table 1.
(1) Glass transition temperature (Tg)
Thermal stress strain measuring device (manufactured by Seiko Instruments Inc .: TMA / SS6100 was used to determine the temperature dependence of the amount of thermal expansion during the temperature rising process, and a tangent line was drawn on the curves before and after the glass transition point. Tg was determined.
(2) Linear expansion coefficient (αx, αy, αz)
The linear expansion coefficient was calculated | required with the thermal-stress distortion measuring apparatus (Seiko Instruments company_made: TMA / SS6100). The linear expansion coefficient in the X direction and Y direction of the film was measured by preparing a test piece (length: 10 mm, cross-sectional area: 1 mm 2 ) with a strip of film, fixing with a tensile load of 0.1 g, and from room temperature to 5 ° C / The temperature was raised at a rate of minutes, and the temperature dependence of the amount of thermal expansion was determined. The linear expansion coefficient in the Z direction is measured by applying a constant pressure (load 0.1 g) in the Z direction of the film-like test piece and raising the temperature from room temperature at a rate of 5 ° C./min. Dependency was sought.
(3) Drill hole workability test Using a drill of Union Tool Co., Ltd .: MV-E720 on a core substrate base plate having a three-layer structure of copper foil 18 μm / insulating resin layer 700 μm / copper foil 18 μm, 2083 times / 4,000 holes with a hole diameter of φ0.2mm were drilled at a rotation speed of 91.44m / sec., And the holed base plate was placed on the projector to count the number of holes without cutting clogging. The drilling yield was calculated.
(4) Thermal shock cycle test The state of occurrence of cracks in the build-up insulating layer was examined. That is, through-holes are formed in the core board base plate (core board base plate having a three-layer structure of copper foil 18 μm / insulating resin layer 700 μm / copper foil 18 μm) by drilling, pattern etching is performed, Thereafter, through-hole copper plating was formed to produce a core substrate. A test sample was prepared by applying a photosensitive insulating resin on the core substrate to a thickness of 30 μm by screen printing and photocuring it. The test sample was subjected to 100 cycles under the conditions of −65 ° C. × 30 minutes to 125 ° C. × 30 minutes / 1 cycle. In the evaluation, the presence or absence of cracks generated in the photosensitive resin layer was examined with a digital microscope.
(5) Migration evaluation As shown in FIGS. 3 and 4, a copper comb-shaped pattern 10 (width 620 μm, height 18 μm) having a conductor-to-conductor distance of 0.2 mm is formed on the core substrate base plate by etching. A coverlay layer 11 made of a film having the same composition as that used for the core substrate 9 was formed thereon by hot pressing. The experiment for confirming the occurrence of migration in the obtained printed wiring board was conducted by using an accelerated life test apparatus and applying a DC voltage of 100 V to the sample in an environment of 100% relative humidity (RH) at 120 ° C. The evaluation was made by measuring the value, and the evaluation was determined to be defective if it became 1/10 or less of the initial value after 200 hours.
(6) Thermal shock test (solder immersion test)
A test pattern is provided on a core substrate base plate (core substrate base plate having a three-layer structure of copper foil 18 μm / insulating resin layer 700 μm / copper foil 18 μm), and perpendicular to the bath surface in a 260 ° C. solder bath for 20 seconds. After the dipping process of dipping in 20 times, the substrate is deformed, swollen, peeled off, visually checked for the presence or absence of warpage, etc., and the pass / fail judgment is made in two stages: good (○ mark) and no (× mark). evaluated.
[0039]
[Table 1]
Figure 0003819701
[0040]
[Example 2]
As shown in Table 1, a core substrate in which a base substrate for a core substrate and a pattern were formed in the same manner as in Example 1 except that the amount of inorganic filler (mica) in Example 1 was changed to 25 parts by weight. Got. Using the obtained core substrate or a core substrate on which a pattern is formed as a test piece, tests 1 to 6 described above were performed under the same conditions for thermal characteristics and reliability tests, and these results are also shown in Table 1. did.
[Example 3]
As shown in Table 1, a core substrate on which a base plate for a core substrate and a pattern were formed in the same manner as in Example 1 except that the mixing weight ratio of PEEK and PEI was changed to 60/40 parts by weight in Example 1. Got. Using the obtained core substrate or a core substrate on which a pattern is formed as a test piece, tests 1 to 6 described above were performed under the same conditions for thermal characteristics and reliability tests, and these results are also shown in Table 1. did.
[Comparative Examples 1-6]
In Comparative Example 1, a core substrate having a core substrate and a pattern formed thereon was obtained in the same manner as in Example 1, except that the mixing weight ratio of PEEK and PEI was changed to 20/80 parts by weight in Example 1. It was.
[0041]
In Comparative Example 2, a core substrate on which a base substrate and a pattern were formed in the same manner as in Example 1 except that the average aspect ratio of the inorganic filler (mica) used in Example 1 was 20 Got.
[0042]
In Comparative Example 3, the core substrate base plate was prepared in the same manner as in Example 1 except that the average particle diameter of the inorganic filler (mica) used in Example 1 was 20 microns and the aspect ratio was 35. And the core substrate which formed the pattern was obtained.
[0043]
In Comparative Example 4, a core substrate in which a base plate for a core substrate and a pattern were formed was obtained in the same manner as in Example 1 except that the amount of inorganic filler (mica) in Example 1 was changed to 15 parts by weight. .
[0044]
In Comparative Example 5, a core substrate on which a base plate for a core substrate and a pattern were formed was obtained in the same manner as in Example 1 except that the amount of inorganic filler (mica) was 70 parts by weight in Example 1. .
[0045]
In Comparative Example 6, a core substrate having a core substrate and a pattern formed thereon was obtained in the same manner as in Example 1 except that the mixing weight ratio of PEEK and PEI in Example 1 was changed to 80/20 parts by weight. It was.
[Comparative Example 7]
As shown in Table 1, a core substrate on which a base plate for a core substrate and a pattern were formed using a glass epoxy resin was obtained.
[0046]
Using the core substrate for Comparative Examples 1 to 7 or the core substrate on which a pattern was formed as a test piece, the above tests 1 to 6 were performed under the same conditions for the thermal characteristics and reliability tests, and the results are shown in Table 1. It was written together.
[0047]
As is clear from the results in Table 1, as in Comparative Example 1, when the blending ratio of the polyaryl ketone resin and the amorphous polyetherimide resin is not within the predetermined range, the result of the thermal shock test (solder immersion test) Was bad.
[0048]
Further, as in Comparative Example 2, when the aspect ratio of mica was less than a predetermined value, the value of α1 (Z) of the linear expansion coefficient was large, and cracks in the thermal shock cycle test could not be suppressed.
[0049]
Further, when the average particle diameter of mica is larger than a predetermined value as in Comparative Example 3, or when the mixing ratio of mica that satisfies a predetermined form condition is smaller than a predetermined amount as in Comparative Example 4, the thermal shock cycle is also performed. Cracks in the test could not be suppressed.
[0050]
And, as in Comparative Example 5, when the mixing ratio of mica satisfying the predetermined form condition is larger than the predetermined amount, the variation in the linear expansion coefficient in the X, Y, Z direction becomes large, and the planar direction and the thickness direction The linear expansion coefficient ratio could not be lowered reliably.
[0051]
As in Comparative Example 6, when the proportion of PEEK was excessive, the drilling defect rate increased due to heat generation during drilling.
[0052]
Further, as in Comparative Example 7, when a glass fiber reinforced epoxy resin is used as the material of the core substrate, the linear expansion coefficients in the X, Y, and Z directions vary greatly, and the linear expansion coefficients in the plane direction and the thickness direction The ratio could not be lowered, cracks in the thermal shock cycle test could not be suppressed, migration occurred on the condition that the conductor pattern had an interval of 200 μm, and it was difficult to form a high-density pattern.
[0053]
On the other hand, Examples 1-3 satisfying all the conditions have small variations in the linear expansion coefficients in the X, Y, and Z directions, and the linear expansion coefficient ratio in the plane direction and the thickness direction is reliably low and stable. It was confirmed that cracks in the thermal shock cycle test could be suppressed, migration under the condition where the conductor pattern was spaced 200 μm could be prevented, and high density pattern formation could be achieved.
[0054]
【The invention's effect】
As described above, the present invention is an inorganic filler having predetermined physical properties in a thermoplastic resin composition obtained by mixing a predetermined amount of a polyaryl ketone resin having a predetermined crystal melting peak temperature and an amorphous polyetherimide resin. Preferably, the core substrate for a build-up multilayer printed wiring board in which a predetermined amount of a flaky inorganic filler having an average particle size of 15 microns or less and an average aspect ratio of 30 or more is mixed, so that migration resistance, heat cycle resistance and drilling are achieved. There is an advantage that the core substrate for the build-up multilayer wiring board can be obtained, which is excellent in hole workability, which can cope with higher wiring density and can obtain high reliability.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of a build-up multilayer printed wiring board using a photosensitive resin. FIG. 2 is a cross-sectional view sequentially illustrating a manufacturing process of a core substrate for a build-up multilayer printed wiring board. Plan view of circuit pattern [Figure 4] Cross section of core substrate used for thermal shock test [Explanation of symbols]
DESCRIPTION OF SYMBOLS 1, 9 Core substrate 2 Through-hole 3 Build-up layer 4 Connection land 5 Via hole 6, 8 Build-up insulating layer 7 Plating layer 10 Comb pattern

Claims (1)

結晶融解ピーク温度が260℃以上であるポリアリールケトン樹脂70〜25重量%と、非晶性ポリエーテルイミド樹脂30〜75重量%とからなる熱可塑性樹脂組成物100重量部に対して、平均粒径15μm以下であり、かつ平均アスペクト比(平均粒径/平均厚み)30以上の鱗片状無機充填材を20〜50重量部配合した組成物からなる絶縁層を有し、この絶縁層には導電性材料が孔内面にめっきされた貫通孔を有するビルドアップ多層プリント配線基板用コア基板。For 100 parts by weight of the thermoplastic resin composition comprising 70 to 25% by weight of a polyaryl ketone resin having a crystal melting peak temperature of 260 ° C. or higher and 30 to 75% by weight of an amorphous polyetherimide resin, the average grain and the diameter of 15μm or less, and an average aspect ratio have a dielectric layer made of (average particle size / average thickness) composition 30 or more scale-like inorganic filler was blended 20 to 50 parts by weight conductive to the insulating layer build-up multilayer printed circuit core board substrate for sexual material to have a through-hole plated to the inner pore surface.
JP2000343628A 2000-11-10 2000-11-10 Core substrate for build-up multilayer printed wiring boards Expired - Fee Related JP3819701B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000343628A JP3819701B2 (en) 2000-11-10 2000-11-10 Core substrate for build-up multilayer printed wiring boards

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000343628A JP3819701B2 (en) 2000-11-10 2000-11-10 Core substrate for build-up multilayer printed wiring boards

Publications (2)

Publication Number Publication Date
JP2002151848A JP2002151848A (en) 2002-05-24
JP3819701B2 true JP3819701B2 (en) 2006-09-13

Family

ID=18817965

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000343628A Expired - Fee Related JP3819701B2 (en) 2000-11-10 2000-11-10 Core substrate for build-up multilayer printed wiring boards

Country Status (1)

Country Link
JP (1) JP3819701B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210129383A1 (en) * 2018-04-23 2021-05-06 Eos Gmbh Electro Optical Systems Method for producing a powder comprising at least one polymer and such a type of powder

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4083190B2 (en) * 2003-12-15 2008-04-30 積水化学工業株式会社 Molded object manufacturing method, substrate material and substrate film
JP4559163B2 (en) * 2004-08-31 2010-10-06 ルネサスエレクトロニクス株式会社 Package substrate for semiconductor device, method for manufacturing the same, and semiconductor device
JP2006341596A (en) * 2005-05-12 2006-12-21 Mitsubishi Plastics Ind Ltd Heat resistant resin plate
JP2009060123A (en) * 2008-10-20 2009-03-19 Mitsubishi Plastics Inc Film for spacer base of chip carrier
JP2009060124A (en) * 2008-10-20 2009-03-19 Mitsubishi Plastics Inc Film for spacer base of chip carrier
WO2024171697A1 (en) * 2023-02-17 2024-08-22 Agc株式会社 Semiconductor package substrate
WO2024219249A1 (en) * 2023-04-19 2024-10-24 株式会社レゾナック Printed circuit board substrate reliability testing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210129383A1 (en) * 2018-04-23 2021-05-06 Eos Gmbh Electro Optical Systems Method for producing a powder comprising at least one polymer and such a type of powder

Also Published As

Publication number Publication date
JP2002151848A (en) 2002-05-24

Similar Documents

Publication Publication Date Title
JP4576794B2 (en) Insulating resin composition and use thereof
US6242078B1 (en) High density printed circuit substrate and method of fabrication
JP2587596B2 (en) Circuit board connecting material and method for manufacturing multilayer circuit board using the same
EP0351034A2 (en) Process and film for producing printed wiring boards
JPS61229389A (en) Ceramic wiring plate and manufacture thereof
JP4934334B2 (en) Double-sided copper-clad board
JP2009065008A (en) Conductive paste composition
JP3819701B2 (en) Core substrate for build-up multilayer printed wiring boards
JP4129166B2 (en) Electrolytic copper foil, film with electrolytic copper foil, multilayer wiring board, and manufacturing method thereof
JP3619421B2 (en) Manufacturing method of multilayer wiring board
JP2000200976A (en) Multilayer printed wiring substrate and its manufacture
JP3786512B2 (en) Manufacturing method of multilayer wiring board
JP3806593B2 (en) Build-up insulation material and build-up multilayer printed wiring board
JP3728068B2 (en) Multilayer wiring board
JP3955188B2 (en) Heat-resistant film for substrate and printed wiring board using the same
JP3071764B2 (en) Film with metal foil and method of manufacturing wiring board using the same
JP2005072454A (en) Wiring board and manufacturing method thereof
JP4840303B2 (en) Insulated resin sheet with glass fiber woven fabric, laminated board, multilayer printed wiring board, and semiconductor device
JP3236812B2 (en) Multilayer wiring board
JP4126582B2 (en) Multilayer printed wiring board and manufacturing method thereof
JP3981314B2 (en) Manufacturing method of multilayer wiring board
JP2004349366A (en) Multilayer wiring board and its manufacturing method
CN113498264B (en) Circuit board and processing method thereof
JP2003037362A (en) Method of manufacturing multilayer printed wiring board
TWI823435B (en) Wiring board

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20040702

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20050913

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051011

A521 Written amendment

Effective date: 20051209

Free format text: JAPANESE INTERMEDIATE CODE: A523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20060523

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Effective date: 20060615

Free format text: JAPANESE INTERMEDIATE CODE: A61

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 4

Free format text: PAYMENT UNTIL: 20100623

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 4

Free format text: PAYMENT UNTIL: 20100623

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 5

Free format text: PAYMENT UNTIL: 20110623

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110623

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120623

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120623

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20130623

LAPS Cancellation because of no payment of annual fees