JP3817936B2 - Water quality measuring instrument - Google Patents
Water quality measuring instrument Download PDFInfo
- Publication number
- JP3817936B2 JP3817936B2 JP29484698A JP29484698A JP3817936B2 JP 3817936 B2 JP3817936 B2 JP 3817936B2 JP 29484698 A JP29484698 A JP 29484698A JP 29484698 A JP29484698 A JP 29484698A JP 3817936 B2 JP3817936 B2 JP 3817936B2
- Authority
- JP
- Japan
- Prior art keywords
- light
- water quality
- light source
- light receiving
- quality measuring
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 title claims description 43
- 238000001914 filtration Methods 0.000 claims description 23
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims description 22
- 238000001514 detection method Methods 0.000 claims description 14
- 230000005540 biological transmission Effects 0.000 claims description 12
- 238000013032 photocatalytic reaction Methods 0.000 claims description 11
- 239000004408 titanium dioxide Substances 0.000 claims description 11
- 239000000126 substance Substances 0.000 claims description 7
- 239000002245 particle Substances 0.000 claims description 4
- 238000000746 purification Methods 0.000 claims description 4
- 239000000463 material Substances 0.000 claims description 3
- 230000001678 irradiating effect Effects 0.000 claims description 2
- 238000005406 washing Methods 0.000 description 14
- 238000000034 method Methods 0.000 description 11
- 238000004140 cleaning Methods 0.000 description 9
- 238000005259 measurement Methods 0.000 description 9
- 230000003595 spectral effect Effects 0.000 description 9
- 239000011248 coating agent Substances 0.000 description 7
- 238000000576 coating method Methods 0.000 description 7
- 230000007246 mechanism Effects 0.000 description 6
- 230000008569 process Effects 0.000 description 5
- 238000010586 diagram Methods 0.000 description 4
- 230000003287 optical effect Effects 0.000 description 4
- 239000004065 semiconductor Substances 0.000 description 4
- 241000223935 Cryptosporidium Species 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000002351 wastewater Substances 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 230000015271 coagulation Effects 0.000 description 2
- 238000005345 coagulation Methods 0.000 description 2
- 230000036541 health Effects 0.000 description 2
- 238000007654 immersion Methods 0.000 description 2
- 239000010410 layer Substances 0.000 description 2
- 230000001590 oxidative effect Effects 0.000 description 2
- 239000004576 sand Substances 0.000 description 2
- 238000009287 sand filtration Methods 0.000 description 2
- 238000004062 sedimentation Methods 0.000 description 2
- 230000035945 sensitivity Effects 0.000 description 2
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- RHZUVFJBSILHOK-UHFFFAOYSA-N anthracen-1-ylmethanolate Chemical compound C1=CC=C2C=C3C(C[O-])=CC=CC3=CC2=C1 RHZUVFJBSILHOK-UHFFFAOYSA-N 0.000 description 1
- 239000003830 anthracite Substances 0.000 description 1
- 238000011001 backwashing Methods 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 239000012320 chlorinating reagent Substances 0.000 description 1
- 238000005660 chlorination reaction Methods 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 239000000460 chlorine Substances 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 150000002367 halogens Chemical class 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 239000011572 manganese Substances 0.000 description 1
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 1
- 229910052753 mercury Inorganic materials 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 239000005416 organic matter Substances 0.000 description 1
- 230000001699 photocatalysis Effects 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 238000004659 sterilization and disinfection Methods 0.000 description 1
- 230000008685 targeting Effects 0.000 description 1
Images
Landscapes
- Physical Water Treatments (AREA)
- Treatment Of Water By Oxidation Or Reduction (AREA)
- Optical Measuring Cells (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
Description
【0001】
【発明の属する技術分野】
この発明は、水質検出器の光学部の洗浄に改良を加えた浄水場の急速ろ過池における水質計測器に関する。
【0002】
【従来の技術】
日本の浄水場における現状の主プロセスは、凝集沈殿+砂ろ過+塩素消毒である。原水中に含まれている濁質分や、近年問題となっているクリプトスポリジウムなどの原虫は、凝集沈殿+砂ろ過で除去する必要がある。その中でも、ろ過池は、マイクロフロックや有機物の吸着、原虫などの漏出の安全弁的な機能を果たしている重要なプロセスである。ろ過池は、これらの機能を維持するため、洗浄を行う必要があり、この洗浄は、ろ過池の運転管理上最も重要である。ろ過池の洗浄は、一般的には、ろ過継続時間およびろ過抵抗値到達時に実施しており、物理的な要因のみが指標として用いられているのが実状である。一方、上述したとおり、クリプトスポリジウムの混入といった問題点があり、水質的な面からも、ろ過池の運転管理を行って行く必要が出てきている。厚生省では、このような背景の下、ろ過池の水質やろ過池のろ過操作、洗浄操作などについて、以下のような通達を出している。
【0003】
(1)共通事項:各ろ過池ごとに、十分調整された濁度計を用いて濁度を測定すること、
(2)ろ過池流出水の水質:ろ過池流出水の濁度の常時把握およびその濁度を0.1度に維持すること、
(3)洗浄排水の水質:最終濁度2度以下を目標とすること、
(4)ろ過開始直後の水質:ろ過池流出水0.1度になるまで捨て水を実施すること。
【0004】
ろ過機能を維持するには、適切な洗浄方法で、ろ過池を洗浄してやる必要がある。ろ過池洗浄方式には、表面洗浄、逆洗水による洗浄、両者の組み合わせがあり、ろ過池が砂層のみの単層ろ過か、砂層とアンスラサイトを組み合わせた複合ろ過かによって洗浄方法や時間、洗浄水流量が変わってくる。
【0005】
【発明が解決しようとする課題】
上述した厚生省からの通達によるクリプトスポリジウム暫定対策指針の概略(1)〜(4)の中で、特に(3)に示した洗浄排水濁度の最終濁度を2度以下にするためには、プロセス用の濁度計が必要になる。しかしながら、現状の急速ろ過池の洗浄排水濁度を連続監視している例はほとんどない。
【0006】
この理由としては、以下に示す問題点をクリアする必要があるためである。
(1)中塩素処理を行うと工程水中の鉄、マンガンが塩素剤と反応して析出し、計測装置に付着して電極や光学部が汚れる。
(2)ろ過池の構造上、洗浄排水を測定するためには、ろ過池付近に水質検出器を設置しなければならない。(投げ込み式、浸漬式)
上記検出器、特にプロセス用水質計測器では、検水中の浮遊物質が付着したり、水温と測定器の温度差により、光学面に気泡が付着し易くなるため洗浄機構を具備している。特に浸漬形の水質計測器には、ブラシ洗浄機構、ワイパー洗浄機構などによって光学部を洗浄している。しかしながら、洗浄機構を設けると装置全体が大きくなる割に、洗浄効果があまり期待できない問題がある。
【0007】
この発明は上記の事情に鑑みてなされたもので、機械的洗浄機構に比較して検出部を小型化することができるとともに、非接触で検出部の洗浄を行って、検出部の耐久性の向上を図り、かつ検出部への気泡などの付着が防止できる水質計測器を提供することを課題とする。
【0008】
【課題を解決するための手段】
この発明は、上記の課題を達成するために、第1発明は、浄水場のろ過池の水質を水質検出器で計測する水質計測器において、
水中に没せられる水質検出器の検出部本体内に設けられ、試料水中に光線を透過窓を介して照射する第1光源体と、この第1光源体からの照射光線軸と直交する前記検出部本体内に設けられ、前記第1光源体からの光線の照射により水中の粒子で散乱した散乱光を検出する受光素子と、この受光素子の散乱光受光側に設けられた受光窓と、この受光窓と前記透過窓のそれぞれの水中側に被覆された光触媒反応物質と、前記受光素子と対向配置された前記検出部本体内に設けられ、前記受光窓と透過窓に照射され、それら各窓に被覆された前記光触媒反応物質に光触媒反応を起こさせる光線を発光する第2光源体とからなり、第1、第2光源体及び受光素子は、前記検出部本体内に一体的に設けられることを特徴とするものである。
【0009】
第2発明は、前記第1光源体が、レーザー光源または可視光源からなることを特徴とするものである。
第3発明は、前記第2光源体が、波長600nm以下の光源からなることを特徴とするものである。
第4発明は、前記受光素子が、波長600nm以上の単色波長だけに感度を有することを特徴とするものである。
第5発明は、前記光触媒反応物質が、二酸化チタンからなることを特徴とするものである。
【0010】
【発明の実施の形態】
以下この発明の実施の形態を図面に基づいて説明する。図1はこの発明の実施の形態を示す構成説明図で、この実施の形態では、レーザーを光源としたネフェロメトリー(側方散乱光法)の濁度計を例にとって説明する。図1において、10は濁度計の検出部本体で、この検出部本体10の内部には、半導体レーザーダイオード(波長:670nm)11が収納されている。このダイオード11は赤色レーザー光を発光し、そのレーザー光12は、凸レンズ13、二酸化チタンコーティング膜14が被覆されたレーザー透過窓15を透過して試料水中に照射される。16はシリコンフォトセルからなる単色受光素子(単色波長650nmだけに分光感度のある素子)で、この受光素子16は、レーザー光12と直交する検出部本体10内に設けられる。受光素子16の受光部には、二酸化チタンコーティング膜17が被覆された受光窓18を設ける。
【0011】
19は受光素子16と対向配置された検出部本体10内に設けられる分光ランプ(例えば、低圧水銀ランプやブラックライト)で、この分光ランプ19は、波長600nm以下の光線20を凹レンズ21を介して二酸化チタンコーティング膜14、17で被覆されている透過窓15と受光窓18に照射する。透過窓15と受光窓18に被覆されている二酸化チタンは、波長400nm以下の光線により光触媒反応を起こし、強い酸化力により付着物質を分解する機能をもっている。
【0012】
上記のように構成された濁度計において、半導体レーザーダイオード11から細く収束された波長670nmの赤色レーザー光線が試料中に照射される。試料中に照射された光束内に捕捉された濁度成分粒子からの反射/屈折による散乱光が光束と直角方向に配置された受光素子16によって検出される。受光素子16は検出した散乱光の強度に比例した電気出力を送出する。
【0013】
受光素子16は単色波長650nmだけに分光感度のある素子であるため、600nm以下の短い波長の光は吸収できない。このため、分光ランプ19から発光される波長600nm以下の光が受光素子16に照射されても吸収されないが、レーザー光12の光束内に捕捉された濁度成分粒子からの反射/屈折による散乱光は選択的に吸収でき、分光ランプ19を連続点灯下においても影響(バックグランド)されることなく濁度測定ができる。
【0014】
一方、分光ランプ19から発光される波長600nm以下の光が、透過窓15と受光窓18に被覆されている二酸化チタンコーティング膜14、17に照射されると、光触媒反応を起こし、強い酸化力によりコーティング膜に付着した物質を分解して、両窓15、18の汚れを洗浄する。このため、濁度測定が常に良好の状態で行うことができる。なお、上記実施の形態においては、光触媒反応を起こす物質として二酸化チタンを例に掲げたが、波長600nmで光触媒反応を起こす物質であればどのようなものでも良い。また、上記実施の形態では、ネフェロメトリーの場合について述べて来たが、透過光測定、前方散乱光測定、後方散乱光測定等の各方式に適用することができる。
【0015】
上記半導体レーザー光線を使用する水質計測器に代えて、ハロゲンランプ等の可視光を光源とした水質計測器を使用する場合において、透過窓と受光窓を具備している測定系では、受光素子16に影響を与えてしまうため、分光ランプ19の連続点灯照射はできない。従って、透過窓15と受光窓18の洗浄を行うときには、図示しない測定回路によって制限する。例えば、シーケンス上で洗浄開始時に、その毎正時の出力をホールド状態に分光ランプ19を必要時間点灯することで測定データに影響しないようにする。なお、この機能は、透過光測定、前方散乱光測定、後方散乱光測定等の各方式に適用することができる。
【0016】
図2は濁度計をろ過池内に設置したときの概略構成図で、図2において、31はろ過池、32は洗浄排水用トラフ、33は前述した検出部本体10に設けられた遮光カバー、34は防水管、35は中継ボックス、36は演算増幅器装置である。
【0017】
【発明の効果】
以上述べたように、この発明によれば、透過窓と受光窓に二酸化チタンのコーティング膜を形成することにより、機械的洗浄機構を設ける必要がないために、検出部本体の小型化を図ることができるとともに、非接触で窓の洗浄ができるため、検出部の耐久性を向上させることができる。また、二酸化チタン膜は、分光ランプからの光照射により、表面が親水化され気泡等の付着が防止できる利点も
ある。
【図面の簡単な説明】
【図1】この発明の実施の形態を示す構成説明図。
【図2】濁度計をろ過池内に設置したときの概略構成図。
【符号の説明】
10…検出部本体
11…半導体レーザーダイオード
12…レーザー光
13…凸レンズ
14、17…二酸化チタンコーティング膜
15…レーザー透過窓
16…単色受光素子
18…受光窓
19…分光ランプ
20…波長600nm以下の光線
21…凹レンズ[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a water quality measuring instrument in a rapid filtration pond of a water purification plant in which an improvement is made to cleaning of an optical part of a water quality detector.
[0002]
[Prior art]
The main process at present in water purification plants in Japan is coagulation sedimentation + sand filtration + chlorine disinfection. It is necessary to remove turbidity contained in the raw water and protozoa such as Cryptosporidium, which has been a problem in recent years, by coagulation sedimentation + sand filtration. Among them, the filter basin is an important process that functions as a safety valve for leakage of micro flocs, organic matter adsorption, and protozoa. The filter basin needs to be washed in order to maintain these functions, and this washing is the most important in the operation management of the filter basin. The washing of the filtration basin is generally performed when the filtration duration and the filtration resistance value are reached, and the actual situation is that only physical factors are used as an index. On the other hand, as described above, there is a problem that Cryptosporidium is mixed, and it is necessary to manage the operation of the filtration basin from the viewpoint of water quality. Based on this background, the Ministry of Health and Welfare has issued the following notifications regarding the water quality of the filter basin, the filtration operation of the filter basin, and the washing operation.
[0003]
(1) Common items: For each filtration pond, measure turbidity using a well-adjusted turbidimeter,
(2) Quality of effluent from filtration basin: Maintaining turbidity of filtration basin effluent at all times and maintaining the turbidity at 0.1 degree,
(3) Water quality of washing wastewater: Targeting a final turbidity of 2 degrees or less,
(4) Water quality immediately after the start of filtration: Dispose of the water until the filtration basin effluent reaches 0.1 ° C.
[0004]
In order to maintain the filtration function, it is necessary to wash the filtration pond with an appropriate washing method. There are two types of filtration basin washing methods: surface washing, washing with backwashing water, and a combination of both. The washing method, time, and washing depending on whether the filtration basin is a single-layer filtration using only a sand layer or a combined filtration that combines a sand layer and anthracite. Water flow changes.
[0005]
[Problems to be solved by the invention]
Among the outlines (1) to (4) of the Cryptosporidium Provisional Countermeasure Guidelines by the notification from the Ministry of Health and Welfare mentioned above, in particular, in order to make the final turbidity of the washing drainage turbidity shown in (3) 2 degrees or less, A turbidimeter for the process is required. However, there are few examples of continuous monitoring of the turbidity of washing wastewater in the current rapid filtration pond.
[0006]
This is because it is necessary to clear the following problems.
(1) When medium chlorination is carried out, iron and manganese in the process water react with the chlorinating agent to deposit, adhere to the measuring device, and the electrode and the optical part become dirty.
(2) Due to the structure of the filtration basin, a water quality detector must be installed in the vicinity of the filtration basin in order to measure the washing wastewater. (Throwing type, immersion type)
The detector, particularly the process water quality measuring instrument, is equipped with a cleaning mechanism because air bubbles easily adhere to the optical surface due to adhering suspended substances in the test water or the temperature difference between the water temperature and the measuring instrument. In particular, in an immersion type water quality measuring instrument, the optical part is cleaned by a brush cleaning mechanism, a wiper cleaning mechanism, or the like. However, when the cleaning mechanism is provided, there is a problem that the cleaning effect cannot be expected so much as the entire apparatus becomes large.
[0007]
The present invention has been made in view of the above circumstances, and the detection unit can be downsized as compared with a mechanical cleaning mechanism, and the detection unit is cleaned in a non-contact manner. It is an object of the present invention to provide a water quality measuring instrument that can improve and prevent the adhesion of bubbles and the like to the detection unit.
[0008]
[Means for Solving the Problems]
In order to achieve the above object, the present invention provides a water quality measuring instrument that measures the water quality of a filtration pond in a water purification plant with a water quality detector,
A first light source body that is provided in a detection unit main body of a water quality detector that is submerged in water and that irradiates light into the sample water through a transmission window, and the detection that is orthogonal to the irradiation light beam axis from the first light source body A light receiving element provided in the main body for detecting scattered light scattered by particles in water by irradiation of light from the first light source body, a light receiving window provided on the scattered light receiving side of the light receiving element, A photocatalytic reaction material coated on the underwater side of each of the light receiving window and the transmission window, and provided in the detector main body disposed to face the light receiving element, and irradiating the light receiving window and the transmission window. Ri Do and a second light source for emitting a light beam to cause a photocatalytic reaction to the coated photocatalytic reaction substance, first, second light source and the light receiving element is provided integrally with the detector body It is characterized by this.
[0009]
The second invention is characterized in that the first light source body comprises a laser light source or a visible light source.
The third invention is characterized in that the second light source body comprises a light source having a wavelength of 600 nm or less.
The fourth invention is characterized in that the light receiving element is sensitive only to a monochromatic wavelength of 600 nm or more.
The fifth invention is characterized in that the photocatalytic reactant is made of titanium dioxide.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is an explanatory diagram showing the configuration of an embodiment of the present invention. In this embodiment, a nephrometry (side scattered light method) turbidimeter using a laser as a light source will be described as an example. In FIG. 1, reference numeral 10 denotes a detection unit body of the turbidimeter, and a semiconductor laser diode (wavelength: 670 nm) 11 is accommodated in the detection unit body 10. The diode 11 emits red laser light, and the laser light 12 passes through a laser transmission window 15 covered with a convex lens 13 and a titanium dioxide coating film 14 and is irradiated into the sample water. Reference numeral 16 denotes a monochromatic light receiving element (an element having spectral sensitivity only for a monochromatic wavelength of 650 nm) made of a silicon photocell. The light receiving element 16 is provided in the detection unit main body 10 orthogonal to the laser beam 12. The light receiving portion of the light receiving element 16 is provided with a light receiving window 18 covered with a titanium dioxide coating film 17.
[0011]
Reference numeral 19 denotes a spectroscopic lamp (for example, a low-pressure mercury lamp or a black light) provided in the detection unit main body 10 disposed so as to face the light receiving element 16. The spectroscopic lamp 19 transmits a light beam 20 having a wavelength of 600 nm or less through a concave lens 21. The transmitting window 15 and the light receiving window 18 covered with the titanium dioxide coating films 14 and 17 are irradiated. Titanium dioxide coated on the transmission window 15 and the light receiving window 18 has a function of causing a photocatalytic reaction by a light beam having a wavelength of 400 nm or less and decomposing an adhering substance by a strong oxidizing power.
[0012]
In the turbidimeter configured as described above, the sample is irradiated with a red laser beam having a wavelength of 670 nm which is finely converged from the semiconductor laser diode 11. Scattered light due to reflection / refraction from turbidity component particles trapped in the light beam irradiated in the sample is detected by the light receiving element 16 arranged in a direction perpendicular to the light beam. The light receiving element 16 sends out an electrical output proportional to the detected scattered light intensity.
[0013]
Since the light receiving element 16 is an element having spectral sensitivity only for a monochromatic wavelength of 650 nm, it cannot absorb light having a short wavelength of 600 nm or less. Therefore, even if light having a wavelength of 600 nm or less emitted from the spectral lamp 19 is irradiated to the light receiving element 16, it is not absorbed, but is scattered light due to reflection / refraction from turbidity component particles trapped in the light beam of the laser light 12. Can be selectively absorbed, and turbidity can be measured without being influenced (background) even when the spectral lamp 19 is continuously lit.
[0014]
On the other hand, when light having a wavelength of 600 nm or less emitted from the spectral lamp 19 is irradiated onto the titanium dioxide coating films 14 and 17 covered with the transmission window 15 and the light receiving window 18, a photocatalytic reaction occurs, and strong oxidizing power is generated. The substance adhering to the coating film is decomposed to clean the windows 15 and 18 from dirt. For this reason, turbidity measurement can always be performed in a good state. In the above embodiment, titanium dioxide is taken as an example of a substance that causes a photocatalytic reaction. However, any substance that causes a photocatalytic reaction at a wavelength of 600 nm may be used. In the above-described embodiment, the case of nepherometry has been described. However, the present invention can be applied to various methods such as transmitted light measurement, forward scattered light measurement, and backscattered light measurement.
[0015]
In the case of using a water quality measuring device using visible light as a light source such as a halogen lamp instead of the water quality measuring device using the semiconductor laser beam, in the measuring system having a transmission window and a light receiving window, the light receiving element 16 Since it will have an effect, the continuous lighting of the spectral lamp 19 cannot be performed. Therefore, when the transmissive window 15 and the light receiving window 18 are cleaned, the measurement circuit (not shown) is limited. For example, the measurement data is not affected by turning on the spectral lamp 19 for a necessary time while holding the output at the hour on the hour at the start of cleaning on the sequence. This function can be applied to various methods such as transmitted light measurement, forward scattered light measurement, and backscattered light measurement.
[0016]
FIG. 2 is a schematic configuration diagram when the turbidimeter is installed in the filter basin. In FIG. 2, 31 is a filter basin, 32 is a washing drain trough, 33 is a light-shielding cover provided on the detector main body 10 described above, 34 is a waterproof tube, 35 is a relay box, and 36 is an operational amplifier device.
[0017]
【The invention's effect】
As described above, according to the present invention, it is not necessary to provide a mechanical cleaning mechanism by forming a coating film of titanium dioxide on the transmission window and the light reception window. In addition, since the window can be cleaned in a non-contact manner, the durability of the detection unit can be improved. In addition, the titanium dioxide film has an advantage that the surface is made hydrophilic by light irradiation from a spectral lamp and adhesion of bubbles and the like can be prevented.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram showing a configuration of an embodiment of the present invention.
FIG. 2 is a schematic configuration diagram when a turbidimeter is installed in a filtration pond.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 ... Detection part main body 11 ... Semiconductor laser diode 12 ... Laser beam 13 ... Convex lenses 14, 17 ... Titanium dioxide coating film 15 ... Laser transmission window 16 ... Monochromatic light receiving element 18 ... Light receiving window 19 ... Spectral lamp 20 ... Light with a wavelength of 600 nm or less 21 ... concave lens
Claims (5)
水中に没せられる水質検出器の検出部本体内に設けられ、試料水中に光線を透過窓を介して照射する第1光源体と、この第1光源体からの照射光線軸と直交する前記検出部本体内に設けられ、前記第1光源体からの光線の照射により水中の粒子で散乱した散乱光を検出する受光素子と、この受光素子の散乱光受光側に設けられた受光窓と、この受光窓と前記透過窓のそれぞれの水中側に被覆された光触媒反応物質と、前記受光素子と対向配置された前記検出部本体内に設けられ、前記受光窓と透過窓に照射され、それら各窓に被覆された前記光触媒反応物質に光触媒反応を起こさせる光線を発光する第2光源体とからなり、第1、第2光源体及び受光素子は、前記検出部本体内に一体的に設けられることを特徴とする水質計測器。In the water quality measuring instrument that measures the water quality of the filtration pond of the water purification plant with the water quality detector,
A first light source body that is provided in a detection unit main body of a water quality detector that is submerged in water and that irradiates a sample with light rays through a transmission window, and the detection that is orthogonal to the axis of light rays emitted from the first light source body. A light receiving element provided in the main body for detecting scattered light scattered by particles in water by irradiation of light from the first light source body, a light receiving window provided on the scattered light receiving side of the light receiving element, A photocatalytic reaction material coated on the underwater side of each of the light receiving window and the transmission window, and provided in the detection unit main body arranged to face the light receiving element, and irradiating the light reception window and the transmission window. Ri Do and a second light source for emitting a light beam to cause a photocatalytic reaction to the coated photocatalytic reaction substance, first, second light source and the light receiving element is provided integrally with the detector body This is a water quality measuring instrument.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP29484698A JP3817936B2 (en) | 1998-10-16 | 1998-10-16 | Water quality measuring instrument |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP29484698A JP3817936B2 (en) | 1998-10-16 | 1998-10-16 | Water quality measuring instrument |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2000121548A JP2000121548A (en) | 2000-04-28 |
JP3817936B2 true JP3817936B2 (en) | 2006-09-06 |
Family
ID=17813021
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP29484698A Expired - Fee Related JP3817936B2 (en) | 1998-10-16 | 1998-10-16 | Water quality measuring instrument |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3817936B2 (en) |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4691266B2 (en) * | 2001-04-18 | 2011-06-01 | 株式会社 堀場アドバンスドテクノ | Total nitrogen and / or total phosphorus measuring device |
JP3746243B2 (en) * | 2002-03-25 | 2006-02-15 | ファナック株式会社 | Laser oscillator |
GB2391307A (en) * | 2003-03-13 | 2004-02-04 | Delphi Tech Inc | Self-cleaning optical sensor |
CN100428590C (en) * | 2004-03-10 | 2008-10-22 | 松下电器产业株式会社 | Coherent light source and optical system |
JP4566070B2 (en) * | 2005-06-10 | 2010-10-20 | トヨタ自動車株式会社 | Exhaust gas analyzer |
JP4797972B2 (en) * | 2006-12-22 | 2011-10-19 | トヨタ自動車株式会社 | Fuel property detection device |
CN101688831A (en) * | 2007-02-28 | 2010-03-31 | 三得利控股株式会社 | Liquid immersion type absorbance sensor element and absorption spectrometer using same |
JP5383369B2 (en) * | 2009-07-29 | 2014-01-08 | 三菱重工業株式会社 | Gas analyzer |
DE102012007864B4 (en) * | 2012-04-19 | 2013-11-28 | Hydrometer Gmbh | Turbidity sensor and flow meter for fluid |
US11135625B2 (en) * | 2014-12-30 | 2021-10-05 | Koninklijke Philips N.V. | System for anti-biofouling |
CA3093896C (en) | 2018-03-28 | 2023-08-22 | Sumitomo Metal Mining Co., Ltd. | Air bubble measurement device and air bubble measurement method |
CN113087306B (en) * | 2021-04-19 | 2022-09-02 | 安徽省圣丹生物化工有限公司 | Waste water treatment system is used in chlorinated phenoxy acid herbicide production |
-
1998
- 1998-10-16 JP JP29484698A patent/JP3817936B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2000121548A (en) | 2000-04-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3817936B2 (en) | Water quality measuring instrument | |
JP3230751B2 (en) | Turbidity measurement | |
CA2924771C (en) | Nephelometric turbidimeter and method for detection of the contamination of a sample cuvette of a nephelometric turbidimeter | |
WO2011160187A1 (en) | An absorption probe for measuring dissolved organic carbon in an aqueous sample | |
JP2019037450A (en) | Fluid sterilizer | |
WO2001029541A1 (en) | Device for measuring water quality | |
US20020054288A1 (en) | Automatic water quality measurement system based on a high performance optical fiber probe | |
JP3920504B2 (en) | UV sterilizer | |
KR102231001B1 (en) | Device for measuring organic materials using UV LED | |
JP4232361B2 (en) | Water quality measuring instrument | |
JP2008064612A (en) | Water quality measuring method and water quality measuring device | |
EP1228004B1 (en) | Optical radiation sensor system with cleaning device | |
JP2006145346A (en) | Oil content detector | |
JPH10142141A (en) | Instrument for measuring water quality | |
JP2008249363A (en) | Turbidimeter | |
KR102124010B1 (en) | Device for measuring turbidity | |
JPS5934135A (en) | Optical type apparatus for measuring water quality | |
CN111742078B (en) | Non-fluorescent darkened optical assembly | |
KR20180117817A (en) | Apparatus for filtering | |
JP2010091309A (en) | Method and apparatus for measuring water-quality in non-contact manner | |
JP2008068203A (en) | Ultraviolet sterilization system | |
JPH0493638A (en) | Continuous measurement device of low density absorbance | |
JPS62122130A (en) | How to monitor the ultraviolet lamp of ultraviolet cleaning equipment | |
KR102231002B1 (en) | Method for measuring organic materials using UV LED | |
JP2000301134A (en) | Measuring device of waste water density and monitoring system using such device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20040823 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060221 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060417 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20060523 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20060605 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090623 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100623 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110623 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110623 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120623 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130623 Year of fee payment: 7 |
|
LAPS | Cancellation because of no payment of annual fees |