JP3816872B2 - Operation control method of refrigeration system with two evaporators - Google Patents
Operation control method of refrigeration system with two evaporators Download PDFInfo
- Publication number
- JP3816872B2 JP3816872B2 JP2002379190A JP2002379190A JP3816872B2 JP 3816872 B2 JP3816872 B2 JP 3816872B2 JP 2002379190 A JP2002379190 A JP 2002379190A JP 2002379190 A JP2002379190 A JP 2002379190A JP 3816872 B2 JP3816872 B2 JP 3816872B2
- Authority
- JP
- Japan
- Prior art keywords
- temperature
- cycle
- chamber
- fan
- refrigeration system
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000005057 refrigeration Methods 0.000 title claims description 109
- 238000000034 method Methods 0.000 title claims description 79
- 239000003507 refrigerant Substances 0.000 claims description 112
- 238000001816 cooling Methods 0.000 description 14
- 239000007791 liquid phase Substances 0.000 description 8
- 238000010586 diagram Methods 0.000 description 5
- 238000007906 compression Methods 0.000 description 4
- 230000006835 compression Effects 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 238000001704 evaporation Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 239000012071 phase Substances 0.000 description 3
- 230000008016 vaporization Effects 0.000 description 3
- 239000007788 liquid Substances 0.000 description 2
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 239000002826 coolant Substances 0.000 description 1
- 238000005461 lubrication Methods 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 238000009834 vaporization Methods 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B5/00—Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B49/00—Arrangement or mounting of control or safety devices
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25D—REFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
- F25D11/00—Self-contained movable devices, e.g. domestic refrigerators
- F25D11/02—Self-contained movable devices, e.g. domestic refrigerators with cooling compartments at different temperatures
- F25D11/022—Self-contained movable devices, e.g. domestic refrigerators with cooling compartments at different temperatures with two or more evaporators
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25D—REFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
- F25D29/00—Arrangement or mounting of control or safety devices
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2600/00—Control issues
- F25B2600/02—Compressor control
- F25B2600/025—Compressor control by controlling speed
- F25B2600/0251—Compressor control by controlling speed with on-off operation
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2600/00—Control issues
- F25B2600/11—Fan speed control
- F25B2600/112—Fan speed control of evaporator fans
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2600/00—Control issues
- F25B2600/25—Control of valves
- F25B2600/2511—Evaporator distribution valves
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B5/00—Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity
- F25B5/02—Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity arranged in parallel
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25D—REFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
- F25D2700/00—Means for sensing or measuring; Sensors therefor
- F25D2700/12—Sensors measuring the inside temperature
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B30/00—Energy efficient heating, ventilation or air conditioning [HVAC]
- Y02B30/70—Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B40/00—Technologies aiming at improving the efficiency of home appliances, e.g. induction cooking or efficient technologies for refrigerators, freezers or dish washers
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Devices That Are Associated With Refrigeration Equipment (AREA)
- Cold Air Circulating Systems And Constructional Details In Refrigerators (AREA)
- Air Conditioning Control Device (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、冷凍システムの運転を制御する方法に関し、特に、2つの蒸発器を備えた冷凍システムの運転制御方法に関するものである。
【0002】
【従来の技術】
一般に、冷蔵庫は食品を新鮮に長期間保管する用途に用いられる機器であって、その構成は大きく複数の食品保管室を有する本体と、前記食品保管室を冷却するための冷凍サイクルから分けられる。
【0003】
冷凍サイクルを構成する主要構成要素としては、圧縮機、凝縮器、蒸発器、膨張バルブがある。一般的に、圧縮機と凝縮器は本体の後方下部に設けられた機械室内に取り付けられ、蒸発器と膨張バルブは食品保管室の近傍に取り付けられ、次のような段階を介して本体の食品保管室を冷却する。
【0004】
先ず、気相の冷媒が圧縮機で圧縮されて凝縮器に圧送された後、凝縮器で熱交換して液化される。凝縮された液相の冷媒は膨張バルブで蒸発器に噴射されながら急膨張して気化する。この時、蒸発器の周囲から熱を吸収してその冷気によって食品保管室を冷却する。気化した冷媒は再び圧縮機に戻って圧縮、液化された後、前記凝縮、膨張、気化、圧縮段階を繰り返しながら食品保管室を常に低温状態に冷却する。
【0005】
尚、冷蔵庫の冷凍システムは、1つの蒸発器で複数の食品保管室に冷気を供給するように構成されることもあるが、最近は各食品保管室の特性を生かし、冷却性能を向上させるために複数の蒸発器を食品保管室の各々に取り付けて制御するように構成されることもある。
【0006】
このように、複数の蒸発器を備えた冷凍システム(以下説明の便宜のため2つの蒸発器を備えた冷凍システムと称する)は、圧縮機と凝縮器を経由した冷媒が流通する冷媒配管が、2つの蒸発器(F−蒸発器とR−蒸発器)に各々連結され得るように分岐され、その分岐点に両分岐管の流路を開閉できるバルブ装置が取り付けられている。従って、前記バルブ装置を切り換えることにより、冷媒をF−蒸発器とR−蒸発器の何れか一方に流入するようにすることで、2つの食品保管室の何れか一つを選択して冷却することができる。
【0007】
このような2つの蒸発器が備えられている冷凍システムは、一般的に全ての食品保管室の温度が、制御部に予め設定されている条件を満たすと、圧縮機の動作を中止、全ての食品保管室の何れか1つの温度が、制御部に設定されている温度範囲以上に上昇したときに、圧縮機を更に動作させる方法で運転されている。このような運転を繰り返しながら、各貯蔵室の温度を制御部に予め設定されている温度範囲内に維持する。
【0008】
然しながら、前記冷凍システムを有する冷蔵庫では、2つの蒸発器の何れか一方の蒸発器にだけ冷媒を供給する方式で各室の温度を制御するので各室の温度偏差が大きくなる。即ち、何れか一方の蒸発器に冷媒が供給されるときには他の蒸発器には冷媒が供給されず、また冷気を供給するファンも停止するので、当室内の冷気循環が中止されることによって蒸発器の稼動時と停止時の食品冷凍室内の温度偏差が大きくなるという問題がある。
【0009】
また、既述した2つの蒸発器を備えた冷凍システムでは、2つの蒸発器の何れか一方の蒸発器に冷媒を供給するサイクルを行った後、バルブ装置を切り換えて更に他の1つの蒸発器に冷媒を供給する他のサイクルを行う場合、冷媒の供給を底止した蒸発器内に既に流入している冷媒が残留するという問題がある。
【0010】
即ち、F−蒸発器に冷媒を供給しながらF−サイクルをおこなった後、バルブ装置を切り換えてR−蒸発器に供給しながらR−サイクルをおこなった場合、F−蒸発器に既に流入している冷媒は、R−サイクルが行われる間、流動せず殆ど液相でF−蒸発器に残留する。
【0011】
このような現象は、R−サイクルの中止及び圧縮機の動作中止時にも同様に発生するので、蒸発器に残留する冷媒を回収するための別の装置や方法を適用しない場合には、2つの蒸発器の何れか一方の蒸発器には常に冷媒が残留する。
【0012】
従って、1つのサイクルが完了した後、蒸発器に残留する冷媒を圧縮機及び凝縮器に全量回収できないので、更に他の1つのサイクルを行う時、冷媒不足の現象が発生し、このような現象によって冷却性能が相対的に低下するという問題がある。
【0013】
また、圧縮機を更に動作させるとき、蒸発器に残留する液相の冷媒が圧縮機に流入することとなり、圧縮機のシリンダー内での潤滑の問題が発生し、圧縮機の信頼性が確保できないという問題がある。
【0014】
【発明が解決しようとする課題】
本発明は、こうした従来技術の問題点を解決することを技術課題としており、2つの蒸発器を備えた冷凍システムを有する冷蔵庫で、各食品保管室の温度偏差を減少させることが目的である。
【0015】
本発明の他の目的は、2つの蒸発器を備えた冷凍システムにおいて冷凍サイクルの切り換え時に蒸発器に残留する冷媒を回収して、冷媒不足を防止し、更に圧縮機の信頼性を確保することである。
本発明の更に異なる目的は、2つの蒸発器を備えた冷凍システムの冷却性能を向上させることである。
【0016】
【課題を解決するための手段】
上記目的を達成するために、本発明による方法は(c)各室の温度を測定する段階と、(d)測定された各室の温度を比較する段階と、(e)各室の温度比較結果に基づき各室の蒸発器に流入する冷媒量を調節する段階含む。
ここで、段階(c)は各室に取り付けられている温度センサーによって行われ、前記基準温度は、上限温度と下限温度を含むことが好ましい。
【0017】
段階(e)における各室の蒸発器に流れ込む冷媒量の調節は、前記各室の蒸発器に連結される冷媒管の分岐点に取り付けられているバルブ装置の開放比率の調節を介してなされ、各室の温度が全て前記上限温度以上の場合、前記バルブ装置の開放比率は50%:50%で、各室の温度が下限温度以上の温度領域で同一である場合、前記バルブ装置の開放比率は50%:50%で、下限温度以上の温度領域で各室の何れか1室の温度が他の室より高い場合、前記バルブ装置は相対的に高い温度を有する室の蒸発器側が更に多く開放されるように制御され、また、何れか1室の温度だけが下限値の温度未満の場合、前記バルブ装置は高い温度を有する室の蒸発器側に冷媒の全量が流入するように制御され、各室の温度が下限温度未満の場合、圧縮機の運転が停止することが好ましい。
【0018】
また、前記本発明の他の特徴によれば、(b)各室毎に複数の温度領域を設定する段階と、(c)各室の温度を測定する段階と、(d)測定された各室の温度を比較する段階と、また、(e)各室の温度比較結果に基づき各室の蒸発器に流入する冷媒量を調節する段階とを含む方法が提供される。
【0019】
ここで、段階(c)は、各室に各々取り付けられている温度センサーによって行われ、前記温度領域は、上限温度以上の温度領域(An温度領域)、上限温度未満で設定値温度以上の温度領域(Bn温度領域)、設定値温度未満で下限温度以上の温度領域(Cn温度領域)、下限温度未満の温度領域(Dn温度領域)を含んでおり、前記測定された各室の温度を比較する段階(d)は測定された各室の温度を前記温度領域と比較する方法で行われることが好ましい。
【0020】
また、段階(e)における各室の蒸発器に流入する冷媒量の調節は、前記各室の蒸発器に連結される冷媒管の分岐点に取り付けられているバルブ装置の開放比率調節を介してなされるが、各室の温度領域が互いに同一の場合、前記バルブ装置は同一比率で開放され、この時、前記バルブ装置の開放比率は50%:50%で、また各室の温度が全てDn温度領域に属する場合、圧縮機の運転が停止され、各室の何れか1室の温度領域だけがDn温度領域に属する場合、前記バルブ装置の開放比率は、0%:100%(Dn温度領域に属する室側:他の温度領域に属する室側)であり、各室の何れか1室の温度領域がAn温度領域に属し、他の1室がCn温度領域に属する場合、前記バルブ装置の開放比率は100%:0%(An温度領域に属する室側:Cn温度領域に属する室側)であり、各室の何れか1室の温度領域がBn温度領域に属し、他の1室がAn温度領域またはCn温度領域に属する場合、前記バルブ装置は相対的に高い温度の温度領域に属する室側が更に多く開放されるように制御されることが望ましく、この時、前記バルブ装置の開放比率は80%:20%(高い温度の温度領域に属する室側:低い温度の温度領域に属する室側)であることが好ましい。
【0021】
前記目的を達成するための本発明の更に他の特徴によれば、(f)凝縮器を経た冷媒が、F−膨張装置とF−蒸発器とを順次的に流動するF−サイクルから、バルブ装置の制御によって、R−膨張装置とR−蒸発器とを順次に流動するR−サイクルに転換されるとき、所定時間(Δt)の間、前記バルブ装置を閉鎖した状態で前記圧縮機を運転する段階を含む方法が提供される。
【0022】
段階(f)を行う時、F−ファンを共に回転させる段階を含むことが望ましく、段階(f)を行う時、凝縮器ファンを共に回転させる段階を含むことが好ましい。
【0023】
更に、本発明の他の特徴によれば、(g)凝縮器を経た冷媒がF−膨張装置とF−蒸発器とを順次に流動するF−サイクルと、R−膨張装置とR−蒸発器とを順次に流動するR−サイクルとの何れか一方のサイクルが完了した時、所定時間(Δt)の間、前記バルブ装置を閉鎖した状態で前記圧縮機を運転する段階を含んだ方法が提供される。
【0024】
ここで、段階(g)を行う時、当該ファンを回転させる段階を含むことが望ましく、また、段階(g)を行う時、凝縮器ファンを共に回転させる段階を含むことが好ましい。
【0025】
本発明の更に他の特徴によれば、凝縮器を経た冷媒がF−膨張装置とF−蒸発器とを順次的に流動するF−サイクルと、R−膨張装置とR−蒸発器とを順次に流動するR−サイクルとの何れか一方のサイクルが完了した時、所定時間(Δt)の間、前記バルブ装置を閉鎖した状態で前記圧縮機を運転する段階と、また、前記圧縮機の運転が停止した後にも、F−ファンとR−ファンを各々断続的に運転する段階を含む方法が提供される。
【0026】
ここで、前記F−サイクルと前記R−サイクルの何れか一方の冷凍サイクルが完了した時、当該冷凍サイクルに属する蒸発器のファンを断続的に運転する段階を包含したり、前記F−サイクルとR−サイクルの何れか一方の冷凍サイクルが行われる時、当該冷凍サイクルに属する蒸発器のファンを所定時間の間延長運転する段階を包含したり、前記F−サイクルと前記R−サイクルの何れか一方の冷凍サイクルが完了した時、当該冷凍サイクルに属する蒸発器のファンを所定時間延長運転する段階を包含したり、前記F−サイクルと前記R−サイクルの何れか一方の冷凍サイクルが完了した時、当該冷凍サイクルに属する蒸発器のファンを所定時間延長運転した後断続的に運転する段階を包含することが好ましい。この時、前記F−ファン及びR−ファンが運転され停止される断続時間比は4:6であることが好ましい。
【0027】
本発明の他の特徴によれば、F−サイクルまたはR−サイクルを選択的に行う冷凍システムの圧縮機の運転が停止した後にもF−ファンとR−ファンを各々断続的に運転する段階を包む方法が提供される。
【0028】
ここで、前記F−サイクルと前記R−サイクルの何れか一方の冷凍サイクルが完了した時、停止した更に1つの冷凍サイクルに属する蒸発器のファンを断続的に運転する段階を包含したり、前記F−サイクルとR−サイクルの何れか一方の冷凍サイクルが行われる時、当該冷凍サイクルに属する蒸発器のファンを所定時間の間延長運転する段階を包含したり、前記F−サイクルと前記R−サイクルの何れか一方の冷凍サイクルが完了した時、当該冷凍サイクルに属する蒸発器のファンを所定時間延長運転した後、断続的に運転する段階を包含することが好ましい。この時、前記F−ファン及びR−ファンが運転され停止される断続時間比は4:6であることが好ましい。
【0029】
【発明の実施の形態】
以下、添付図面を参照して本発明を更に詳細に説明する。
実施形態の説明において、各部と同様の構成を有する部分には同一の符号を付しており、これによる付加説明は省略する。
【0030】
図1を参照すると、本発明が適用される冷却システムは圧縮機1、凝縮器2、バルブ装置3、2つの膨張装置11、21及び2つの蒸発器12、22を具備している。
【0031】
凝縮器2の冷媒吐出側に連結された冷媒管は二つに分岐され、その分岐点には制御部(図示せず)からの制御によって各分岐管の冷媒流路を多様な比率で各々開放できるバルブ装置3が取り付けられている。
【0032】
バルブ装置3を起点に分岐された各分岐管は、第1室10に配設されたF−膨張装置11と、第2室に配設されたR−膨張装置21に各々連結される。
第1室10には、F−蒸発器12がF−膨張装置11に連結されており、F−ファン12aがF−蒸発器12に向かって取り付けられている。
【0033】
また、第2室20には、R−蒸発器22がR−膨張装置21に連結されており、R−ファン22aがR−蒸発器22に向かって取り付けられている。
また、第1室10と第2室20には、各室の温度を測定するための温度センサー13、23が各々設置されており、これらは制御部と電気的に連結され測定された情報を制御部に伝える。
【0034】
F−蒸発器12とR−蒸発器22の各吐出側の冷媒管は圧縮機1に連結されている。
このように構成された冷却システムは、本発明の種々の実施形態による方法により運転が制御され、各実施形態による詳細な説明は次の通りである。
【0035】
第1実施形態
図2を参照すると、本発明の第1実施形態は、第1室10と第2室20について独立に複数の基準温度を設定する段階(S−00)、第1室10と第2室20の温度を測定する段階(S−10)、測定された第1室10と第2室20の温度を比較する段階(S−20)、また、第1室10と第2室20の温度比較結果を基準にF−蒸発器12側とR−蒸発器22側に各々流入する冷媒量を調節する段階(S−30)を含む。
【0036】
ここで、段階(S−10)は、各温度センサー13、23によって行われ、測定された温度は制御部に伝送される。また、段階(S−20)は制御部で行われるが、前記基準温度は上限温度と下限温度を含む。この時、前記上限温度と下限温度は第1室10と第2室20とで同一に設定することもできるが、一般的に第1室10は冷凍室に用いられ、第2室20は冷蔵室に用いられるので、各室の基準温度は互に異なる値を設定するのが好ましい。
【0037】
また、段階(S−30)で、F−蒸発器12側とR−蒸発器22側に各々流入する冷媒量の調節は、第1室10と第2室20の温度比較結果を基準にして、制御部がバルブ装置3の開放比率を調節することでなされるが、その詳細な開放比率を図3を参照して説明すると次のとおりである。
【0038】
図3を参照すると、第1室10と第2室20の温度が上限温度以上の場合、または、第1室10と第2室20の温度が下限温度以上の温度領域で同一の場合には、バルブ装置3の開放比率は第1室側:第2室側が50%:50%に設定されており、F−蒸発器12側とR−蒸発器22側の両側に同一量の冷媒を流入させることになる。
【0039】
また、第1室10と第2室20の温度が下限温度以上の温度領域に属し、何れか1室の温度が他の室より高い場合、バルブ装置3は相対的に高い温度を有する室の蒸発器側が更に多く開放されるように制御される。
【0040】
即ち、図3に示すように、第1室が上限温度未満で下限温度以上の温度領域(b1)に属し、第2室20が上限温度以上の温度領域(a2温度領域)に属する場合は、バルブ装置3が第1室10側より第2室側に多く開くように制御される。また、第1室と第2室が上限温度未満で下限温度以上の温度領域(b1温度領域、b2温度領域)に属する場合、バルブ装置3の温度が相対的に高い側に更に多く開放されるように制御される。
【0041】
但し、このうち、第1室と第2室が、上限温度以上の温度領域に属する場合、バルブ装置の温度が相対的に高い側に更に多く開放されるように制御されることも良いが、図3に示すように、バルブ装置の開放比率を互いに同一に制御するのが更に好ましい。
【0042】
また、第1室と第2室の何れか1室の温度だけが下限温度未満の場合、バルブ装置3は高い温度を保持している室の蒸発器側に冷媒の全量を流入させるように制御される。即ち、図3に示すように、第1室の温度が下限温度未満の温度領域であり、第2室の温度が下限値以上の温度領域(b1、a1温度領域)に属する場合、バルブ装置3は第2室20のR−蒸発器22側に冷媒の全量を流入させるように制御する。第1室10と第2室20の温度が前記と反対の場合、第1室10のF−蒸発器12側に冷媒の全量が流入するように、バルブ装置3が制御される。
【0043】
また、第1室と第2室の温度が、下限温度未満の温度領域(c1、c2温度領域)に属する場合、圧縮機1の運転が停止されて、F−蒸発器12側やR−蒸発器22側に全て冷媒を供給しないようになる。
【0044】
第1実施形態の作用を簡略に整理すると次のとおりである。
冷凍システムの運転が開始されると、圧縮機1が起動し、冷媒は高温高圧の気体状態に圧縮されて凝縮器2へ輸送される。凝縮器2に供給された気相の冷媒は、凝縮器ファン2aによって送風される空気との熱交換により液化される。液化された冷媒は冷媒管を介してバルブ装置3へ輸送される。
【0045】
尚、第1室と第2室の温度センサー13、23は、各々室の温度を測定して制御部に伝送する。制御部では測定された各室の温度を比較した後、図3を参照して記述した方法に従いバルブ装置の開放比率を制御する。
【0046】
バルブ装置3の開放を通じて流量が制御された冷媒は、F−膨張装置11及びR−膨張装置21で膨張した後、F−蒸発器12及びR−蒸発器22で各室の室内機と熱交換される。また、F−ファン12a及びR−ファン22aによって各室に冷気が供給され各室が冷却される。
【0047】
第1室と第2室が下限温度未満になると、圧縮機1の運転が中止され、所定時間経過後、第1室と第2室の何れか1室の温度が下限温度以上に上昇すると、圧縮機1が起動し前記段階を繰り返して、第1室と第2室を常に所定温度範囲内に維持する。
【0048】
このような本発明の第1実施形態は、各室の温度偏差を減少させ最小化でき、各室の温度をより安定的に維持できる効果がある。
従って、本発明の第1実施形態が適用された冷蔵庫は各室に保管される食品の固有の味を一層長期間維持でき、食品保管の信頼性が更に向上される。
【0049】
尚、各室の温度によって各蒸発器に供給される冷媒分配量を制御することを核心的な技術思想とする本発明の第1実施形態は次のように変形された実施形態によっても実現できる。
【0050】
第1実施形態の変形実施形態
図4を参照すると、本発明の第1実施形態の変形実施形態は、第1室10と、第2室20とについて独立の複数の温度領域を設定する段階(S−05)、第1室10と、第2室の温度を測定する段階(S−10)、測定された第1室と第2室20の温度を比較する段階(S−20)、および、第1室と第2室の温度比較結果を基準に、F−蒸発器12側とR−蒸発器22側に各々流入する冷媒量を調節する段階(S−30)とを含んでいる。
【0051】
ここで、段階(S−10)は温度センサー13、23によって各々行われ、測定された温度は制御部に伝送される。また、段階(S−20)は制御部で行われるが、前記温度領域は、上限温度以上の温度領域(An温度領域)、上限温度未満で設定値温度以上の温度領域(Bn温度領域)、設定値温度未満で下限温度以上の温度領域(Cn温度領域)、下限温度未満の温度領域(Dn温度領域)を含む。
ここでnは各室を識別するために付す任意の番号である。
【0052】
尚、前記各温度領域は第1室と第2室が互いに同一に設定され得るが、一般的に第1室は冷凍室で使用し、第2室は冷蔵室で使用されるので各室の温度領域は互に異なって設定されるのが好ましい。
【0053】
また、段階(S−20)は測定された各室の温度を前記温度領域と比較する方法で行われる。この比較結果に基づき、段階(S−30)で、F−蒸発器12側とR−蒸発器22側に各々流入する冷媒量を調節する。このような冷媒量の調節は、制御部がバルブ装置3の開放比率を調節することで成されるが、その詳細な開放比率は図5を参照して説明する。
【0054】
図5を参照すると、第1室と、第2室の温度領域が互いに同一の場合、バルブ装置3は同一比率で開放されるが、この時、バルブ装置3の開放比率は50%:50%であることが好ましい。即ち、第1室と第2室が、An温度領域に属したり、Bn温度領域に属したり、或いは、Cn温度領域に属する場合、バルブ装置3の開放比率は50%:50%に同一に開放して、F−蒸発器12側とR−蒸発器22側に各々同一量の冷媒が流入するようにする。
尚、図5に示すように、第1室10と第2室の温度領域がDn温度領域に属する場合は圧縮機1の運転が停止する。
【0055】
また、第1室10と第2室20の何れか1室の温度領域だけがDn温度領域に属する場合、バルブ装置3は、Dn温度領域の属する室側と、他の温度領域に属する室側との開放比率が0%:100%になるように制御される。即ち、第1室10だけがD1温度領域に属する場合は、第1室10のF−蒸発器12側に冷媒の全量を流入させ、第2室20だけがD2温度領域に属する場合、第2室20のR−蒸発器22側に冷媒の全量を流入させることになる。
【0056】
また、第1室10と第2室20の何れか1室の温度領域がAn温度領域に属し、他の室の温度領域がCn温度領域に属する場合、バルブ装置3は、An温度領域に属する室側と、Cn温度領域に属する室側との開放比率が100%:0%になるように制御される。即ち、図5に示すように、第1室10がA1温度領域に属し、第2室20がC2温度領域に属する場合、バルブ装置3は、第1室10のF−蒸発器12側に冷媒の全量が流入するように制御され、反対の場合は第2室20のR−蒸発器22側に冷媒の全量が流入するようにバルブ装置3が制御される。
【0057】
また、第1室10と第2室の何れか1室の温度領域がBn温度領域に属し、他の1室がAn温度領域またはCn温度領域に属する場合、バルブ装置3は相対的に高い温度領域に属する室側が更に多く開放されるように制御される。
【0058】
この時の好ましい開放比率は80%:20%(高い温度の温度領域に属する室側:低い温度の温度領域に属する室側)であるが、場合によって70%:30%や、60%:40%の開放比率でも制御され得る。
【0059】
更に詳しくは、図5に示すように、第1室がB1温度領域に属し、第2室がA2温度領域に属する場合、また第1室10がC1温度領域に属し、第2室20がB2温度領域に属する場合は、第2室20が第1室より高い温度領域に属するので、バルブ装置3は、第1室10のF−蒸発器12側より第2室20のR−蒸発器側に更に多くの量の冷媒を流入させるように制御される。勿論、第1室がA1温度領域に属し、第2室がB2温度領域に属する場合、または、第1室がB1温度領域に属し、第2室がC2温度領域に属する場合、第1室の温度が第2室の温度より高い温度領域に属するので、バルブ装置3は、第2室のR−蒸発器側より第1室のF−蒸発器12側に更に多くの量の冷媒を流入させるように制御される。
【0060】
前記のような方法で冷媒の流動を制御する本発明の第1実施形態の変形実施形態における作用は、本発明の第1実施形態における作用と同一であり、その効果もまた同一であるので、その説明は省略する。
【0061】
第2実施形態
本発明の第2実施形態は、凝縮器2を経た冷媒がF−膨張装置11とF−蒸発器12とを順次に流動するF−サイクルから、バルブ装置3の制御によって、R−膨張装置21とR−蒸発器22とを順次に流動するR−サイクルに転換する時、所定時間(Δt)の間バルブ装置3を閉鎖した状態で圧縮機1を運転する段階を含んでいる。
【0062】
ここで所定時間(Δt)の間バルブ装置3を閉鎖し圧縮機1を運転する時、F−ファン12aを共に回転させてF−蒸発器12内に残留した冷媒を蒸発させる段階を備えることが好ましい。また、バルブ装置3を閉鎖しながら圧縮機1を運転するときに、凝縮器2を冷却する凝縮器ファン2aを共に回転させる段階を備えることが更に好ましい。
【0063】
このような方法で冷凍システムの運転を制御する本発明の第2実施形態を、図1及び図6を参照して説明する。
冷凍システムの運転が開始されると、圧縮機1が起動し、冷媒は高温高圧の気体状態に圧縮されて凝縮器2へ輸送される。凝縮器2に供給された気相の冷媒は凝縮器ファン2aによって送風される空気との熱交換により液化される。
【0064】
液化された冷媒は冷媒管を介してバルブ装置3へ向かって流動する。バルブ装置は制御部によって冷媒の流動方向を決定する。この時、バルブ装置の切換によって、冷媒がF−膨張装置11とF−蒸発器12に流入されれば、F−サイクルが行われる。F−サイクルが行われる間、冷媒は、F−膨張装置で膨張された後、F−蒸発器12で蒸発しながら熱交換して周囲の熱を吸収する。またF−ファン12aによって冷気が供給され第1室が冷却される。F−蒸発器12を経由した冷媒は更に圧縮機1に流入して上記の各段階を繰り返す。
【0065】
尚、F−サイクルが行われる間、図6に示すように、F−蒸発器12側にバルブ装置3が開放され、圧縮機1とF−ファン12a及び凝縮器ファン2aが作動する。凝縮器ファン2aは一般的に凝縮器2と圧縮機1を共に冷却する。
【0066】
既述したように、F−サイクルが行われた後に、バルブ装置が所定時間(Δt)の間完全に閉鎖された状態で、圧縮機1が動作する。そうすると、バルブ装置3の閉鎖と共に冷媒の流動が停止し、F−膨張装置11とF−蒸発器12内に残留する冷媒が圧力差によって圧縮機1と凝縮器2側に全量流入する。この時、図6に示すように、F−ファン12aを共に回転させて、F−蒸発器12内に残留する冷媒を蒸発させると共に、持続的に冷気を第1室10内に供給する。
【0067】
これによって、F−サイクルが停止した後にもF−蒸発器12内に残っている冷気を用いて、持続的に第1室10を冷却可能となるのみならず、気化した冷媒を容易に圧縮機1に回収できる。
【0068】
所定時間(Δt)の間前記方法で運転した後、バルブ装置3をR−蒸発器22側に切り換えてR−サイクルを行う。R−サイクルの実行時の冷媒流動はF−サイクル実行時に対応しているので説明を省略する。
但し、R−サイクルが行われる間、バルブ装置3がR−蒸発器22側に開放され、圧縮機1が作動し、R−ファン22aと凝縮器ファン2aが回転する。
【0069】
本発明の第2実施形態では、前記方法でF−蒸発器12内に残留する冷媒を全量回収して圧縮機1と凝縮器2に貯蔵した後、R−サイクルが行われるので、R−サイクルが行われる時も冷媒の全量を使用することができ、従来の冷媒不足の発生を完全に防止することができる。
【0070】
更に、R−サイクル開始直後に、F−蒸発器12から回収した冷媒をR−蒸発器22側により迅速に供給できるので、R−サイクルがより早期に正常状態に至り、冷凍システムの冷却性能を更に向上させることができる。
【0071】
尚、R−サイクルが完了し圧縮機1が停止した後にも、前記と同一の方法で所定時間運転することにより、F−サイクルが開始される時も同一の作用が得られる。本発明の第2実施形態の変形実施形態によれば、全てのサイクルを実行した後、冷媒回数作業が行われる。その内容を図と図7を参照して説明する。
【0072】
第2実施形態の変形実施形態
図4を参照すると、本発明の第2実施形態の変形実施形態は、凝縮器2を経た冷媒がF−膨張装置11とF−蒸発器12とを順次に流動するF−サイクルと、R−膨張装置21とR−蒸発器22とを順次的に流動するR−サイクルとの何れか一方のサイクルが完了した時、所定時間(Δt)の間、バルブ装置3を閉鎖した状態で圧縮機1を作動させる段階を含んでいる。
【0073】
ここで、バルブ装置3を閉鎖し圧縮機1を運転する時にF−ファン12aとR−ファン22aのうち、対応の何れか一方のファンを共に回転させる段階を含むことが好ましい。また、バルブ装置3を閉鎖し圧縮機1を運転するときに、凝縮器ファン2aを共に回転させる段階を含むことが好ましい。
【0074】
このような方法から成される本発明の第2実施形態の変形実施形態の具体的な作用は第2実施形態と同一であるので省略する。但し、本発明の第2実施形態の変形実施形態では、F−サイクルとR−サイクルのうち何れか一方のサイクルが完了した後にも、バルブ装置3が閉鎖され圧縮機1が作動することになる。また、圧縮機1が停止された後に再起動するとき、圧縮機内に液相の冷媒が流入しないので圧縮機の信頼性が確保される。
【0075】
前記方法から成されている本発明の第2実施形態、および、その変形実施形態には次のような利点がある。
第一に、冷凍システムの何れかの1つのサイクルが完了した後、当該サイクルの蒸発器に残留する冷媒を圧縮機と凝縮器に回収することで、他のサイクルを行う際に冷媒不足が生じない。
【0076】
第二に、1つのサイクルが完了した後にも当該蒸発器のファンを回転させるので、食品保管室に冷気を持続的に供給でき、熱効率が向上され、冷媒の回収を加速化できる。
【0077】
第三に、1つのサイクルが完了した後に、蒸発器に冷媒が残留することを防止できるので、圧縮機の再起動時に液相の冷媒が流入せず、液圧縮による圧縮損失を防止できる。従って、圧縮機の信頼性が確保される。
第四に、同一容量の冷凍システムでも相対的に少量の冷媒を用いることができる。
【0078】
第3実施形態
本発明の第3実施形態は、凝縮器2を経た冷媒がF−膨張装置11とF−蒸発器12とを順次的に流動するF−サイクルから、バルブ装置3の制御によって、冷媒がR−膨張装置21とR−蒸発器22とを順次に流動するR−サイクルに切り換える時、所定時間(Δt)の間、バルブ装置3を閉鎖した状態で圧縮機1を運転する段階と、圧縮機1の運転が停止した後にもF−ファン12aとR−ファン22aを各々断続的に運転する段階とを含んでいる。
【0079】
このような方法で成された本発明の第3実施形態において、蒸発器に残留している冷媒を回収する方法は、第2実施形態と同様であるのでその説明は省略し、圧縮機の停止後、F−ファン12aとR−ファン22aを断続的に作動させる段階を中心に図1と図8を参照して説明する。
【0080】
図8は、典型的な形態の2つの蒸発器を備えた冷凍システムによる、ある冷凍サイクルを示しており、該サイクルではF−サイクルが完了した後に、連続してR−サイクルに運転され、その後一定時間の間、圧縮機1が停止し、冷凍サイクルが行われないようになっている。然しながら、本発明は図8に示す冷凍サイクルに限定されず、図8の冷凍サイクルは単なる一例であることは理解されよう。
【0081】
先ず圧縮機1が起動しF−サイクルが行われる間、F−ファン12aは連続的に回転して、F−蒸発器12に流入した冷媒を気化させながら第1室10を冷却する。
【0082】
また、R−サイクルに切り換えてR−サイクルが行われる間、R−ファン22aは連続的に回転して、R−蒸発器22に流入した冷媒を気化させながら第2室20を冷却する。
【0083】
R−サイクルの実行が完了したとき、圧縮機1が停止する。このように圧縮機が停止したとき、F−ファン12aとR−ファン22aを一定時間の周期で断続的に回転させて各サイクルが行われない間にも各蒸発器に残っている冷気を各室に吐き出して各室を冷却する。
【0084】
このような方法で運転することにより、冷凍システムが停止した状態でも各蒸発器に残っている冷気を用いて各室を冷却可能となる。即ち、圧縮機1が停止すると蒸発器12、22には冷媒が流入しないが、蒸発器12、22の周囲の温度は各室の温度より低いので、各ファンにより冷気を各室に供給して冷却性能を向上し、各室内の温度偏差を低減可能となるので、食品保管の信頼性を向上させることができる。
【0085】
また、各蒸発器に冷媒が供給されない間にファンを回転させて蒸発器に残留する冷媒を完全に気化させることによって、圧縮機1の再起動時液相の冷媒が圧縮機1に流入することを防止することができる。
【0086】
尚、第3実施形態ではF−サイクルとR−サイクルの何れか一方の冷凍サイクルが行われる時、停止された他の1つの冷凍サイクルに属する蒸発器のファンを断続的に運転する段階を更に含むことが好ましい。即ち、図8に示すように、圧縮機1が停止している間だけではなく、F−サイクルが行われる間にも、R−ファン22aを断続的に回転させるものである。同様に、圧縮機1の停止時だけではなくR−サイクルの実行時にも、F−ファン12aを断続的に回転させる。このように運転すると冷却性能が更に向上する。
【0087】
また、第3実施形態の方法は、好ましくは、F−サイクルとR−サイクルの何れか一方の冷凍サイクルが完了した時、当該冷凍サイクルに属する蒸発器のファンを所定時間の間延長運転する段階を更に含んでいる。即ち、図8に示すように、F−サイクルが完了した後、所定時間(t1)の間F−ファン12aを延長して運転しながら冷気を第1室10に吐き出し、R−サイクルが完了した後、所定時間(t2)の間、R−ファン22aを運転しながら冷気を第1室10に吐き出すものである。これは各サイクルが行われた直後にはサイクルが行われる時と殆ど同一水準の冷気が当該蒸発器の周囲にあるので該冷気を各室に吐き出して冷却性能を向上させるためである。
【0088】
また、本発明の第3実施形態ではF−サイクルとR−サイクルの何れか一方の冷凍サイクルが行われ、完了した時、当該冷凍サイクルに属する蒸発器のファンを所定時間の間延長運転した後断続的に運転する段階を含むことが好ましい。即ち、図8に示すように、F−サイクルが完了した後にはF−ファン12aが所定時間延長運行された後断続運転されR−サイクルが完了した後にはR−ファン22aが所定時間(t2)延長運行された後断続運転されるものである。
【0089】
既述したように、断続運転されるF−ファン12a及びR−ファン22aの断続時間比、即ち、運転される時間と停止される時間の比率は4:6であることが好ましい。即ち、10分を1周期に断続運転する時、各ファンは4分の間回転し、6分の間停止させることが好ましい。然しながら、かかる比率は冷凍システムの容量や、製品の設計目的によって変更できる。尚、既述したようにF−ファン12aとR−ファン22aが断続的に運転される理由は、各ファンを回転させるモータの寿命及び使用電力を考慮したためである。
【0090】
尚、本発明の第3実施形態において、圧縮機の停止時に各ファンを断続的に運転する方法は、第2実施形態において開示されている運転制御方法と独立的に構成されて冷凍システムに適用され得る。
本発明による第4実施形態を図1及び図9を参照して説明する。
【0091】
第4実施形態
図9を参照すると、本発明の第4実施形態は、F−サイクルまたはR−サイクルを選択的に行う冷凍システムの圧縮機1の運転が停止した後にも、F−ファン12aとR−ファン22aを各々断続的に運転する段階を含んでいる。
【0092】
また、本発明の第4実施形態は、F−サイクルまたはR−サイクルの何れか一方の冷凍サイクルが行われる時、停止している他の1つの冷凍サイクルに属する蒸発器のファンを断続的に運転する段階を更に含むことが好ましい。
【0093】
また、本発明の第4実施形態は、F−サイクルとR−サイクルの何れか一方の冷凍サイクルが行われ完了した時、当該冷凍サイクルに属する蒸発器のファンを所定時間(t3、t4)の間、延長運転する段階を更に含むことが好ましい。
【0094】
また、本発明の第4実施形態は、F−サイクルとR−サイクルの何れか一方の冷凍サイクルが行われ完了した時、当該冷凍サイクルに属する蒸発器のファンを所定時間の間、延長運転した後、断続的に運転する段階を含むことが好ましい。この時、F−ファン及びR−ファンが運転、停止される断続時間比は4:6であることが好ましい。
【0095】
前記方法でなされている本発明の第4実施形態の更に詳しい内容は、既に第3実施形態で開示されているのでその説明は省略する。
図9に示すように、第4実施形態はサイクル運行の先後と無関係に、R−サイクルとF−サイクルを選択的に運転する全ての冷凍システムに適用できる。
【0096】
本発明の第4実施形態による冷却システムの運転制御方法は次のような利点がある。
第一に、圧縮機を停止した後にも、各ファンを断続的に回転させることによって各蒸発器に残っている冷気を各室に供給するので、各室の内部温度偏差を低減可能で、食品保管の信頼性が向上される。
【0097】
第二に、各蒸発器に残っている冷気を全て利用可能であるので、冷却効率が向上し、各室の温度上昇速度を低減可能である。従って、実質的に圧縮機の運転時間が短縮される。
【0098】
第三に、冷媒の流動を停止した後にも、各蒸発器内に残留している冷媒を各ファンが気化させるので、圧縮機を再起動させるとき液相の冷媒が圧縮機に流入することが防止され、これによって圧縮機の信頼性が向上される。
【0099】
以上、本発明の好適な一実施形態を説明したが、本発明は既述の実施形態に限定されるわけではなく、本発明の技術思想に基づいて種々の変形または変更が可能である。
【0100】
【発明の効果】
以上説明したように、本発明の2つの蒸発器を備えた冷凍システムの運転制御方法によれば以下のような効果を奏する。
第一に、各室の温度偏差を減少させ最小化でき、各室の温度をより安定的に維持できる。従って、食品保管の信頼性が一層向上する。
【0101】
第二に、冷凍システムの何れか一方のサイクルが完了した後、他のサイクルを行うとき冷媒不足現象が発生しない。
第三に、冷凍サイクルの熱効率が向上され、実質的に圧縮機の運転時間が短縮される。
【0102】
第四に、蒸発器に冷媒が残留することを防止できるので圧縮機の再起動時、液相冷媒が流入されず液圧縮による圧損が防止できる。
第五に、同一容量の冷凍システムでも相対的に小さい量の冷媒を用いることができる。
【図面の簡単な説明】
【図1】2つの蒸発器を備えた冷凍システムの概略的な構成図である。
【図2】本発明の第1実施形態による冷凍システムの運転制御方法を示すフローチャートである。
【図3】本発明の第1実施形態による冷凍システムの運転制御方法で各室の温度別バルブ装置の開放比率を示す表である。
【図4】本発明の第1実施形態の変形例による冷凍システムの運転制御方法を示すフローチャートである。
【図5】本発明の第1実施形態の変形実施形態による冷凍システムの運転制御方法において各室の温度領域別バルブ装置の開放比率を示す表である。
【図6】本発明の第2実施形態による冷凍システムの運転制御方法を示す線図である。
【図7】本発明の第2実施形態の変形例による冷凍システムの運転制御方法を示す線図である。
【図8】本発明の第3実施形態による冷凍システムの運転制御方法を示す線図である。
【図9】本発明の第4実施形態による冷凍システムの運転制御方法を示す線図である。
【符号の説明】
1…圧縮機
2…凝縮器
3…バルブ装置
10…第1室
11…F−膨張装置
12…F−蒸発器
13…温度センサー
20…第2室
21…R−膨張装置
22…R−蒸発器
23…温度センサー[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for controlling the operation of a refrigeration system, and more particularly, to an operation control method for a refrigeration system including two evaporators.
[0002]
[Prior art]
In general, a refrigerator is a device used for freshly storing food for a long period of time, and its structure is largely divided from a main body having a plurality of food storage rooms and a refrigeration cycle for cooling the food storage rooms.
[0003]
As main components constituting the refrigeration cycle, there are a compressor, a condenser, an evaporator, and an expansion valve. Generally, the compressor and the condenser are installed in a machine room provided at the lower rear of the main body, and the evaporator and the expansion valve are installed in the vicinity of the food storage room. Cool storage room.
[0004]
First, a gas-phase refrigerant is compressed by a compressor and pumped to a condenser, and then liquefied by exchanging heat with the condenser. The condensed liquid phase refrigerant is rapidly expanded and vaporized while being injected into the evaporator by the expansion valve. At this time, the food storage room is cooled by absorbing heat from the periphery of the evaporator. The vaporized refrigerant returns to the compressor and is compressed and liquefied, and then the food storage room is always cooled to a low temperature while repeating the condensation, expansion, vaporization, and compression steps.
[0005]
The refrigerator refrigeration system may be configured to supply cold air to a plurality of food storage rooms with a single evaporator. Recently, in order to improve the cooling performance by taking advantage of the characteristics of each food storage room. In addition, a plurality of evaporators may be installed and controlled in each of the food storage rooms.
[0006]
As described above, a refrigeration system including a plurality of evaporators (referred to as a refrigeration system including two evaporators for convenience of explanation below) includes a refrigerant pipe through which refrigerant flows through a compressor and a condenser. The branching device is branched so as to be connected to two evaporators (F-evaporator and R-evaporator), and a valve device capable of opening and closing the flow paths of both branch pipes is attached to the branching point. Therefore, by switching the valve device, the refrigerant flows into one of the F-evaporator and the R-evaporator to select and cool one of the two food storage rooms. be able to.
[0007]
Such a refrigeration system equipped with two evaporators generally stops the operation of the compressor when the temperature of all food storage rooms satisfies the conditions preset in the control unit, When the temperature of any one of the food storage rooms rises above the temperature range set in the control unit, the compressor is operated in such a way as to further operate. While repeating such operation, the temperature of each storage chamber is maintained within a temperature range preset in the control unit.
[0008]
However, in the refrigerator having the refrigeration system, since the temperature of each chamber is controlled by supplying the refrigerant only to one of the two evaporators, the temperature deviation of each chamber increases. That is, when the refrigerant is supplied to one of the evaporators, the refrigerant is not supplied to the other evaporators, and the fan that supplies the cold air is also stopped. There is a problem that the temperature deviation in the food freezer compartment during operation and stoppage of the container increases.
[0009]
Further, in the refrigeration system including the two evaporators described above, after performing a cycle of supplying the refrigerant to one of the two evaporators, the valve device is switched to another one evaporator. When the other cycle of supplying the refrigerant is performed, there is a problem that the refrigerant already flowing into the evaporator that has stopped supplying the refrigerant remains.
[0010]
That is, after performing the F-cycle while supplying the refrigerant to the F-evaporator and then switching the valve device and performing the R-cycle while supplying the R-evaporator, the flow has already flowed into the F-evaporator. The remaining refrigerant does not flow and remains in the F-evaporator in almost liquid phase during the R-cycle.
[0011]
Such a phenomenon also occurs when the R-cycle is stopped and when the operation of the compressor is stopped. Therefore, when another device or method for recovering the refrigerant remaining in the evaporator is not applied, The refrigerant always remains in one of the evaporators.
[0012]
Therefore, after the completion of one cycle, the refrigerant remaining in the evaporator cannot be recovered in its entirety in the compressor and the condenser. Therefore, when another one cycle is performed, a refrigerant shortage phenomenon occurs. Therefore, there is a problem that the cooling performance is relatively lowered.
[0013]
Further, when the compressor is further operated, the liquid-phase refrigerant remaining in the evaporator flows into the compressor, causing a problem of lubrication in the cylinder of the compressor, and the reliability of the compressor cannot be secured. There is a problem.
[0014]
[Problems to be solved by the invention]
An object of the present invention is to solve such problems of the prior art, and an object of the present invention is to reduce a temperature deviation of each food storage room in a refrigerator having a refrigeration system including two evaporators.
[0015]
Another object of the present invention is to collect refrigerant remaining in the evaporator at the time of switching between refrigeration cycles in a refrigeration system having two evaporators, to prevent refrigerant shortage, and to further ensure the reliability of the compressor. It is.
A further object of the present invention is to improve the cooling performance of a refrigeration system with two evaporators.
[0016]
[Means for Solving the Problems]
To achieve the above object, the method according to the present invention comprises (c) measuring the temperature of each chamber, (d) comparing the measured temperature of each chamber, and (e) comparing the temperature of each chamber. Adjusting the amount of refrigerant flowing into the evaporator of each chamber based on the results.
Here, the step (c) is performed by a temperature sensor attached to each chamber, and the reference temperature preferably includes an upper limit temperature and a lower limit temperature.
[0017]
Adjustment of the amount of refrigerant flowing into the evaporator of each chamber in step (e) is made through adjustment of the opening ratio of the valve device attached to the branch point of the refrigerant pipe connected to the evaporator of each chamber, When the temperature of each chamber is all equal to or higher than the upper limit temperature, the opening ratio of the valve device is 50%: 50%, and when the temperature of each chamber is the same in the temperature range equal to or higher than the lower limit temperature, the opening ratio of the valve device Is 50%: 50%, and if the temperature of any one of the chambers is higher than the other chambers in the temperature range above the lower limit temperature, the valve device has more evaporators in the chamber having a relatively high temperature. When the temperature of any one of the chambers is less than the lower limit temperature, the valve device is controlled so that the entire amount of refrigerant flows into the evaporator side of the chamber having a high temperature. , If the temperature of each chamber is less than the lower limit temperature, compress It is preferred that the operation is stopped.
[0018]
According to another aspect of the present invention, (b) a step of setting a plurality of temperature regions for each chamber, (c) a step of measuring the temperature of each chamber, and (d) each measured Comparing the chamber temperatures, and (e) adjusting the amount of refrigerant flowing into the evaporator of each chamber based on the temperature comparison result of each chamber is provided.
[0019]
Here, the step (c) is performed by a temperature sensor attached to each chamber, and the temperature region is a temperature region above the upper limit temperature (An temperature region), a temperature below the upper limit temperature and above the set temperature. It includes a region (Bn temperature region), a temperature region (Cn temperature region) that is less than the set temperature and above the lower limit temperature, and a temperature region (Dn temperature region) that is less than the lower limit temperature, and compares the measured temperatures of the respective chambers. The step (d) is preferably performed by a method of comparing the measured temperature of each chamber with the temperature range.
[0020]
Further, the adjustment of the amount of refrigerant flowing into the evaporator of each chamber in the step (e) is performed by adjusting the opening ratio of the valve device attached to the branch point of the refrigerant pipe connected to the evaporator of each chamber. However, when the temperature regions of the chambers are the same, the valve devices are opened at the same ratio. At this time, the opening ratio of the valve devices is 50%: 50%, and the temperatures of the chambers are all Dn. When belonging to the temperature region, the operation of the compressor is stopped, and when only the temperature region of any one of the chambers belongs to the Dn temperature region, the opening ratio of the valve device is 0%: 100% (Dn temperature region) If the temperature region of any one of the chambers belongs to the An temperature region and the other chamber belongs to the Cn temperature region, the valve device of the valve device The open ratio is 100%: 0% (belonging to the An temperature range) When the chamber side is a chamber side belonging to the Cn temperature region, and one of the chambers belongs to the Bn temperature region, and the other chamber belongs to the An temperature region or the Cn temperature region, the valve device Is preferably controlled so that more chamber sides belonging to a relatively high temperature region are opened, and at this time, the opening ratio of the valve device is 80%: 20% (belonging to a high temperature region). Room side: The room side belonging to a low temperature region is preferable.
[0021]
According to still another aspect of the present invention to achieve the above object, (f) the F-cycle in which the refrigerant that has passed through the condenser sequentially flows through the F-expansion device and the F-evaporator, When the apparatus is controlled to switch to the R-cycle in which the R-expansion device and the R-evaporator sequentially flow, the compressor is operated with the valve device closed for a predetermined time (Δt). There is provided a method comprising the steps of:
[0022]
When performing step (f), it is desirable to include rotating the F-fan together, and preferably when performing step (f), rotating the condenser fan together.
[0023]
Further, according to another aspect of the present invention, (g) an F-cycle in which the refrigerant that has passed through the condenser sequentially flows through the F-expansion device and the F-evaporator, an R-expansion device, and an R-evaporator A method is provided which includes a step of operating the compressor with the valve device closed for a predetermined time (Δt) when one of the R-cycle and the R-cycle flowing in sequence is completed. Is done.
[0024]
Here, when performing step (g), it is desirable to include a step of rotating the fan, and when performing step (g), it is preferable to include a step of rotating the condenser fan together.
[0025]
According to still another aspect of the present invention, the F-cycle in which the refrigerant having passed through the condenser sequentially flows through the F-expansion device and the F-evaporator, and the R-expansion device and the R-evaporator sequentially. When one of the R-cycle flowing in the cylinder is completed, the compressor is operated with the valve device closed for a predetermined time (Δt), and the compressor is operated. A method is provided including the step of intermittently operating the F-fan and the R-fan, respectively, even after the stop.
[0026]
Here, when the refrigeration cycle of any one of the F-cycle and the R-cycle is completed, the method includes intermittently operating an evaporator fan belonging to the refrigeration cycle, When any one of the refrigeration cycles of the R-cycle is performed, the method includes a step of extending the fan of the evaporator belonging to the refrigeration cycle for a predetermined time, or any one of the F-cycle and the R-cycle. When one refrigeration cycle is completed, including a step of extending the operation of the evaporator fan belonging to the refrigeration cycle for a predetermined time, or when one of the F-cycle and the R-cycle is completed Preferably, the method includes the step of intermittently operating the fan of the evaporator belonging to the refrigeration cycle after extending the operation for a predetermined time. At this time, it is preferable that the intermittent time ratio at which the F-fan and the R-fan are operated and stopped is 4: 6.
[0027]
According to another aspect of the present invention, the step of intermittently operating the F-fan and the R-fan after the operation of the compressor of the refrigeration system that selectively performs the F-cycle or the R-cycle is stopped. A method of wrapping is provided.
[0028]
Here, when the refrigeration cycle of any one of the F-cycle and the R-cycle is completed, the method further includes a step of intermittently operating the evaporator fan belonging to one more refrigeration cycle stopped, When any one of the F-cycle and the R-cycle is performed, it includes a step of extending the evaporator fan belonging to the refrigeration cycle for a predetermined time, or includes the F-cycle and the R-cycle. When any one of the refrigeration cycles is completed, it is preferable to include a step of intermittently operating the evaporator fan belonging to the refrigeration cycle after extending the operation for a predetermined time. At this time, it is preferable that the intermittent time ratio at which the F-fan and the R-fan are operated and stopped is 4: 6.
[0029]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in more detail with reference to the accompanying drawings.
In the description of the embodiment, the same reference numerals are given to portions having the same configurations as the respective portions, and additional description thereof will be omitted.
[0030]
Referring to FIG. 1, a cooling system to which the present invention is applied includes a compressor 1, a condenser 2, a valve device 3, two
[0031]
The refrigerant pipes connected to the refrigerant discharge side of the condenser 2 are branched into two, and at the branch points, the refrigerant flow paths of the respective branch pipes are opened at various ratios by control from a control unit (not shown). A possible valve device 3 is attached.
[0032]
Each branch pipe branched from the valve device 3 is connected to an F-
In the
[0033]
In the
The
[0034]
The refrigerant pipes on the discharge sides of the F-
The cooling system thus configured is controlled in operation by methods according to various embodiments of the present invention, and the detailed description of each embodiment is as follows.
[0035]
First embodiment
Referring to FIG. 2, in the first embodiment of the present invention, a plurality of reference temperatures are set independently for the
[0036]
Here, the step (S-10) is performed by the
[0037]
In addition, in the step (S-30), the adjustment of the refrigerant amount respectively flowing into the F-
[0038]
Referring to FIG. 3, when the temperature of the
[0039]
In addition, when the temperature of the
[0040]
That is, as shown in FIG. 3, when the first chamber belongs to a temperature region (b1) lower than the upper limit temperature and higher than the lower limit temperature, and the
[0041]
However, among these, when the first chamber and the second chamber belong to a temperature region equal to or higher than the upper limit temperature, the valve device may be controlled so as to be further opened to a relatively high side, As shown in FIG. 3, it is more preferable to control the opening ratios of the valve devices to be the same.
[0042]
Further, when only the temperature of one of the first chamber and the second chamber is lower than the lower limit temperature, the valve device 3 is controlled so that the entire amount of refrigerant flows into the evaporator side of the chamber holding the high temperature. Is done. That is, as shown in FIG. 3, when the temperature of the first chamber is a temperature region below the lower limit temperature and the temperature of the second chamber belongs to a temperature region (b1, a1 temperature region) equal to or higher than the lower limit value, the valve device 3 Controls so that the entire amount of the refrigerant flows into the R-
[0043]
Further, when the temperatures of the first chamber and the second chamber belong to a temperature region (c1, c2 temperature region) lower than the lower limit temperature, the operation of the compressor 1 is stopped and the F-
[0044]
The operation of the first embodiment is briefly described as follows.
When the operation of the refrigeration system is started, the compressor 1 is activated, and the refrigerant is compressed into a high-temperature and high-pressure gas state and transported to the condenser 2. The gas-phase refrigerant supplied to the condenser 2 is liquefied by heat exchange with the air blown by the condenser fan 2a. The liquefied refrigerant is transported to the valve device 3 through the refrigerant pipe.
[0045]
In addition, the
[0046]
The refrigerant whose flow rate is controlled through the opening of the valve device 3 expands in the F-
[0047]
When the first chamber and the second chamber are below the lower limit temperature, the operation of the compressor 1 is stopped, and after a predetermined time has elapsed, when the temperature of either the first chamber or the second chamber rises above the lower limit temperature, The compressor 1 is started and the above steps are repeated, so that the first chamber and the second chamber are always maintained within a predetermined temperature range.
[0048]
Such a 1st embodiment of the present invention can reduce and minimize the temperature deviation of each room, and has the effect of maintaining the temperature of each room more stably.
Therefore, the refrigerator to which the first embodiment of the present invention is applied can maintain the unique taste of the food stored in each room for a longer period of time, and the reliability of food storage is further improved.
[0049]
It should be noted that the first embodiment of the present invention whose core technical idea is to control the distribution amount of refrigerant supplied to each evaporator according to the temperature of each chamber, can also be realized by an embodiment modified as follows. .
[0050]
Modified embodiment of the first embodiment
Referring to FIG. 4, in a modified embodiment of the first embodiment of the present invention, a plurality of independent temperature regions are set for the
[0051]
Here, the step (S-10) is performed by the
Here, n is an arbitrary number assigned to identify each room.
[0052]
The first chamber and the second chamber can be set to be the same as each other in the temperature range. Generally, the first chamber is used in the freezer and the second chamber is used in the refrigerator. The temperature regions are preferably set differently from each other.
[0053]
Further, the step (S-20) is performed by comparing the measured temperature of each chamber with the temperature range. Based on the comparison result, in step (S-30), the refrigerant amounts respectively flowing into the F-
[0054]
Referring to FIG. 5, when the temperature regions of the first chamber and the second chamber are the same, the valve device 3 is opened at the same ratio. At this time, the opening ratio of the valve device 3 is 50%: 50%. It is preferable that That is, when the first chamber and the second chamber belong to the An temperature region, the Bn temperature region, or the Cn temperature region, the opening ratio of the valve device 3 is equally opened to 50%: 50%. Thus, the same amount of refrigerant flows into the F-
In addition, as shown in FIG. 5, when the temperature region of the
[0055]
Further, when only one of the
[0056]
Further, when the temperature region of one of the
[0057]
Further, when the temperature range of any one of the
[0058]
A preferable open ratio at this time is 80%: 20% (the room side belonging to the high temperature range: the room side belonging to the low temperature range), but in some cases 70%: 30% or 60%: 40 % Open ratio can also be controlled.
[0059]
More specifically, as shown in FIG. 5, when the first chamber belongs to the B1 temperature region and the second chamber belongs to the A2 temperature region, the
[0060]
Since the operation in the modified embodiment of the first embodiment of the present invention that controls the flow of the refrigerant by the method as described above is the same as the operation in the first embodiment of the present invention, the effect is also the same. The description is omitted.
[0061]
Second embodiment
In the second embodiment of the present invention, the R-
[0062]
Here, when the valve device 3 is closed for a predetermined time (Δt) and the compressor 1 is operated, a step of rotating the F-
[0063]
A second embodiment of the present invention for controlling the operation of the refrigeration system by such a method will be described with reference to FIGS. 1 and 6.
When the operation of the refrigeration system is started, the compressor 1 is activated, and the refrigerant is compressed into a high-temperature and high-pressure gas state and transported to the condenser 2. The gas-phase refrigerant supplied to the condenser 2 is liquefied by heat exchange with the air blown by the condenser fan 2a.
[0064]
The liquefied refrigerant flows toward the valve device 3 through the refrigerant pipe. The valve device determines the flow direction of the refrigerant by the control unit. At this time, if the refrigerant flows into the F-
[0065]
During the F-cycle, as shown in FIG. 6, the valve device 3 is opened on the F-
[0066]
As described above, after the F-cycle is performed, the compressor 1 operates in a state where the valve device is completely closed for a predetermined time (Δt). Then, when the valve device 3 is closed, the flow of the refrigerant is stopped, and the refrigerant remaining in the F-
[0067]
Accordingly, not only can the
[0068]
After operating by the above method for a predetermined time (Δt), the valve device 3 is switched to the R-
However, during the R-cycle, the valve device 3 is opened to the R-
[0069]
In the second embodiment of the present invention, since the refrigerant remaining in the F-
[0070]
Further, immediately after the start of the R-cycle, the refrigerant recovered from the F-
[0071]
Even after the R-cycle is completed and the compressor 1 is stopped, the same operation can be obtained when the F-cycle is started by operating for a predetermined time in the same manner as described above. According to the modified embodiment of the second embodiment of the present invention, the refrigerant frequency work is performed after all the cycles have been executed. The contents will be described with reference to FIGS.
[0072]
Modified embodiment of the second embodiment
Referring to FIG. 4, a modified embodiment of the second embodiment of the present invention includes an F-cycle in which the refrigerant that has passed through the condenser 2 sequentially flows through the F-
[0073]
Here, it is preferable to include a step of rotating any one of the F-
[0074]
Since the specific operation of the modified embodiment of the second embodiment of the present invention formed by such a method is the same as that of the second embodiment, a description thereof will be omitted. However, in a modified embodiment of the second embodiment of the present invention, the valve device 3 is closed and the compressor 1 is operated even after any one of the F-cycle and the R-cycle is completed. . Further, when the compressor 1 is restarted after being stopped, the liquid-phase refrigerant does not flow into the compressor, so that the reliability of the compressor is ensured.
[0075]
The second embodiment of the present invention formed by the above method and its modified embodiments have the following advantages.
First, after any one cycle of the refrigeration system is completed, the refrigerant remaining in the evaporator of the cycle is recovered in the compressor and condenser, resulting in a shortage of refrigerant when performing another cycle. Absent.
[0076]
Second, since the evaporator fan is rotated even after one cycle is completed, cold air can be continuously supplied to the food storage room, thermal efficiency can be improved, and refrigerant recovery can be accelerated.
[0077]
Thirdly, since it is possible to prevent the refrigerant from remaining in the evaporator after one cycle is completed, the liquid-phase refrigerant does not flow in when the compressor is restarted, and compression loss due to liquid compression can be prevented. Therefore, the reliability of the compressor is ensured.
Fourth, a relatively small amount of refrigerant can be used even in the same capacity refrigeration system.
[0078]
Third embodiment
In the third embodiment of the present invention, from the F-cycle in which the refrigerant that has passed through the condenser 2 sequentially flows through the F-
[0079]
In the third embodiment of the present invention formed by such a method, the method for recovering the refrigerant remaining in the evaporator is the same as that in the second embodiment, so that the description thereof is omitted and the compressor is stopped. Subsequently, the step of intermittently operating the F-
[0080]
FIG. 8 shows a refrigeration cycle with a typical form of a refrigeration system with two evaporators, in which the F-cycle is completed and then continuously run into the R-cycle, after which The compressor 1 is stopped for a certain period of time so that the refrigeration cycle is not performed. However, it should be understood that the present invention is not limited to the refrigeration cycle shown in FIG. 8, and the refrigeration cycle of FIG. 8 is merely an example.
[0081]
First, while the compressor 1 is started and the F-cycle is performed, the F-
[0082]
Further, while the R-cycle is performed after switching to the R-cycle, the R-
[0083]
When the execution of the R-cycle is completed, the compressor 1 stops. When the compressor is thus stopped, the F-
[0084]
By operating in this manner, each chamber can be cooled using the cold air remaining in each evaporator even when the refrigeration system is stopped. That is, when the compressor 1 is stopped, the refrigerant does not flow into the
[0085]
Further, by rotating the fan while the refrigerant is not supplied to each evaporator and completely evaporating the refrigerant remaining in the evaporator, the liquid-phase refrigerant flows into the compressor 1 when the compressor 1 is restarted. Can be prevented.
[0086]
In the third embodiment, when any one of the F-cycle and the R-cycle is performed, the step of intermittently operating the fan of the evaporator belonging to the other stopped refrigeration cycle is further performed. It is preferable to include. That is, as shown in FIG. 8, the R-
[0087]
In the method of the third embodiment, preferably, when either the F-cycle or the R-cycle is completed, the fan of the evaporator belonging to the refrigeration cycle is extended for a predetermined time. Is further included. That is, as shown in FIG. 8, after the F-cycle is completed, the F-
[0088]
Further, in the third embodiment of the present invention, after either refrigeration cycle of the F-cycle or the R-cycle is performed and completed, the evaporator fan belonging to the refrigeration cycle is extended for a predetermined time. Preferably, the method includes a step of intermittent operation. That is, as shown in FIG. 8, after the F-cycle is completed, the F-
[0089]
As described above, it is preferable that the intermittent time ratio between the F-
[0090]
In the third embodiment of the present invention, the method of intermittently operating each fan when the compressor is stopped is configured independently of the operation control method disclosed in the second embodiment and applied to the refrigeration system. Can be done.
A fourth embodiment according to the present invention will be described with reference to FIGS.
[0091]
Fourth embodiment
Referring to FIG. 9, in the fourth embodiment of the present invention, even after the operation of the compressor 1 of the refrigeration system that selectively performs the F-cycle or the R-cycle is stopped, the F-
[0092]
Further, in the fourth embodiment of the present invention, when any one of the F-cycle and the R-cycle is performed, the fan of the evaporator belonging to the other one refrigeration cycle is intermittently operated. Preferably, the method further includes an operation step.
[0093]
Further, according to the fourth embodiment of the present invention, when one of the F-cycle and the R-cycle is completed and completed, the evaporator fan belonging to the refrigeration cycle is set for a predetermined time (t3, t4). It is preferable that the method further includes an extended operation.
[0094]
In the fourth embodiment of the present invention, when any one of the F-cycle and the R-cycle is completed and completed, the fan of the evaporator belonging to the refrigeration cycle is extended for a predetermined time. Thereafter, it is preferable to include a step of intermittent operation. At this time, the intermittent time ratio at which the F-fan and R-fan are operated and stopped is preferably 4: 6.
[0095]
Since the detailed content of the fourth embodiment of the present invention which has been made by the above method has already been disclosed in the third embodiment, the description thereof will be omitted.
As shown in FIG. 9, the fourth embodiment can be applied to all refrigeration systems that selectively operate the R-cycle and the F-cycle regardless of the cycle operation.
[0096]
The cooling system operation control method according to the fourth embodiment of the present invention has the following advantages.
First, even after the compressor is stopped, the cooling air remaining in each evaporator is supplied to each chamber by rotating each fan intermittently. Storage reliability is improved.
[0097]
Second, since all the cold air remaining in each evaporator can be used, the cooling efficiency is improved and the temperature rise rate of each chamber can be reduced. Therefore, the operation time of the compressor is substantially shortened.
[0098]
Third, even after the refrigerant flow is stopped, each fan vaporizes the refrigerant remaining in each evaporator, so that when the compressor is restarted, liquid-phase refrigerant may flow into the compressor. This improves the reliability of the compressor.
[0099]
The preferred embodiment of the present invention has been described above, but the present invention is not limited to the above-described embodiment, and various modifications or changes can be made based on the technical idea of the present invention.
[0100]
【The invention's effect】
As described above, the operation control method for a refrigeration system including two evaporators according to the present invention has the following effects.
First, the temperature deviation of each chamber can be reduced and minimized, and the temperature of each chamber can be maintained more stably. Therefore, the reliability of food storage is further improved.
[0101]
Second, after any one cycle of the refrigeration system is completed, the refrigerant shortage phenomenon does not occur when another cycle is performed.
Third, the thermal efficiency of the refrigeration cycle is improved, and the compressor operating time is substantially shortened.
[0102]
Fourth, since the refrigerant can be prevented from remaining in the evaporator, the liquid phase refrigerant is not flowed in when the compressor is restarted, and pressure loss due to liquid compression can be prevented.
Fifth, a relatively small amount of refrigerant can be used even in the same capacity refrigeration system.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram of a refrigeration system including two evaporators.
FIG. 2 is a flowchart showing an operation control method of the refrigeration system according to the first embodiment of the present invention.
FIG. 3 is a table showing an opening ratio of a valve device according to temperature in each chamber in the operation control method of the refrigeration system according to the first embodiment of the present invention.
FIG. 4 is a flowchart showing an operation control method for a refrigeration system according to a modification of the first embodiment of the present invention.
FIG. 5 is a table showing the opening ratio of the valve device according to the temperature region of each chamber in the operation control method of the refrigeration system according to the modified embodiment of the first embodiment of the present invention.
FIG. 6 is a diagram showing an operation control method of a refrigeration system according to a second embodiment of the present invention.
FIG. 7 is a diagram showing an operation control method of a refrigeration system according to a modification of the second embodiment of the present invention.
FIG. 8 is a diagram showing an operation control method of a refrigeration system according to a third embodiment of the present invention.
FIG. 9 is a diagram showing an operation control method of a refrigeration system according to a fourth embodiment of the present invention.
[Explanation of symbols]
1 ... Compressor
2 ... Condenser
3 ... Valve device
10 ... 1st room
11 ... F-expansion device
12 ... F-evaporator
13 ... Temperature sensor
20 ... Second room
21 ... R-expansion device
22 ... R-evaporator
23 ... Temperature sensor
Claims (35)
(d)測定された前記各室の温度を比較する段階と、
(e)前記各室の温度比較結果に基づき前記各室の蒸発器に流入する冷媒量を調節する段階と、を含み、且つ
圧縮機が停止して、前記蒸発器への冷媒流入が中断された後、ファンを所定時間の間延長運転して前記蒸発器に残留する冷媒を気化させる段階を含む2つの蒸発器を備えた冷凍システムの運転制御方法。(C) measuring the temperature of each chamber;
(D) comparing the measured temperature of each chamber;
(E) adjusting the amount of refrigerant flowing into the evaporator of each chamber based on the temperature comparison result of each chamber, and stopping the compressor and interrupting the refrigerant flow into the evaporator And a method of controlling the operation of the refrigeration system including two evaporators, including the step of operating the fan for a predetermined time to evaporate the refrigerant remaining in the evaporator.
前記F−サイクルと前記R−サイクルの何れか一方の冷凍サイクルが完了した時、当該冷凍サイクルに属する蒸発器のファンを所定時間の間延長運転する段階を含む2つの蒸発器を備えた冷凍システムの運転制御方法。(G) Any of the F-cycle in which the refrigerant that has passed through the condenser sequentially flows in the F-expansion device and the F-evaporator, and the R-cycle in which the refrigerant sequentially flows in the R-expansion device and the R-evaporator. When either cycle is completed, the compressor is operated with the valve device closed for a predetermined time (Δt);
A refrigeration system comprising two evaporators including a step of extending a fan of an evaporator belonging to the refrigeration cycle for a predetermined time when the refrigeration cycle of either the F-cycle or the R-cycle is completed. Operation control method.
前記F−サイクルとR−サイクルの何れか一方の冷凍サイクルが行われると時、停止された他の1つの冷凍サイクルに属する蒸発器のファンを断続的に運転する段階と、を含む2つの蒸発器を備えた冷凍システムの運転制御方法。Intermittently operating the F-fan and the R-fan, respectively, after the operation of the compressor of the refrigeration system that selectively performs the F-cycle or the R-cycle,
When the refrigeration cycle of any one of the F-cycle and the R-cycle is performed, intermittently operating an evaporator fan belonging to another stopped refrigeration cycle. Control method for a refrigeration system including a container.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2002-0038704A KR100474910B1 (en) | 2002-07-04 | 2002-07-04 | method for controling cooling system with two evaporators |
KR10-2002-0038701A KR100480706B1 (en) | 2002-07-04 | 2002-07-04 | method for controling refrigerator with two evaporators |
KR1020020038703A KR20040003876A (en) | 2002-07-04 | 2002-07-04 | method for controling cooling system with two evaporators |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004037065A JP2004037065A (en) | 2004-02-05 |
JP3816872B2 true JP3816872B2 (en) | 2006-08-30 |
Family
ID=27350566
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002379190A Expired - Fee Related JP3816872B2 (en) | 2002-07-04 | 2002-12-27 | Operation control method of refrigeration system with two evaporators |
Country Status (4)
Country | Link |
---|---|
JP (1) | JP3816872B2 (en) |
CN (1) | CN1467459A (en) |
DE (1) | DE10260350B4 (en) |
GB (1) | GB2390419B (en) |
Families Citing this family (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3894222B2 (en) * | 2004-12-28 | 2007-03-14 | ダイキン工業株式会社 | Refrigeration equipment |
DE102006015989A1 (en) * | 2006-04-05 | 2007-10-11 | BSH Bosch und Siemens Hausgeräte GmbH | Method for operating a refrigeration device with parallel-connected evaporators and refrigeration device therefor |
WO2008111159A1 (en) * | 2007-03-12 | 2008-09-18 | Hoshizaki Denki Kabushiki Kaisha | Cooling storage building and method of operating the same |
EP2136167A1 (en) * | 2007-03-13 | 2009-12-23 | Hoshizaki Denki Kabushiki Kaisha | Cooling storage chamber and method for operating the same |
KR100806314B1 (en) * | 2007-03-30 | 2008-02-27 | 엘지전자 주식회사 | Refrigerator Control Method |
KR101275184B1 (en) | 2007-05-25 | 2013-06-18 | 엘지전자 주식회사 | Control method of refrigerating system |
KR100872225B1 (en) | 2007-11-05 | 2008-12-05 | 엘지전자 주식회사 | Refrigerator Control Method |
KR20110072441A (en) * | 2009-12-22 | 2011-06-29 | 삼성전자주식회사 | Refrigerator and its operation control method |
DE102010018543A1 (en) * | 2010-03-01 | 2011-09-01 | Liebherr-Hausgeräte Ochsenhausen GmbH | Fridge and / or freezer |
DE102010015165A1 (en) * | 2010-04-16 | 2011-10-20 | Liebherr-Hausgeräte Ochsenhausen GmbH | Cooling and refrigerating device has refrigerant circuit with multiple dampers that are used for cooling different compartments, where coolant is supplied to dampers through compressor, and dampers are charged with coolant |
EP2564131A2 (en) * | 2010-04-27 | 2013-03-06 | Danfoss A/S | A method for operating a vapour compression system |
CN104302992B (en) * | 2011-06-16 | 2016-11-09 | 马士基航运公司 | Inner air loop control in refrigerated transport container |
CN103573665B (en) | 2012-08-01 | 2015-12-16 | 新加坡商华科全球股份有限公司 | There is display card and the controlling method thereof of multi-fan |
KR20150019206A (en) * | 2013-08-13 | 2015-02-25 | 동부대우전자 주식회사 | Refrigerator control method |
KR102518816B1 (en) | 2016-03-24 | 2023-04-06 | 엘지전자 주식회사 | Refrigerator and Controlling method for the same |
CN105972915A (en) * | 2016-05-25 | 2016-09-28 | 合肥华凌股份有限公司 | Control method and control device for refrigeration system, and refrigerator |
CN107084577B (en) * | 2017-06-27 | 2021-02-02 | 海信容声(广东)冰箱有限公司 | Control method and control device of dual-system refrigerator and refrigerator |
KR102567056B1 (en) | 2018-08-02 | 2023-08-16 | 엘지전자 주식회사 | Refrigerator and method for controlling the same |
CN109883109A (en) * | 2019-02-26 | 2019-06-14 | 青岛海尔特种电冰柜有限公司 | Multi-cycle refrigerator |
CN112665299B (en) * | 2020-12-11 | 2022-07-01 | 珠海格力电器股份有限公司 | Refrigeration control method and device of refrigerator, controller and refrigerator |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3786648A (en) * | 1973-03-05 | 1974-01-22 | Gen Electric | Cooling system with multiple evaporators |
DE2717050C3 (en) * | 1977-04-18 | 1979-12-06 | Danfoss A/S, Nordborg (Daenemark) | Compressor refrigeration systems with two compartments of different temperatures |
GB2083928B (en) * | 1980-09-04 | 1985-01-16 | Gen Electric | Apparatus and method of controlling temperature of a evaporator refrigeration system |
DE3043791A1 (en) * | 1980-11-20 | 1982-06-03 | Bosch-Siemens Hausgeräte GmbH, 7000 Stuttgart | COOLING UNIT, PARTICULARLY COMBINED REFRIGERATOR AND FREEZER |
IT1144365B (en) * | 1981-05-15 | 1986-10-29 | Indesit | CONTROL SYSTEM TO IMPROVE THE PERFORMANCE OF APPLIANCES FOR THE PRODUCTION OF COLD OR HEAT |
US5918474A (en) * | 1996-07-30 | 1999-07-06 | Whirlpool Corporation | Fan motor on/off control system for a refrigeration appliance |
DE19647642A1 (en) * | 1996-11-18 | 1998-05-20 | Bsh Bosch Siemens Hausgeraete | Method for operating a cooling device |
JP3462156B2 (en) * | 1999-11-30 | 2003-11-05 | 株式会社東芝 | refrigerator |
KR100404984B1 (en) * | 2000-08-24 | 2003-11-10 | 가부시끼가이샤 도시바 | Refrigerator and controlling method therefor |
JP3870048B2 (en) * | 2001-03-26 | 2007-01-17 | 三星電子株式会社 | Multi-room refrigerator and control method thereof |
-
2002
- 2002-12-20 DE DE10260350.2A patent/DE10260350B4/en not_active Expired - Lifetime
- 2002-12-27 JP JP2002379190A patent/JP3816872B2/en not_active Expired - Fee Related
- 2002-12-31 GB GB0230334A patent/GB2390419B/en not_active Expired - Fee Related
- 2002-12-31 CN CNA021583838A patent/CN1467459A/en active Pending
Also Published As
Publication number | Publication date |
---|---|
DE10260350B4 (en) | 2015-11-26 |
JP2004037065A (en) | 2004-02-05 |
GB0230334D0 (en) | 2003-02-05 |
CN1467459A (en) | 2004-01-14 |
GB2390419B (en) | 2006-03-01 |
DE10260350A1 (en) | 2004-01-29 |
GB2390419A (en) | 2004-01-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3816872B2 (en) | Operation control method of refrigeration system with two evaporators | |
US6935127B2 (en) | Refrigerator | |
JP3102651U (en) | Refrigerator refrigerator with two evaporators | |
JP2010532462A (en) | High temperature gas defrosting method and apparatus | |
KR20150075529A (en) | Cooling apparatus of refrigerator and control method thereof | |
JP3882056B2 (en) | Refrigeration air conditioner | |
JP4178646B2 (en) | refrigerator | |
JP2017161159A (en) | Outdoor uni of air conditioner | |
JPH10267503A (en) | Method for circulating refrigerant for defrosting, and refrigerator using the method | |
JP4253957B2 (en) | refrigerator | |
JP3576040B2 (en) | Cooling systems and refrigerators | |
JP2004028563A (en) | Operation control method for cooling system provided with two evaporators | |
JPH10300321A (en) | Cooler for freezer refrigerator and its defrosting method | |
JP3484131B2 (en) | Freezer refrigerator | |
JP2001108345A (en) | Two stage compression freezer/refrigerator | |
JP3746753B2 (en) | Refrigeration apparatus for vehicle having two cold storages, and control method thereof | |
CN100572992C (en) | refrigerator | |
KR100845857B1 (en) | Refrigeration cycle apparatus, a refrigerator having the same, and a control method thereof | |
KR100549062B1 (en) | Refrigerator | |
JP3735338B2 (en) | Refrigeration apparatus for vehicle and control method thereof | |
KR20120003224A (en) | Refrigerant circulation system of refrigeration unit | |
JP3710353B2 (en) | refrigerator | |
US20240377116A1 (en) | Refrigerator | |
US20230375255A1 (en) | Refrigerator appliance with convertible compartment | |
KR100437808B1 (en) | method for controling refrigerator with two evaporator |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20041111 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20041116 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20050215 |
|
A602 | Written permission of extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A602 Effective date: 20050218 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050516 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20051101 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060130 |
|
A911 | Transfer to examiner for re-examination before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20060306 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20060509 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20060608 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |