[go: up one dir, main page]

JP3812767B2 - Semiconductor manufacturing method and apparatus using the same - Google Patents

Semiconductor manufacturing method and apparatus using the same Download PDF

Info

Publication number
JP3812767B2
JP3812767B2 JP14264797A JP14264797A JP3812767B2 JP 3812767 B2 JP3812767 B2 JP 3812767B2 JP 14264797 A JP14264797 A JP 14264797A JP 14264797 A JP14264797 A JP 14264797A JP 3812767 B2 JP3812767 B2 JP 3812767B2
Authority
JP
Japan
Prior art keywords
gas
substrate
reaction tube
substrate holding
seal cap
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP14264797A
Other languages
Japanese (ja)
Other versions
JPH10335317A (en
Inventor
直人 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Kokusai Electric Inc
Original Assignee
Hitachi Kokusai Electric Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Kokusai Electric Inc filed Critical Hitachi Kokusai Electric Inc
Priority to JP14264797A priority Critical patent/JP3812767B2/en
Publication of JPH10335317A publication Critical patent/JPH10335317A/en
Application granted granted Critical
Publication of JP3812767B2 publication Critical patent/JP3812767B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
この発明は、反応管の中に、半導体基板を回転可能に保持する基板保持手段を配置し、この基板保持手段を回転軸を介して回転させつつ基板処理用のガスを前記反応管に流通させて基板処理を行うとともに、回転軸パージ用のガスを前記回転軸の周りに流通させて、前記基板処理用のガスを前記回転軸の周辺からパージする半導体製造方法およびそれを用いた半導体製造装置に関する。
【0002】
【従来の技術】
従来、この種の半導体製造装置では、CVD装置の場合において、反応管は例えば、上方から側面にかけてヒータに覆われている外側反応管と、外側反応管の内部に配置された内側反応管とから構成され、内側反応管の内部においてガスを用いた基板処理が行われる。前記内側反応管の中には、処理すべき基板を堆積し回転可能に保持する基板保持部材(ボート)が図示しないボート昇降機構により、外部反応管の底部をシールするシールキャップ等と共に、上昇,挿入されるようになっている。この基板保持部材は、筒状取り付け部材および回転軸シール部材を介して設けられた回転機構と、一端が前記回転機構に取り付けられ、他端が前記回転軸シール部材、前記筒状取り付け部材の中空部、前記シールキャップを貫通して前記内側反応管の内部に延び出し、前記基板保持手段に固定され、前記回転機構による回転を前記基板保持手段に伝達する回転軸とによって回転される。そして、基板を保持して前記基板保持手段が回転する前記反応管の内部に基板処理用のガスを流通させて基板を処理する際に、前記筒状部材の中空部に回転軸パージ用のガスを供給し、前記回転軸周辺から基板処理用のガスをパージして回転軸が基板処理用のガスによって悪影響を受けないように保護している。
【0003】
【発明が解決しようとする課題】
しかし、上述の従来の半導体製造装置においては、例えば、酸化拡散処理を行おうとする場合、反応管内の水蒸気および酸素ガスの雰囲気に対して、N2またはAr等の不活性ガスを回転軸パージ用のガスとして使用している。したがって、基板処理用のガスとは異なったガスが混入されることとなり、基板上の生成膜の膜厚が不活性ガスの影響を受けて均一にならないという問題がある。また、CVD処理を行う場合、回転軸シール部材が劣化防止のために冷却されているので、回転軸シール部材の周辺は温度が低く、この辺りの回転軸の付近には、反応副生成物の付着や蒸気圧の低いガスによる付着が発生し易い。そして、これらの付着は、パーティクル発生の原因となり、また、回転軸周辺に腐食性ガス(例:Cl)の残留があると、大気と触れた場合に金属部分を腐食させる物質(HCl)となり、金属部分を腐食させパーティクル発生の原因となるので、やはり回転軸パージが必要であるが、この場合にも、不活性ガスを使用すると回転軸周辺において基板上の生成膜の膜厚の不均一をもたらし、ひいてはウェーハの歩留まりを悪化させるという問題がある。
【0004】
この発明は、上記問題を解決すべく、回転軸の周辺から基板処理用のガスをパージでき、かつ、膜厚の不均一を発生させず、ウェーハの歩留まりを向上させることができる半導体製造方法およびそれを用いた装置を提供することを目的とする。
【0005】
【課題を解決するための手段】
請求項1の発明は、反応管の中に、基板を保持した基板保持手段を配置し、この基板を保持した基板保持手段を前記反応管を封止するシールキャップを貫通して設けられた回転軸を介して回転させつつ前記反応管内にSiH2Cl2ガスとNH3ガスとを流通させて前記基板に対してSi34膜を生成する処理を行う半導体製造方法において、前記基板処理を行う際、NH3ガスを前記回転軸の周りに流通させて前記回転軸と前記シールキャップとの間から前記反応管内に導入することで前記回転軸をパージすることを特徴とする半導体製造方法である。
請求項2の発明は、反応管の中に、基板を保持した基板保持手段を配置し、この基板を保持した基板保持手段を回転軸を介して回転機構により回転させつつ前記反応管内にSiH 2 Cl 2 ガスとNH 3 ガスとを流通させて基板に対してSi 3 4 膜を生成する処理を行う半導体製造方法において、前記回転軸は前記反応管を封止するシールキャップを貫通して設けられると共に、一端が前記回転機構に取り付けられ、他端が前記基板保持手段に取り付けられ、前記シールキャップと前記回転機構との間であって前記回転軸の周囲には筒状取り付け部材が設けられ、前記基板処理を行う際、NH 3 ガスを前記筒状取り付け部材内部の中空部に導入して、回転軸の周囲から反応管内に導入することを特徴とする半導体製造方法である。
請求項3の発明は、内部にSiH2Cl2ガスとNH3ガスとを流通させて基板に対してSi34膜を生成する反応管と、前記反応管をシールするシールキャップと、前記反応管内部に挿入可能に設けられ、処理すべき基板を回転可能に保持する基板保持部材と、前記基板保持部材を回転させる回転機構と、前記シールキャップを貫通して設けられると共に、一端が前記回転機構に取り付けられ、他端が前記基板保持手段に取り付けられ、前記回転機構による回転を前記基板保持手段に伝達する回転軸と、前記反応管の内部にSiH2Cl2ガスを流通させるガス流通手段と、NH 3 ガスを前記回転軸周辺に流通させて前記回転軸と前記シールキャップとの間から前記反応管内に導入することで前記回転軸をパージする回転軸パージ手段とを有することを特徴とする半導体製造装置である。
請求項4の発明は、内部にSiH 2 Cl 2 ガスとNH 3 ガスとを流通させて基板に対してSi 3 4 膜を生成する反応管と、前記反応管をシールするシールキャップと、前記反応管内部に挿入可能に設けられ、処理すべき基板を回転可能に保持する基板保持部材と、前記基板保持部材を回転させる回転機構と、前記シールキャップを貫通して設けられると共に、一端が前記回転機構に取り付けられ、他端が前記基板保持手段に取り付けられ、前記回転機構による回転を前記基板保持手段に伝達する回転軸と、前記反応管の内部にSiH 2 Cl 2 ガスを流通させるガス流通手段と、前記シールキャップと前記回転機構との間であって前記回転軸の周囲に設けられる筒状取り付け部材とを有し、前記筒状取り付け部材内部の中空部内にNH 3 ガスを導入して、回転軸の周囲から反応管内に導入するようにしたことを特徴とする半導体製造装置である。
【0011】
【発明の実施の形態】
以下、この発明の実施の形態について添付図面に基づいて説明する。図1はこの発明に係わる半導体製造装置を示す断面図、図2は図1の下方の要部を示す拡大断面図である。この半導体製造装置100において、反応管は、上下が開口状態になっている内側反応管10と、内側反応管10との間に所定間隔をもって内側反応管10を上方からドーム状に覆うように配置され、底部が板状のシールキャップ21で封止された外側反応管20とから構成されている。外側反応管20の外側には、外側反応管20との間に所定間隔をもって外側反応管20を上方からドーム状に覆うようにヒータ30が配置されている。
【0012】
内側反応管20の最下部には、中心部が回転軸52の上端に回転可能に支持されたプレート状の設置台11が設けられている。設置台11の上には、多数の処理されるべき基板13を一定間隔をあけて平行に保持するための基板保持手段であるボート12が上方に延びるように垂直に取り付けられている。多数の基板13は、外縁がボート12の内側に穿設された溝にはめられ互いに平行に保持される。外側反応管20の最下端は、フランジ状に形成され、シールキャップ21の上面には、外周に沿って環状の溝が形成され、その溝の中にはOリング22が配置され、図示しないボート昇降機構によりボート,シールキャップ,筒状取付部材,回転機構等が上昇し、シールキャップ21が外側反応管20の底部に当接するとき、Oリング22は、外側反応管20の最下端のフランジ面に当接して、外側反応管20とシールキャップ21との間を気密を保持するようにシールしている。
【0013】
筒状取り付け部材40は、両端にフランジを有し、その一方のフランジがシールキャップ21の下面に当接して取り付けられている。筒状取り付け部材40の他方のフランジには、回転軸シール部材51(磁性流体シール)を介して回転機構50が取り付けられている。この場合、回転軸シール部材51は、温度を下げて劣化を防止するために冷却されている。回転機構50は、回転機構50から回転軸シール部材51と、シールキャップ21とを貫通して上方に突出している回転軸52を回転させて、回転軸52の先端に取り付けられ基板13を担持するボートを載置した設置台11を回転させる。
【0014】
基板処理用のガス(反応ガス)は、外側反応管20の底部近くの側壁に設けられたガス導入口25から内側反応管10の中に導入され、ボート12に配置された基板13を処理した後に、内側反応管10の上部から出て、内側反応管10と外側反応管20との間を通り、外側反応管20の底部近くでガス導入口25に対抗する位置の外側反応管20の側壁に設けられたガス排気口26から排気される。回転軸パージ用のガスは、筒状取り付け部材40の側壁に設けられたパージ用ポート41から筒状取り付け部材40の内部の中空部に矢印PGで示されるように導入され、内側反応管10に徐々に入り、基板処理用のガスに混入して、内側反応管10と外側反応管20との間を通り、ガス排気口26から排気される。この間に、回転軸パージ用のガスは、回転軸52の周囲から基板処理用のガスをパージし、回転軸52が基板処理用のガスから悪影響を受けるのを防止する。
【0015】
この場合、回転軸パージ用のガスは、基板処理用のガスを構成するガスの中から回転軸52に化学的変化(例えば、回転軸52の腐食あるいは回転軸52への反応副生成物の付着)を最も発生させにくいガスを選択する。したがって、選択された回転軸パージ用のガスは、回転軸52を化学的変化から保護するとともに、基板処理用のガスに混入しても、基板処理用のガスの構成成分のガスと同じであるので、従来のように基板の膜厚に不均一な部分を生成するような悪影響を与えない。具体的には、例えば、半導体製造装置100の中で基板に対して酸化拡散処理を行おうとして、内側反応室10が酸素ガスと水蒸気の雰囲気に保たれている場合に、回転軸パージ用のガスとして酸素ガスを供給する。したがってN2またはAr等の不活性ガスで回転軸パージを行う従来例による場合には、不活性ガスの混入による基板の膜厚の不均一が生じるが、この例の場合には、そのような不均一は生じない。
【0016】
その他、半導体製造装置100の中でCVD処理等の種々の処理が行われる場合について、典型的な例を下記の表に示しておく。
【0017】
【表1】

Figure 0003812767
【0018】
【発明の効果】
以上に詳述したように、本発明に係わる半導体製造方法によれば、前記回転軸が基板処理用のガスにより腐食されたりしてパーティクルの原因とならないように、前記基板処理用のガスを前記回転軸の周辺からパージできるとともに、回転軸パージ用のガスが基板処理用のガスに混入しても、回転軸パージ用のガスが基板処理用のガスの中の成分と同じなので、従来の不活性ガス等に比較し、基板上の生成膜の膜厚を不均一にさせることが少なくなるという効果を奏する。
【0019】
また、具体的にはSiH2Cl2−NH3系のガスを用いたSi34膜生成処理が行われる場合には、NH3ガスが使用されるので入手および管理が容易である。
【0020】
さらに、本発明の半導体製造装置によれば、前記回転軸が基板処理用のガスにより酸化されたり、前記回転軸に副生成物が付着したりしてパーティクルの原因とならないように、前記基板処理用のガスを前記回転軸の周辺からパージできるとともに、回転軸パージ用のガスが基板処理用のガスに混入しても、回転軸パージ用のガスが基板処理用のガスの中の成分と同じなので、従来の不活性ガス等に比較し、基板上の生成膜の膜厚を不均一にさせることが少なく、ひいては、ウェーハの歩留まりを向上させることができる半導体製造装置を提供できるという効果を奏する。
【図面の簡単な説明】
【図1】この発明に係わる半導体製造装置を示す断面図である。
【図2】図1の半導体製造装置の下方の要部を示す拡大断面図である。
【符号の説明】
10 内側反応管
11 設置台
12 ボート
13 基板
20 外側反応管
21 シールキャップ
22 Oリング
25 ガス導入口
26 ガス排気口
30 ヒータ
40 筒状取り付け部材
41 パージ用ポート
50 回転機構
51 回転軸シール部材
52 回転軸
100 半導体製造装置[0001]
BACKGROUND OF THE INVENTION
In the present invention, a substrate holding means for rotatably holding a semiconductor substrate is disposed in a reaction tube, and a substrate processing gas is allowed to flow through the reaction tube while rotating the substrate holding means via a rotating shaft. A semiconductor manufacturing method and a semiconductor manufacturing apparatus using the same for purging the substrate processing gas from the periphery of the rotating shaft by performing the substrate processing and circulating the rotating shaft purging gas around the rotating shaft About.
[0002]
[Prior art]
Conventionally, in this type of semiconductor manufacturing apparatus, in the case of a CVD apparatus, the reaction tube is composed of, for example, an outer reaction tube covered with a heater from the upper side to a side surface, and an inner reaction tube disposed inside the outer reaction tube. The substrate processing using gas is performed inside the inner reaction tube. In the inner reaction tube, a substrate holding member (boat) for depositing a substrate to be processed and rotatably holding it is lifted together with a seal cap for sealing the bottom of the external reaction tube by a boat lifting mechanism (not shown). It is supposed to be inserted. The substrate holding member includes a rotating mechanism provided via a cylindrical mounting member and a rotating shaft seal member, one end attached to the rotating mechanism, and the other end hollow of the rotating shaft seal member and the cylindrical mounting member. And a rotation shaft that passes through the seal cap, extends to the inside of the inner reaction tube, is fixed to the substrate holding means, and transmits the rotation by the rotation mechanism to the substrate holding means. Then, when the substrate processing gas is circulated inside the reaction tube that holds the substrate and the substrate holding means rotates, the substrate purging gas is disposed in the hollow portion of the cylindrical member. And the substrate processing gas is purged from around the rotating shaft to protect the rotating shaft from being adversely affected by the substrate processing gas.
[0003]
[Problems to be solved by the invention]
However, in the above-described conventional semiconductor manufacturing apparatus, for example, when an oxidative diffusion treatment is to be performed, an inert gas such as N 2 or Ar is used for rotating shaft purge with respect to the atmosphere of water vapor and oxygen gas in the reaction tube. It is used as a gas. Therefore, a gas different from the substrate processing gas is mixed, and there is a problem that the film thickness of the generated film on the substrate is not uniform due to the influence of the inert gas. In addition, when the CVD process is performed, since the rotating shaft seal member is cooled to prevent deterioration, the temperature around the rotating shaft seal member is low, and there are reaction by-products near the rotating shaft. Adhesion and adhesion due to gas with low vapor pressure are likely to occur. These adhesions cause generation of particles, and if a corrosive gas (eg, Cl) remains around the rotating shaft, it becomes a substance (HCl) that corrodes the metal part when it comes into contact with the atmosphere. Since the metal part is corroded and particles are generated, it is necessary to purge the rotating shaft. In this case as well, the use of an inert gas can cause uneven film thickness on the substrate around the rotating shaft. This leads to a problem that the yield of the wafer is deteriorated.
[0004]
In order to solve the above problems, the present invention can purge a substrate processing gas from the periphery of a rotating shaft, and can improve the yield of wafers without causing non-uniform film thickness and An object is to provide an apparatus using the same.
[0005]
[Means for Solving the Problems]
The invention of claim 1, in the reaction tube, place the substrate holding means holding the substrate, the rotation provided a substrate holding means holding the substrate through the sealing cap for sealing the reaction tube In a semiconductor manufacturing method in which a SiH 2 Cl 2 gas and an NH 3 gas are circulated in the reaction tube while rotating through a shaft to perform a process of generating a Si 3 N 4 film on the substrate, the substrate processing is performed. In performing the semiconductor manufacturing method, the NH 3 gas is circulated around the rotating shaft and is introduced into the reaction tube from between the rotating shaft and the seal cap. is there.
According to the second aspect of the present invention, a substrate holding means for holding a substrate is disposed in the reaction tube, and the substrate holding means for holding the substrate is rotated by a rotating mechanism via a rotation shaft while the SiH 2 is placed in the reaction tube. In a semiconductor manufacturing method in which Cl 2 gas and NH 3 gas are circulated to generate a Si 3 N 4 film on a substrate, the rotating shaft is provided through a seal cap that seals the reaction tube In addition, one end is attached to the rotation mechanism, the other end is attached to the substrate holding means, and a cylindrical attachment member is provided between the seal cap and the rotation mechanism and around the rotation shaft. In the semiconductor manufacturing method, when performing the substrate processing, NH 3 gas is introduced into the hollow portion inside the cylindrical mounting member and introduced into the reaction tube from the periphery of the rotating shaft.
According to a third aspect of the present invention, there is provided a reaction tube for generating a Si 3 N 4 film on a substrate by flowing SiH 2 Cl 2 gas and NH 3 gas therein, a seal cap for sealing the reaction tube, A substrate holding member that is provided so as to be insertable inside the reaction tube and rotatably holds a substrate to be processed, a rotating mechanism that rotates the substrate holding member, a penetrating seal cap, and one end of which is provided A gas flow for attaching SiH 2 Cl 2 gas to the inside of the reaction tube, a rotating shaft that is attached to the rotating mechanism, the other end is attached to the substrate holding means, and transmits the rotation of the rotating mechanism to the substrate holding means. means, and a rotary shaft purge means for purging said rotary shaft by introducing into the reaction tube from between the sealing cap and the rotating shaft of the NH 3 gas is circulated around the rotary shaft A semiconductor manufacturing apparatus characterized by.
According to a fourth aspect of the present invention, there is provided a reaction tube for generating a Si 3 N 4 film on a substrate by flowing SiH 2 Cl 2 gas and NH 3 gas therein, a seal cap for sealing the reaction tube, A substrate holding member that is provided so as to be insertable inside the reaction tube and rotatably holds a substrate to be processed, a rotating mechanism that rotates the substrate holding member, a penetrating seal cap, and one end of which is provided A gas flow for attaching SiH 2 Cl 2 gas to the inside of the reaction tube, a rotating shaft that is attached to the rotating mechanism, the other end is attached to the substrate holding means, and transmits the rotation of the rotating mechanism to the substrate holding means. And a cylindrical attachment member provided between the seal cap and the rotation mechanism and around the rotation shaft, and introducing NH 3 gas into the hollow portion inside the cylindrical attachment member. The semiconductor manufacturing apparatus is characterized in that it is introduced into the reaction tube from around the rotating shaft.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the accompanying drawings. FIG. 1 is a sectional view showing a semiconductor manufacturing apparatus according to the present invention, and FIG. 2 is an enlarged sectional view showing a main part below FIG. In this semiconductor manufacturing apparatus 100, the reaction tube is disposed so as to cover the inner reaction tube 10 in a dome shape from above with a predetermined interval between the inner reaction tube 10 whose upper and lower sides are open and the inner reaction tube 10. The outer reaction tube 20 has a bottom portion sealed with a plate-like seal cap 21. A heater 30 is disposed outside the outer reaction tube 20 so as to cover the outer reaction tube 20 in a dome shape from above with a predetermined distance from the outer reaction tube 20.
[0012]
At the lowermost part of the inner reaction tube 20, there is provided a plate-like installation table 11 whose center is rotatably supported on the upper end of the rotation shaft 52. On the installation table 11, a boat 12, which is a substrate holding means for holding a large number of substrates 13 to be processed in parallel at regular intervals, is vertically attached so as to extend upward. A large number of substrates 13 are held in parallel with each other by being fitted into grooves formed on the inside of the boat 12 at the outer edges. The lowermost end of the outer reaction tube 20 is formed in a flange shape, and an annular groove is formed on the upper surface of the seal cap 21 along the outer periphery. An O-ring 22 is disposed in the groove, and a boat (not shown) When the boat, the seal cap, the cylindrical mounting member, the rotation mechanism, and the like are raised by the elevating mechanism, and the seal cap 21 comes into contact with the bottom of the outer reaction tube 20, the O-ring 22 is the lowermost flange surface of the outer reaction tube 20. The outer reaction tube 20 and the seal cap 21 are sealed so as to maintain airtightness.
[0013]
The cylindrical attachment member 40 has flanges at both ends, and one of the flanges is attached in contact with the lower surface of the seal cap 21. A rotation mechanism 50 is attached to the other flange of the cylindrical attachment member 40 via a rotation shaft seal member 51 (magnetic fluid seal). In this case, the rotary shaft sealing member 51 is cooled in order to lower the temperature and prevent deterioration. The rotating mechanism 50 rotates the rotating shaft 52 that passes through the rotating shaft seal member 51 and the seal cap 21 from the rotating mechanism 50 and protrudes upward, and is attached to the tip of the rotating shaft 52 and carries the substrate 13. The installation base 11 on which the boat is placed is rotated.
[0014]
The substrate processing gas (reaction gas) was introduced into the inner reaction tube 10 from the gas inlet 25 provided on the side wall near the bottom of the outer reaction tube 20 to process the substrate 13 disposed in the boat 12. Later, the side wall of the outer reaction tube 20 exits from the upper part of the inner reaction tube 10, passes between the inner reaction tube 10 and the outer reaction tube 20, and opposes the gas inlet 25 near the bottom of the outer reaction tube 20. The gas is exhausted from a gas exhaust port 26 provided in A gas for purging the rotary shaft is introduced from a purge port 41 provided on the side wall of the cylindrical mounting member 40 into a hollow portion inside the cylindrical mounting member 40 as indicated by an arrow PG, and is introduced into the inner reaction tube 10. The gas gradually enters, mixes with the substrate processing gas, passes between the inner reaction tube 10 and the outer reaction tube 20, and is exhausted from the gas exhaust port 26. During this time, the rotary shaft purge gas purges the substrate processing gas from the periphery of the rotary shaft 52 and prevents the rotary shaft 52 from being adversely affected by the substrate processing gas.
[0015]
In this case, the gas for purging the rotary shaft is chemically changed from the gas constituting the substrate processing gas to the rotary shaft 52 (for example, corrosion of the rotary shaft 52 or adhesion of reaction by-products to the rotary shaft 52). ) To select the gas that is most unlikely to generate. Therefore, the selected rotary shaft purge gas protects the rotary shaft 52 from chemical changes, and even if mixed into the substrate processing gas, it is the same as the constituent gas of the substrate processing gas. Therefore, there is no adverse effect of generating a non-uniform portion in the film thickness of the substrate as in the prior art. Specifically, for example, when the inner reaction chamber 10 is maintained in an atmosphere of oxygen gas and water vapor in order to perform oxidative diffusion treatment on the substrate in the semiconductor manufacturing apparatus 100, the rotary shaft purge is performed. Oxygen gas is supplied as gas. Therefore, in the case of the conventional example in which the rotary shaft purge is performed with an inert gas such as N 2 or Ar, the non-uniformity of the film thickness of the substrate due to the mixing of the inert gas occurs. Non-uniformity does not occur.
[0016]
In addition, typical examples of cases where various processes such as a CVD process are performed in the semiconductor manufacturing apparatus 100 are shown in the following table.
[0017]
[Table 1]
Figure 0003812767
[0018]
【The invention's effect】
As described above in detail, according to the semiconductor manufacturing method according to the present invention, as pre-Symbol rotation axis is not a cause of particles with or is corroded by the gas for substrate processing, a gas for the substrate processing In addition to purging from the periphery of the rotary shaft, even if the rotary shaft purge gas is mixed into the substrate processing gas, the rotary shaft purge gas is the same as the components in the substrate processing gas. Compared to an inert gas or the like, there is an effect that the thickness of the generated film on the substrate is less uniform.
[0019]
Also, specifically, in the case where the Si 3 N 4 film generation process using SiH 2 Cl 2 -NH 3 based gas is performed, it is easy to obtain and manage since NH 3 gas is used.
[0020]
Further, according to the semiconductor manufacturing apparatus of the present invention, or prior Symbol rotation axis is oxidized by gas for substrate processing, so as not to cause particles to or adhered by-products to the rotating shaft, wherein the substrate The processing gas can be purged from the periphery of the rotating shaft, and even if the rotating shaft purge gas is mixed into the substrate processing gas, the rotating shaft purge gas is separated from the components in the substrate processing gas. Since it is the same, it is less likely to make the film thickness of the generated film on the substrate non-uniform compared to conventional inert gases, etc., and as a result, it is possible to provide a semiconductor manufacturing apparatus that can improve the yield of the wafer. Play.
[Brief description of the drawings]
FIG. 1 is a sectional view showing a semiconductor manufacturing apparatus according to the present invention.
2 is an enlarged cross-sectional view showing a main part below the semiconductor manufacturing apparatus of FIG. 1;
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 Inner reaction tube 11 Installation stand 12 Boat 13 Substrate 20 Outer reaction tube 21 Seal cap 22 O-ring 25 Gas introduction port 26 Gas exhaust port 30 Heater 40 Cylindrical mounting member 41 Purge port 50 Rotating mechanism 51 Rotating shaft seal member 52 Rotation Axis 100 Semiconductor manufacturing equipment

Claims (4)

反応管の中に、基板を保持した基板保持手段を配置し、この基板を保持した基板保持手段を前記反応管を封止するシールキャップを貫通して設けられた回転軸を介して回転させつつ前記反応管内にSiH2Cl2ガスとNH3ガスとを流通させて前記基板に対してSi34膜を生成する処理を行う半導体製造方法において、前記基板処理を行う際、NH3ガスを前記回転軸の周りに流通させて前記回転軸と前記シールキャップとの間から前記反応管内に導入することで前記回転軸をパージすることを特徴とする半導体製造方法。A substrate holding means for holding a substrate is arranged in the reaction tube, and the substrate holding means for holding the substrate is rotated through a rotation shaft provided through a seal cap for sealing the reaction tube. In the semiconductor manufacturing method in which SiH 2 Cl 2 gas and NH 3 gas are circulated in the reaction tube to generate a Si 3 N 4 film on the substrate, NH 3 gas is used when the substrate processing is performed. A semiconductor manufacturing method , wherein the rotary shaft is purged by being introduced into the reaction tube from between the rotary shaft and the seal cap through circulation around the rotary shaft. 反応管の中に、基板を保持した基板保持手段を配置し、この基板を保持した基板保持手段を回転軸を介して回転機構により回転させつつ前記反応管内にSiH 2 Cl 2 ガスとNH 3 ガスとを流通させて基板に対してSi 3 4 膜を生成する処理を行う半導体製造方法において、前記回転軸は前記反応管を封止するシールキャップを貫通して設けられると共に、一端が前記回転機構に取り付けられ、他端が前記基板保持手段に取り付けられ、前記シールキャップと前記回転機構との間であって前記回転軸の周囲には筒状取り付け部材が設けられ、前記基板処理を行う際、NH 3 ガスを前記筒状取り付け部材内部の中空部に導入して、回転軸の周囲から反応管内に導入することを特徴とする半導体製造方法。A substrate holding means for holding the substrate is disposed in the reaction tube, and the substrate holding means for holding the substrate is rotated by a rotating mechanism via a rotation shaft while the SiH 2 Cl 2 gas and the NH 3 gas are placed in the reaction tube. In the semiconductor manufacturing method for performing the process of generating the Si 3 N 4 film on the substrate by circulating the gas, the rotating shaft is provided through a seal cap that seals the reaction tube, and one end of the rotating shaft is rotated. When the substrate processing is performed, the other end is attached to the substrate holding means, and a cylindrical attachment member is provided between the seal cap and the rotation mechanism and around the rotation shaft. An NH 3 gas is introduced into a hollow portion inside the cylindrical mounting member, and is introduced into the reaction tube from the periphery of the rotating shaft. 内部にSiH2Cl2ガスとNH3ガスとを流通させて基板に対してSi34膜を生成する反応管と、前記反応管をシールするシールキャップと、前記反応管内部に挿入可能に設けられ、処理すべき基板を回転可能に保持する基板保持部材と、前記基板保持部材を回転させる回転機構と、前記シールキャップを貫通して設けられると共に、一端が前記回転機構に取り付けられ、他端が前記基板保持手段に取り付けられ、前記回転機構による回転を前記基板保持手段に伝達する回転軸と、前記反応管の内部にSiH2Cl2ガスを流通させるガス流通手段と、NH 3 ガスを前記回転軸周辺に流通させて前記回転軸と前記シールキャップとの間から前記反応管内に導入することで前記回転軸をパージする回転軸パージ手段とを有することを特徴とする半導体製造装置。SiH 2 Cl 2 gas and NH 3 gas are circulated inside to generate a Si 3 N 4 film on the substrate, a seal cap for sealing the reaction tube, and insertion into the reaction tube A substrate holding member that rotatably holds a substrate to be processed, a rotation mechanism that rotates the substrate holding member, and a seal cap that is provided through one end of the substrate holding member. An end is attached to the substrate holding means, a rotation shaft for transmitting rotation by the rotation mechanism to the substrate holding means, a gas flow means for flowing SiH 2 Cl 2 gas inside the reaction tube, and NH 3 gas and characterized in that it has a rotary shaft purge means for purging said rotary shaft by introducing into the reaction tube from between the rotary shaft is circulated around by said rotary shaft said seal cap That semiconductor manufacturing equipment. 内部にSiH 2 Cl 2 ガスとNH 3 ガスとを流通させて基板に対してSi 3 4 膜を生成する反応管と、前記反応管をシールするシールキャップと、前記反応管内部に挿入可能に設けられ、処理すべき基板を回転可能に保持する基板保持部材と、前記基板保持部材を回転させる回転機構と、前記シールキャップを貫通して設けられると共に、一端が前記回転機構に取り付けられ、他端が前記基板保持手段に取り付けられ、前記回転機構による回転を前記基板保持手段に伝達する回転軸と、前記反応管の内部にSiH 2 Cl 2 ガスを流通させるガス流通手段と、前記シールキャップと前記回転機構との間であって前記回転軸の周囲に設けられる筒状取り付け部材とを有し、前記筒状取り付け部材内部の中空部内にNH 3 ガスを導入して、回転軸の周囲から反応管内に導入するようにしたことを特徴とする半導体製造装置。 SiH 2 Cl 2 gas and NH 3 gas are circulated inside to generate a Si 3 N 4 film on the substrate, a seal cap for sealing the reaction tube, and insertion into the reaction tube A substrate holding member that rotatably holds a substrate to be processed, a rotation mechanism that rotates the substrate holding member, and a seal cap that is provided through one end of the substrate holding member. An end is attached to the substrate holding means, a rotation shaft for transmitting rotation by the rotation mechanism to the substrate holding means, a gas flow means for flowing SiH 2 Cl 2 gas inside the reaction tube, and the seal cap A cylindrical mounting member provided between the rotating mechanism and around the rotating shaft, and introducing NH 3 gas into a hollow portion inside the cylindrical mounting member, A semiconductor manufacturing apparatus characterized by being introduced into a reaction tube from an enclosure.
JP14264797A 1997-05-30 1997-05-30 Semiconductor manufacturing method and apparatus using the same Expired - Lifetime JP3812767B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14264797A JP3812767B2 (en) 1997-05-30 1997-05-30 Semiconductor manufacturing method and apparatus using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14264797A JP3812767B2 (en) 1997-05-30 1997-05-30 Semiconductor manufacturing method and apparatus using the same

Publications (2)

Publication Number Publication Date
JPH10335317A JPH10335317A (en) 1998-12-18
JP3812767B2 true JP3812767B2 (en) 2006-08-23

Family

ID=15320226

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14264797A Expired - Lifetime JP3812767B2 (en) 1997-05-30 1997-05-30 Semiconductor manufacturing method and apparatus using the same

Country Status (1)

Country Link
JP (1) JP3812767B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7795143B2 (en) 2006-08-11 2010-09-14 Hitachi Kokusai Electric Inc. Substrate processing apparatus and manufacturing method of semiconductor device

Also Published As

Publication number Publication date
JPH10335317A (en) 1998-12-18

Similar Documents

Publication Publication Date Title
US8057599B2 (en) Substrate processing apparatus and method for manufacturing a semiconductor device
JP3579278B2 (en) Vertical heat treatment device and sealing device
JP4426518B2 (en) Processing equipment
JP3556804B2 (en) Processing device and processing method
US4989540A (en) Apparatus for reaction treatment
JP4764016B2 (en) Seal purge method for thermal reactor
US6482753B1 (en) Substrate processing apparatus and method for manufacturing semiconductor device
JP2010153805A (en) Film deposition apparatus, cleaning method for the same, and computer storage medium for storing program
US7879400B2 (en) Substrate processing apparatus, method of manufacturing a semiconductor device, and method of forming a thin film on metal surface
TWI749278B (en) Vertical type heat treatment device
KR100709801B1 (en) Precoat film forming method, idling method of film forming device, loading table structure, film forming device and film forming method
US7304002B2 (en) Method of oxidizing member to be treated
JP3812767B2 (en) Semiconductor manufacturing method and apparatus using the same
JP3173697B2 (en) Vertical heat treatment equipment
JPH06140379A (en) Treatment equipment
JP3798915B2 (en) Vertical heat treatment equipment
JP3203536B2 (en) Vertical heat treatment equipment
US11881396B2 (en) Deposition method
JPH0992627A (en) Method for purging rotary shaft seal of semiconductor manufacturing equipment
JP2002299271A (en) Vertical heat treatment device
KR0134033B1 (en) Processing equipment
JPH07263362A (en) Treating device
JP2003282553A (en) Substrate processing equipment
JPH02222528A (en) Epitaxial deposition device
JPH0513340A (en) Rotary reactor

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040524

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040524

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050201

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050404

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050406

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20050406

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060228

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060426

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060523

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060525

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100609

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110609

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120609

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130609

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140609

Year of fee payment: 8

EXPY Cancellation because of completion of term