JP3805209B2 - Expandable styrenic resin particles, styrenic resin foam moldings and methods for producing them - Google Patents
Expandable styrenic resin particles, styrenic resin foam moldings and methods for producing them Download PDFInfo
- Publication number
- JP3805209B2 JP3805209B2 JP2001085337A JP2001085337A JP3805209B2 JP 3805209 B2 JP3805209 B2 JP 3805209B2 JP 2001085337 A JP2001085337 A JP 2001085337A JP 2001085337 A JP2001085337 A JP 2001085337A JP 3805209 B2 JP3805209 B2 JP 3805209B2
- Authority
- JP
- Japan
- Prior art keywords
- resin particles
- particles
- weight
- styrene
- styrene resin
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000002245 particle Substances 0.000 title claims description 169
- 229920001890 Novodur Polymers 0.000 title claims description 27
- 238000000034 method Methods 0.000 title description 20
- 238000010097 foam moulding Methods 0.000 title description 5
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 claims description 237
- 229920005989 resin Polymers 0.000 claims description 118
- 239000011347 resin Substances 0.000 claims description 118
- 229930195733 hydrocarbon Natural products 0.000 claims description 42
- 150000002430 hydrocarbons Chemical class 0.000 claims description 42
- OFBQJSOFQDEBGM-UHFFFAOYSA-N n-pentane Natural products CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 claims description 40
- 239000004088 foaming agent Substances 0.000 claims description 28
- 239000000178 monomer Substances 0.000 claims description 28
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 claims description 27
- 229920002554 vinyl polymer Polymers 0.000 claims description 27
- 239000004215 Carbon black (E152) Substances 0.000 claims description 26
- 239000004014 plasticizer Substances 0.000 claims description 22
- 238000000465 moulding Methods 0.000 claims description 21
- 239000006260 foam Substances 0.000 claims description 19
- IJDNQMDRQITEOD-UHFFFAOYSA-N n-butane Chemical group CCCC IJDNQMDRQITEOD-UHFFFAOYSA-N 0.000 claims description 19
- 238000009835 boiling Methods 0.000 claims description 18
- 239000001273 butane Substances 0.000 claims description 18
- 238000004519 manufacturing process Methods 0.000 claims description 12
- 239000000155 melt Substances 0.000 claims description 9
- 238000010438 heat treatment Methods 0.000 claims description 5
- 239000000203 mixture Substances 0.000 claims description 4
- 239000004604 Blowing Agent Substances 0.000 claims 3
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims 2
- 239000001257 hydrogen Substances 0.000 claims 2
- 229910052739 hydrogen Inorganic materials 0.000 claims 2
- 238000006116 polymerization reaction Methods 0.000 description 39
- 239000000047 product Substances 0.000 description 25
- 238000005187 foaming Methods 0.000 description 24
- -1 aromatic organic compounds Chemical class 0.000 description 18
- MYRTYDVEIRVNKP-UHFFFAOYSA-N 1,2-Divinylbenzene Chemical compound C=CC1=CC=CC=C1C=C MYRTYDVEIRVNKP-UHFFFAOYSA-N 0.000 description 17
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 12
- 238000005259 measurement Methods 0.000 description 11
- 239000003505 polymerization initiator Substances 0.000 description 11
- 230000000052 comparative effect Effects 0.000 description 8
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 7
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 6
- RDOFJDLLWVCMRU-UHFFFAOYSA-N Diisobutyl adipate Chemical compound CC(C)COC(=O)CCCCC(=O)OCC(C)C RDOFJDLLWVCMRU-UHFFFAOYSA-N 0.000 description 6
- 239000004793 Polystyrene Substances 0.000 description 6
- 125000004432 carbon atom Chemical group C* 0.000 description 6
- 229940031769 diisobutyl adipate Drugs 0.000 description 6
- NNPPMTNAJDCUHE-UHFFFAOYSA-N isobutane Chemical compound CC(C)C NNPPMTNAJDCUHE-UHFFFAOYSA-N 0.000 description 6
- 229920002223 polystyrene Polymers 0.000 description 6
- 239000004342 Benzoyl peroxide Substances 0.000 description 5
- OMPJBNCRMGITSC-UHFFFAOYSA-N Benzoylperoxide Chemical compound C=1C=CC=CC=1C(=O)OOC(=O)C1=CC=CC=C1 OMPJBNCRMGITSC-UHFFFAOYSA-N 0.000 description 5
- 230000032683 aging Effects 0.000 description 5
- 235000019400 benzoyl peroxide Nutrition 0.000 description 5
- 229920000642 polymer Polymers 0.000 description 5
- 239000000375 suspending agent Substances 0.000 description 5
- RNFJDJUURJAICM-UHFFFAOYSA-N 2,2,4,4,6,6-hexaphenoxy-1,3,5-triaza-2$l^{5},4$l^{5},6$l^{5}-triphosphacyclohexa-1,3,5-triene Chemical compound N=1P(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP=1(OC=1C=CC=CC=1)OC1=CC=CC=C1 RNFJDJUURJAICM-UHFFFAOYSA-N 0.000 description 4
- YNQLUTRBYVCPMQ-UHFFFAOYSA-N Ethylbenzene Chemical compound CCC1=CC=CC=C1 YNQLUTRBYVCPMQ-UHFFFAOYSA-N 0.000 description 4
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerol Natural products OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 4
- 238000000354 decomposition reaction Methods 0.000 description 4
- 235000014113 dietary fatty acids Nutrition 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 239000000194 fatty acid Substances 0.000 description 4
- 229930195729 fatty acid Natural products 0.000 description 4
- 239000003063 flame retardant Substances 0.000 description 4
- 238000004817 gas chromatography Methods 0.000 description 4
- QWTDNUCVQCZILF-UHFFFAOYSA-N isopentane Chemical compound CCC(C)C QWTDNUCVQCZILF-UHFFFAOYSA-N 0.000 description 4
- UAEPNZWRGJTJPN-UHFFFAOYSA-N methylcyclohexane Chemical compound CC1CCCCC1 UAEPNZWRGJTJPN-UHFFFAOYSA-N 0.000 description 4
- 238000010557 suspension polymerization reaction Methods 0.000 description 4
- QEQBMZQFDDDTPN-UHFFFAOYSA-N (2-methylpropan-2-yl)oxy benzenecarboperoxoate Chemical compound CC(C)(C)OOOC(=O)C1=CC=CC=C1 QEQBMZQFDDDTPN-UHFFFAOYSA-N 0.000 description 3
- OOCMUZJPDXYRFD-UHFFFAOYSA-L calcium;2-dodecylbenzenesulfonate Chemical compound [Ca+2].CCCCCCCCCCCCC1=CC=CC=C1S([O-])(=O)=O.CCCCCCCCCCCCC1=CC=CC=C1S([O-])(=O)=O OOCMUZJPDXYRFD-UHFFFAOYSA-L 0.000 description 3
- XZTWHWHGBBCSMX-UHFFFAOYSA-J dimagnesium;phosphonato phosphate Chemical compound [Mg+2].[Mg+2].[O-]P([O-])(=O)OP([O-])([O-])=O XZTWHWHGBBCSMX-UHFFFAOYSA-J 0.000 description 3
- 238000011156 evaluation Methods 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 235000011187 glycerol Nutrition 0.000 description 3
- 239000001282 iso-butane Substances 0.000 description 3
- 230000000704 physical effect Effects 0.000 description 3
- 238000003756 stirring Methods 0.000 description 3
- 239000004094 surface-active agent Substances 0.000 description 3
- DCXXMTOCNZCJGO-UHFFFAOYSA-N tristearoylglycerol Chemical compound CCCCCCCCCCCCCCCCCC(=O)OCC(OC(=O)CCCCCCCCCCCCCCCCC)COC(=O)CCCCCCCCCCCCCCCCC DCXXMTOCNZCJGO-UHFFFAOYSA-N 0.000 description 3
- KDGNCLDCOVTOCS-UHFFFAOYSA-N (2-methylpropan-2-yl)oxy propan-2-yl carbonate Chemical compound CC(C)OC(=O)OOC(C)(C)C KDGNCLDCOVTOCS-UHFFFAOYSA-N 0.000 description 2
- OZAIFHULBGXAKX-UHFFFAOYSA-N 2-(2-cyanopropan-2-yldiazenyl)-2-methylpropanenitrile Chemical compound N#CC(C)(C)N=NC(C)(C)C#N OZAIFHULBGXAKX-UHFFFAOYSA-N 0.000 description 2
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 description 2
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 150000001338 aliphatic hydrocarbons Chemical class 0.000 description 2
- 239000003945 anionic surfactant Substances 0.000 description 2
- 239000012736 aqueous medium Substances 0.000 description 2
- 150000004945 aromatic hydrocarbons Chemical class 0.000 description 2
- 239000004566 building material Substances 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 229920001577 copolymer Polymers 0.000 description 2
- RWGFKTVRMDUZSP-UHFFFAOYSA-N cumene Chemical compound CC(C)C1=CC=CC=C1 RWGFKTVRMDUZSP-UHFFFAOYSA-N 0.000 description 2
- AFABGHUZZDYHJO-UHFFFAOYSA-N dimethyl butane Natural products CCCC(C)C AFABGHUZZDYHJO-UHFFFAOYSA-N 0.000 description 2
- 238000004090 dissolution Methods 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 150000002148 esters Chemical class 0.000 description 2
- 150000004665 fatty acids Chemical class 0.000 description 2
- 238000011049 filling Methods 0.000 description 2
- 230000004927 fusion Effects 0.000 description 2
- 229920001519 homopolymer Polymers 0.000 description 2
- 238000005470 impregnation Methods 0.000 description 2
- 150000002484 inorganic compounds Chemical class 0.000 description 2
- 229910010272 inorganic material Inorganic materials 0.000 description 2
- 239000011810 insulating material Substances 0.000 description 2
- 238000009413 insulation Methods 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- GYNNXHKOJHMOHS-UHFFFAOYSA-N methyl-cycloheptane Natural products CC1CCCCCC1 GYNNXHKOJHMOHS-UHFFFAOYSA-N 0.000 description 2
- CRSOQBOWXPBRES-UHFFFAOYSA-N neopentane Chemical compound CC(C)(C)C CRSOQBOWXPBRES-UHFFFAOYSA-N 0.000 description 2
- 230000000379 polymerizing effect Effects 0.000 description 2
- ODLMAHJVESYWTB-UHFFFAOYSA-N propylbenzene Chemical compound CCCC1=CC=CC=C1 ODLMAHJVESYWTB-UHFFFAOYSA-N 0.000 description 2
- 239000012086 standard solution Substances 0.000 description 2
- 150000003871 sulfonates Chemical class 0.000 description 2
- OPQYOFWUFGEMRZ-UHFFFAOYSA-N tert-butyl 2,2-dimethylpropaneperoxoate Chemical compound CC(C)(C)OOC(=O)C(C)(C)C OPQYOFWUFGEMRZ-UHFFFAOYSA-N 0.000 description 2
- SWAXTRYEYUTSAP-UHFFFAOYSA-N tert-butyl ethaneperoxoate Chemical compound CC(=O)OOC(C)(C)C SWAXTRYEYUTSAP-UHFFFAOYSA-N 0.000 description 2
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 description 2
- 235000019731 tricalcium phosphate Nutrition 0.000 description 2
- 239000008096 xylene Substances 0.000 description 2
- PRJNEUBECVAVAG-UHFFFAOYSA-N 1,3-bis(ethenyl)benzene Chemical compound C=CC1=CC=CC(C=C)=C1 PRJNEUBECVAVAG-UHFFFAOYSA-N 0.000 description 1
- WEERVPDNCOGWJF-UHFFFAOYSA-N 1,4-bis(ethenyl)benzene Chemical compound C=CC1=CC=C(C=C)C=C1 WEERVPDNCOGWJF-UHFFFAOYSA-N 0.000 description 1
- LGJCFVYMIJLQJO-UHFFFAOYSA-N 1-dodecylperoxydodecane Chemical compound CCCCCCCCCCCCOOCCCCCCCCCCCC LGJCFVYMIJLQJO-UHFFFAOYSA-N 0.000 description 1
- VBICKXHEKHSIBG-UHFFFAOYSA-N 1-monostearoylglycerol Chemical compound CCCCCCCCCCCCCCCCCC(=O)OCC(O)CO VBICKXHEKHSIBG-UHFFFAOYSA-N 0.000 description 1
- XMNIXWIUMCBBBL-UHFFFAOYSA-N 2-(2-phenylpropan-2-ylperoxy)propan-2-ylbenzene Chemical compound C=1C=CC=CC=1C(C)(C)OOC(C)(C)C1=CC=CC=C1 XMNIXWIUMCBBBL-UHFFFAOYSA-N 0.000 description 1
- VEBFFMASUFIZKN-UHFFFAOYSA-N 2-tert-butylperoxy-3,3,5-trimethylhexanoic acid Chemical compound CC(C)CC(C)(C)C(C(O)=O)OOC(C)(C)C VEBFFMASUFIZKN-UHFFFAOYSA-N 0.000 description 1
- 229920000178 Acrylic resin Polymers 0.000 description 1
- 239000004925 Acrylic resin Substances 0.000 description 1
- NLHHRLWOUZZQLW-UHFFFAOYSA-N Acrylonitrile Chemical compound C=CC#N NLHHRLWOUZZQLW-UHFFFAOYSA-N 0.000 description 1
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical group OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 1
- VVQNEPGJFQJSBK-UHFFFAOYSA-N Methyl methacrylate Chemical compound COC(=O)C(C)=C VVQNEPGJFQJSBK-UHFFFAOYSA-N 0.000 description 1
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 1
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- XBDQKXXYIPTUBI-UHFFFAOYSA-M Propionate Chemical compound CCC([O-])=O XBDQKXXYIPTUBI-UHFFFAOYSA-M 0.000 description 1
- 150000001242 acetic acid derivatives Chemical class 0.000 description 1
- KXKVLQRXCPHEJC-UHFFFAOYSA-N acetic acid trimethyl ester Natural products COC(C)=O KXKVLQRXCPHEJC-UHFFFAOYSA-N 0.000 description 1
- 125000005396 acrylic acid ester group Chemical group 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- 239000001361 adipic acid Substances 0.000 description 1
- 235000011037 adipic acid Nutrition 0.000 description 1
- 150000001278 adipic acid derivatives Chemical class 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 150000005215 alkyl ethers Chemical class 0.000 description 1
- 125000000217 alkyl group Chemical group 0.000 description 1
- XYLMUPLGERFSHI-UHFFFAOYSA-N alpha-Methylstyrene Chemical compound CC(=C)C1=CC=CC=C1 XYLMUPLGERFSHI-UHFFFAOYSA-N 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 239000001506 calcium phosphate Substances 0.000 description 1
- 150000007942 carboxylates Chemical class 0.000 description 1
- 239000012159 carrier gas Substances 0.000 description 1
- 238000004040 coloring Methods 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000007334 copolymerization reaction Methods 0.000 description 1
- XCIXKGXIYUWCLL-UHFFFAOYSA-N cyclopentanol Chemical compound OC1CCCC1 XCIXKGXIYUWCLL-UHFFFAOYSA-N 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- LSXWFXONGKSEMY-UHFFFAOYSA-N di-tert-butyl peroxide Chemical compound CC(C)(C)OOC(C)(C)C LSXWFXONGKSEMY-UHFFFAOYSA-N 0.000 description 1
- CIKJANOSDPPCAU-UHFFFAOYSA-N ditert-butyl cyclohexane-1,4-dicarboperoxoate Chemical compound CC(C)(C)OOC(=O)C1CCC(C(=O)OOC(C)(C)C)CC1 CIKJANOSDPPCAU-UHFFFAOYSA-N 0.000 description 1
- RTZKZFJDLAIYFH-UHFFFAOYSA-N ether Substances CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 1
- 229920006248 expandable polystyrene Polymers 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 238000002290 gas chromatography-mass spectrometry Methods 0.000 description 1
- 230000009477 glass transition Effects 0.000 description 1
- 125000005456 glyceride group Chemical group 0.000 description 1
- WNLRTRBMVRJNCN-UHFFFAOYSA-N hexanedioic acid Natural products OC(=O)CCCCC(O)=O WNLRTRBMVRJNCN-UHFFFAOYSA-N 0.000 description 1
- FUZZWVXGSFPDMH-UHFFFAOYSA-M hexanoate Chemical compound CCCCCC([O-])=O FUZZWVXGSFPDMH-UHFFFAOYSA-M 0.000 description 1
- NUKZAGXMHTUAFE-UHFFFAOYSA-N hexanoic acid methyl ester Natural products CCCCCC(=O)OC NUKZAGXMHTUAFE-UHFFFAOYSA-N 0.000 description 1
- 238000003905 indoor air pollution Methods 0.000 description 1
- 239000003999 initiator Substances 0.000 description 1
- 239000004620 low density foam Substances 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 125000005397 methacrylic acid ester group Chemical group 0.000 description 1
- 229920000609 methyl cellulose Polymers 0.000 description 1
- 239000001923 methylcellulose Substances 0.000 description 1
- 235000010981 methylcellulose Nutrition 0.000 description 1
- 239000002667 nucleating agent Substances 0.000 description 1
- XNGIFLGASWRNHJ-UHFFFAOYSA-N o-dicarboxybenzene Natural products OC(=O)C1=CC=CC=C1C(O)=O XNGIFLGASWRNHJ-UHFFFAOYSA-N 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920002401 polyacrylamide Polymers 0.000 description 1
- 229920006327 polystyrene foam Polymers 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 1
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 1
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 1
- 238000011002 quantification Methods 0.000 description 1
- 150000003254 radicals Chemical class 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000003303 reheating Methods 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- 239000000344 soap Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 1
- 238000010558 suspension polymerization method Methods 0.000 description 1
- 229920005992 thermoplastic resin Polymers 0.000 description 1
- 229910000391 tricalcium phosphate Inorganic materials 0.000 description 1
- 229940078499 tricalcium phosphate Drugs 0.000 description 1
- 229920003169 water-soluble polymer Polymers 0.000 description 1
- 239000004711 α-olefin Substances 0.000 description 1
Landscapes
- Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
Description
【0001】
【産業上の利用分野】
本発明は、高度に発泡する発泡性スチレン系樹脂粒子、発泡剤以外の揮発性炭化水素の含有量が少ない低密度のスチレン系樹脂発泡成形体、およびそれらの製造方法に関するものである。本発明のスチレン系樹脂発泡成形体は、建築用断熱材として特に好適に用いられる。
【0002】
【従来の技術及び発明が解決しようとする課題】
発泡剤を1〜15重量%含んだ発泡性スチレン系樹脂粒子を、水蒸気等により軟化点以上に加熱すると、独立気泡を有する粒子状の予備発泡粒子が得られる。この予備発泡粒子を小さな孔やスリットを有する閉鎖型金型の中に充填して、水蒸気等で内部をさらに加熱する所謂型内成形によって、予備発泡粒子を膨張させて粒子間の隙間を埋めながら互いに融着させて目的の発泡成形体が得られる。
このような発泡成形体は、形状の自由性及び独立気泡による断熱性、耐水性などの性質に優れることから、近年、住宅などの断熱建材として広く用いられている。
【0003】
断熱建材では、低密度(0.02g/cm3程度以下)であることに加えて、シックハウス(室内空気汚染)に係わるとされる揮発性炭化水素の含有量が少ないことが強く求められている。
シックハウスに係わる揮発性炭化水素としては、スチレン、トルエン、エチルベンゼン、キシレン等の芳香族有機化合物のみならず、炭素数6(1気圧下における沸点68℃)から炭素数16(同沸点287℃)までの脂肪族炭化水素、シクロヘキサン、メチルシクロヘキサン等の環式脂肪族炭化水素や、酢酸メチル、酢酸ブチル等の酢酸エステルなどが挙げられている。
【0004】
これらの揮発性炭化水素は、いずれも発泡性ポリスチレン系樹脂粒子の発泡能力を高める効果を有しており、従来から発泡助剤として使用されている。したがって、これらの含有量を低下させると、発泡性が劣って発泡成形体の低密度化が困難になるだけでなく、発泡成形体中の予備発泡粒子間の融着性も悪くなるために、機械的強度が低下するという問題がある。
【0005】
このような問題を改善する方法として、例えば特開平11−106548号公報には、分子量が22〜35万のポリスチレン粒子中に、1〜300ppmの残留スチレンモノマーと、SP値が7〜10の可塑剤と、発泡剤とを含有させた発泡性スチレン系樹脂粒子が提案されている。しかし、このような樹脂粒子でも、特に密度を0.013g/cm3 以下に高発泡させると、得られる発泡成形体は収縮し易く、満足できる強度は得られない。
【0006】
また、低密度の発泡成形体を製造するには高発泡倍率の予備発泡粒子を得ることが必要であり、このために予備発泡粒子をもう一度加熱発泡(多段発泡)させるか、あるいは加圧式(高温)予備発泡機を利用する方法が知られている。しかし、通常のスチレン系樹脂粒子をこれら方法で予備発泡樹脂粒子としても発泡余力が小さく、成形直後の段階で収縮、変形を起こす問題があり、発泡成形体の収縮、変形を回復させる目的で、通常、約50℃で乾燥室に半日程度保管する、いわゆる養生と呼ばれる操作が行なわれている。
【0007】
一方、成形直後に収縮、変形を起こさず、低密度の発泡成形体を製造する手段として、特公昭58−48578号公報には、基材樹脂として、汎用のポリスチレンに代えて、スチレンにアクリル系樹脂を溶解させ、重合して得られる樹脂を用いることが記載されている。しかしながら、この方法によれば特殊なアクリル系樹脂を用いなくてはならず、コストアップの原因となる。
また、特公昭58−58374号公報には、基材樹脂として、汎用のポリスチレンに代えて、スチレンにアクリル酸エステルもしくはメタクリル酸エステルを共重合させた樹脂を用いることが記載されている。しかしながら、この方法では樹脂のガラス転移温度が低下するので、発泡成形体の耐熱性の低下を招き、加熱成形時に発泡成形体が熔けて、その外観が著しく悪くなったり、発泡成形体の機械的強度が劣ったものとなる問題があった。
【0008】
さらに、特開平6−100723号公報には、重量平均分子量(Mw)が15〜25万のポリスチレンに発泡剤としてイソブタンを含有させ、かつステアリン酸トリグリセリド等のグリセリン脂肪酸エステルを含有させることが記載されている。しかしながら、樹脂を低分子量化することで高発泡を可能としているものの、発泡成形体の強度低下を避けることはできない。
【0009】
また、特開平10−1561号公報には、分子量が30〜40万のポリスチレンに、ステアリン酸トリグリセリド等の高級脂肪酸多価エステル、ブタンおよびペンタンを含有させることが記載されている。この方法によれば、比較的高分子量化(30万以上)することよって強度低下を抑制できるが、発泡性の低下や発泡成形体の融着性の低下を補うため、ブタンに対するペンタンの使用割合が高く、その結果として発泡成形体の圧縮強度が低下するという問題がある。
本発明は、以上のような問題がなく、揮発性炭化水素の含有量が少ないにもかかわらず養生をしなくても、変形、収縮の少ない低密度の発泡成形体を得ることを課題としたものである。
【0010】
【課題を解決するための手段】
本発明者らは、多官能ビニルモノマーを共重合してなる特定のスチレン系樹脂粒子に、特定の発泡剤および可塑剤を特定量含有させてなる発泡性スチレン系樹脂粒子により上記の課題を解決できることを見出し、本発明を完成するに至った。
【0011】
かくして、本発明によれば、多官能ビニルモノマーを0.008〜0.03mol%共重合してなり、1気圧下における沸点が50〜290℃の炭化水素の含有量が1000ppm以下であり、重量平均分子量Mwが30〜70万、多分散度Mw/Mnが3〜7、メルトフローレート測定時、オリフィスの内径をBmm、樹脂ストランドの外径をAmmとしたときの膨張割合SR(A/B)が1.6〜2.5であるスチレン系樹脂粒子に、1気圧下における沸点が50℃未満の炭化水素系発泡剤5〜9重量%と可塑剤0.2〜2重量%とを含有させてなることを特徴とする発泡性スチレン系樹脂粒子が提供される。
【0012】
また、本発明によれば、多官能ビニルモノマーを0.008〜0.03mol%共重合してなり、1気圧下における沸点が50〜290℃の炭化水素の含有量が1000ppm以下であり、重量平均分子量Mwが30〜70万、多分散度Mw/Mnが3〜7、メルトフローレート測定時、オリフィスの内径をBmm、樹脂ストランドの外径をAmmとしたときの膨張割合SR(A/B)が1.6〜2.5であるスチレン系樹脂粒子に、1気圧下における沸点が50℃未満の炭化水素系発泡剤と可塑剤を加熱下に含浸させることを特徴とする発泡性スチレン系樹脂粒子の製造方法が提供される。
【0013】
また、本発明によれば、上記の発泡性スチレン系樹脂粒子を加熱して嵩密度0.02〜0.008g/cm3の予備発泡粒子とし、この予備発泡粒子を熟成して予備発泡粒子中の炭化水素系発泡剤の含有割合が1〜3重量%になったときに、予備発泡粒子を加熱して型内成形することを特徴とするスチレン系樹脂発泡成形体の製造方法が提供される。
【0014】
また、本発明によれば、上記の型内成形方法により得られる、嵩密度が0.02〜0.008g/cm3であり、1気圧下における沸点が50〜290℃の炭化水素の含有量が1000ppm以下であることを特徴とするスチレン系樹脂発泡成形体が提供される。
【0015】
【発明の実施の形態】
本発明の発泡性スチレン系樹脂粒子は、特定量の多官能ビニルモノマーを共重合してなり、1気圧下における沸点が50〜290℃の炭化水素が特定の含有量に低減され、重量平均分子量Mwが30〜70万、多分散度Mw/Mnが3〜7、メルトフローレート測定時、オリフィスの内径をBmm、樹脂ストランドの外径をAmmとしたときの膨張割合SR(A/B)が1.6〜2.5であるスチレン系樹脂粒子に、1気圧下における沸点が50℃未満の炭化水素系発泡剤と、可塑剤とを特定量含有させてなるものである。
【0016】
本発明に使用されるスチレン系樹脂粒子は、スチレン単独重合体を主成分とし、多官能ビニルモノマーとスチレン単量体との共重合体を含むものである。
スチレン系樹脂粒子は、スチレン単独重合体を、通常、50重量%以上、好ましくは80重量%以上含み、多官能ビニルモノマーを0.008〜0.03mol%、好ましくは0.01〜0.03mol%共重合させてなるものである。
多官能ビニルモノマーとしては、スチレン単量体と共重合可能なものであれば特に限定されず、例えば、ジビニルベンゼン、アルキレングリコールジメタクリレート等が挙げられる。特にジビニルベンゼンは低コストであり好ましい。なお、ジビニルベンゼンとしては、o−、m−およびp−ジビニルベンゼンのいずれでもよく、またそれらの混合物でもよい。
【0017】
また、スチレン系樹脂粒子は、スチレン単量体と共重合可能な他のコモノマーとスチレン単量体との共重合体を少量含んでいてもよい。そのようなコモノマーとしては、例えばα−メチルスチレン、アクリロニトリル、メチルメタクリレート等が挙げられる。
【0018】
スチレン系樹脂粒子中の、1気圧下における沸点が50〜290℃の炭化水素の含有量は、1000ppm以下であり、好ましくは900ppm以下である。
そのような炭化水素としては、例えば、未反応の残留スチレン単量体や、原料のスチレンに含まれる炭素数6〜16の脂肪族炭化水素、具体的にはシクロヘキサン、メチルシクロヘキサン等の環式脂肪族炭化水素、スチレン、トルエン、エチルベンゼン、キシレン、クメン、プロピルベンゼン等の芳香族炭化水素などが挙げられる。
【0019】
なお、スチレン系樹脂粒子中に最も多く含まれる炭化水素としてはスチレン単量体であるが、本発明で使用されるスチレン系樹脂粒子としては、スチレン単量体の含有量が500ppm以下のものが好ましく、300ppm以下のものがより好ましい。
【0020】
本発明における炭化水素の定量は、以下に示した2種類の測定方法によって得られた値を合計して得ることができる。
(1)炭素数6以上の炭化水素であって、ガスクロマトグラムに現れるスチレンのピークまでの炭化水素の測定
スチレン系樹脂発泡成形体をDMF(ジメチルホルムアミド)に溶解し、内部標準液(シクロペンタノール)を加えてガスクロマトグラフィーにて測定した。ただし、特定できないピークについてはトルエンの検出量に換算して定量した。
ガスクロマトグラフィー:島津製作所(株)製 GC−14A
カラム:PEG−20M PT25% 60/80(2.5m)
測定条件:カラム温度 105℃
検出器温度 220℃
【0021】
(2)ガスクロマトグラムに現れるスチレンの次のピークから炭素数16までの炭化水素の測定
スチレン系樹脂発泡成形体をメチルエチルケトン(MEK)に溶解し、内部標準液(エイコサン)を加えてガスクロマトグラフィーにて測定した。ただし特定できないピークについてはトルエンの検出量に換算して定量した。
ガスクロマトグラフィー:島津製作所(株)製 GC−17A
カラム:J&Wscientific社製 DB−1(60m×0.32mm i.d. df=1.0μm)
測定条件:カラム温度[40℃で1分保持した後、4℃/分で280℃まで昇温]
FID温度:280℃
キャリアガス He
【0022】
本発明におけるスチレン系樹脂粒子の粒子径は、特に限定されないが、成形時の金型への充填性等から、通常、0.3〜2.0mm程度であり、0.3〜1.4mmが好ましい。
本発明におけるスチレン系樹脂粒子の分子量は、GPC法による重量平均分子量(Mw)が30万〜70万であるのが好ましい。スチレン系樹脂粒子の分子量が30万を下回ると発泡成形体の強度が低下し、また70万を上回ると充分な発泡性が得られ難く、高分子量の成分が多くなると高発泡時に発泡成形体の収縮、変形が大きくなり易いので好ましくない。
【0023】
また、スチレン系樹脂粒子の多分散度(Mw/Mn)は、GPC法で得られる数値において、3〜7であるのが好ましい。多分散度が3を下回ると、発泡成形性が低下し、外観の優れた発泡成形体とすることが難しい。また、多分散度が7を上回ると、成形性には優れるが、成形サイクルが長く、コストアップとなり好ましくない。
【0024】
また、スチレン系樹脂粒子は、メルトフローレート測定時の膨張割合(SR)、すなわち、内径Bmmのオリフィス径から押し出された樹脂ストランドの外径AmmにおけるA/Bの値が1.6〜2.5であるのが好ましい。SRが1.6を下回ると、発泡性が不充分となり、低密度化によって発泡成形体に収縮が起こり易く、外観が悪くなり易いので好ましくない。なお、この場合、発泡成形体を養成しても収縮を回復するのは難しい。また、SRが2.5を上回ると、逆に発泡性が低くなり、低密度の発泡成形体が得られ難いので好ましくない。
【0025】
なお、SRの測定は次の条件で行うことができる。
測定装置:東洋精機製作所製 商品名:メルトインデクサー
測定温度:200℃
荷重重量:5kgf
オリフィス径:2.09mm(B)
押出後のストランド径:Amm(ストランド先端より5mmの間で測定)
膨張割合(SR )= A/B
測定方法:スチレン系樹脂粒子1〜3gを、予め200℃に加熱したメルトインデクサー内に入れ、3分程放置する。次に5kgfの荷重を加え、オリフィス径2.09mmのオリフィスからスチレン系樹脂を押し出す。次に、押し出されたストランドを取り、先端から5mmの間でストランド径を任意に5個所測定し、その平均値をAとする。この平均値Aをオリフィス径Bで除して膨張割合(SR)を求める。
【0026】
本発明におけるスチレン系樹脂粒子は、多官能ビニルモノマーと共重合してなることから分岐構造を有しており、通常、重量平均分子量Mwが30万以上であるにも係わらず、メルトフローレート(MFR)は0.7〜10g/10分程度で、溶融時の流動性は良好である。例えば、本発明のスチレン系樹脂粒子は、Mwが40万の場合、MFRが3g/10分程度を示すが、従来の線状構造を有するスチレン系樹脂粒子では1g/10分程度にすぎず、発泡成形性が劣るものであった。
【0027】
上記のスチレン系樹脂粒子は、スチレン系単量体を水中に懸濁させて重合する、いわゆる懸濁重合法、および/または水性媒体中にスチレン系重合体粒子(種粒子)を分散させ、これにスチレン系単量体を連続的または断続的に供給して懸濁重合する、いわゆるシード重合法により重合生成物を得、このようにして得られる重合生成物を押出機を用いて所望の粒度に調整することにより得られる。
【0028】
シード重合法における種粒子の使用割合は、重合終了時の重合生成物全量に対して、10〜90重量%程度、好ましくは15〜50重量%である。種粒子の使用割合が10重量%を下回るとスチレン系単量体を供給する際に、重合体粒子の重合率を適正範囲に制御することが困難となり、得られた重合体が高分子化したり、微粉末状重合体を発生させて、製造効率を低下させる等、工業的に不利となるので好ましくない。また、種粒子の使用量が90重量%を上回ると優れた発泡成形性が得られ難くなるので好ましくない。
【0029】
懸濁重合法およびシード重合法においては、重合開始剤を用いてもよい。
重合開始剤としては、通常、スチレンの懸濁重合において用いられるものであれば特に限定されず、例えばラジカル発生型重合開始剤を用いることができる。具体的には、ベンゾイルパーオキサイド、ラウリルパーオキサイド、t−ブチルパーオキサイド、t−ブチルパーオキシピバレート、t−ブチルパーオキシイソプロピルカーボネート、t−ブチルパーオキシアセテート、2,2−t−ブチルパーオキシブタン、t−ブチルパーオキシ−3,3,5−トリメチルヘキサノエート、ジ−t−ブチルパーオキシヘキサハイドロテレフタレート等の有機過酸化物やアゾビスイソブチロニトリル、アゾビスジメチルバレロニトリル等のアゾ化合物が挙げられる。これらの重合開始剤は単独で、または2種以上を組合わせて用いることができる。
【0030】
上記の重合において、スチレン系樹脂粒子中に残留するスチレン単量体を低減するために、高温分解型の重合開始剤を使用し、最終の重合温度を115℃以上に設定するのが好ましい。高温分解型の重合開始剤としては、例えばtーブチルパーオキシベンゾエート、t−ブチルパーオキシピバレート、t−ブチルパーオキシイソプロピルカーボネート、t−ブチルパーオキシアセテート、2,2−t−ブチルパーオキシブタンなどの半減期10時間を得るための温度が100〜115℃のものが挙げられる。なお、高温分解型の重合開始剤を過剰に加えると分解副生成物であるアルコール類が発生するので好ましくない。
【0031】
また、上記重合において、スチレン系樹脂粒子の分子量を調整し、単量体の残留量を減少させるという点で、10時間の半減期を得るための分解温度が80〜120℃の範囲にある重合開始剤を2種以上組合わせて用いるのが好ましい。
懸濁重合またはシード重合を行う際に、スチレン系単量体の小滴または種粒子を水性媒体中に分散させるために、懸濁剤を用いてもよい。懸濁剤としては、例えばポリビニルアルコール、メチルセルロース、ポリアクリルアミド、ポリビニルピロリドン等の水溶性高分子や、第三リン酸カルシウム、ピロリン酸マグネシウム等の難水溶性無機化合物等が挙げられる。なお、難水溶性無機化合物を用いる場合にはアニオン界面活性剤を併用するのが好ましい。
【0032】
アニオン界面活性剤としては、例えば脂肪酸石鹸、N−アシルアミノ酸またはその塩、アルキルエーテルカルボン酸塩等のカルボン酸塩、アルキルベンゼンスルホン酸塩、アルキルナフタレンスルホン酸塩、ジアルキルスルホコハク酸エステル塩、アルキルスルホ酢酸塩、α−オレフィンスルホン酸塩等のスルホン酸塩;高級アルコール硫酸エステル塩、第二級高級アルコール硫酸エステル塩、アルキルエーテル硫酸塩、ポリオキシエチレンアルキルフェニルエーテル硫酸塩等の硫酸エステル塩;アルキルエーテルリン酸エステル塩、アルキルリン酸エステル塩等のリン酸エステル塩などが挙げられる。
上記のようにして得られるスチレン系樹脂粒子に、懸濁重合含浸法あるいは後含浸法によって炭化水素系発泡剤および可塑剤を含浸させることにより、発泡性スチレン系樹脂粒子を製造することができる。
【0033】
本発明で用いられる炭化水素系発泡剤としては、一般の熱可塑性樹脂発泡体の製造に用いられている炭素数5以下の脂肪族炭化水素、例えばn−ブタン、イソブタン、n−ペンタン、イソペンタン、ネオペンタン等が挙げられ、中でもブタン(イソブタンを含む)または重量比ペンタン(イソペンタンを含む)/ブタンが0.05〜0.3のブタンおよびペンタンの混合物が好ましい。上記の重量比が0.3を上回るとペンタンの含有量が多くなり、発泡性は高くなるが、発泡成形体の強度が低下するので好ましくない。
【0034】
炭化水素系発泡剤の含有割合は、スチレン系樹脂粒子に対して5〜9重量%であり、5〜8重量%が好ましい。含有割合が5重量%を下回ると、低密度化が困難であるばかりでなく、成形時の二次発泡力を高める効果が得られないために発泡成形体の外観が劣る。また、含有割合が9重量%を上回ると、発泡成形時の収縮、予備発泡粒子中の残存ガスの調整時間の遅延、かつ成形サイクルが長くなり、生産性の点から好ましくない。
【0035】
本発明で用いられる可塑剤は、発泡性スチレン系樹脂粒子に含有させることにより、高発泡倍率(低密度)の発泡成形体が得られるという点で重要な物質である。そのような可塑剤としては、一般にスチレン系樹脂に使用されるものであれば特に限定されず、例えばフタル酸エステル、グリセリンジアセトモノラウレート、グリセリントリステアレート等のグリセリン脂肪酸エステル、ジアセチル化モノステアリン酸グリセリド、ジイソブチルアジペート等のアジピン酸エステル等が挙げられる。なかでも、発泡成形体が建築用断熱材として用いられた場合、室内の空気を汚染しないという点で、ジイソブチルアジペートようなアジピン酸エステル等が好適である。
【0036】
可塑剤の含有割合は、スチレン系樹脂粒子に対して0.2〜2重量%程度であり、0.3〜1.8重量%が好ましい。可塑剤の含有割合が0.2重量%を下回ると十分な可塑化効果が得られず、高発泡化が困難である。一方、可塑剤の含有割合が2重量%を上回ると発泡成形時に収縮および溶けが発生するばかりか、製造コストが高くなり好ましくない。
【0037】
可塑剤は、スチレン系樹脂粒子の重合段階および/またはスチレン系樹脂粒子に炭化水素系発泡剤を含浸させる工程等で添加されてもよい。また、押出機等で造粒する際に添加してスチレン系樹脂粒子に含有させてもよい。
炭化水素系発泡剤および可塑剤をスチレン系樹脂粒子に含有させる温度は、スチレン系樹脂粒子の粒子径により異なるが、通常60〜120℃程度、好ましくは70〜100℃である。含有させるときの温度が60℃を下回ると処理時間が長くなり好ましくない。また、120℃を上回ると樹脂粒子同士の結合粒が多くなり好ましくない。
【0038】
本発明の発泡性スチレン系樹脂粒子の製造においては、従来から発泡性スチレン系樹脂粒子の製造に使用されている、発泡セル造核剤、充填剤、難燃剤、難燃助剤、滑剤、着色剤等を必要に応じて適宜使用してもよい。
本発明の発泡性スチレン系樹脂粒子は、1気圧下における沸点が50〜290℃の炭化水素の含有量が1000ppm以下である。
【0039】
上記の発泡性スチレン系樹脂粒子の発泡性の評価は、以下の方法で行うことができる。
すなわち、発泡性スチレン系樹脂粒子を、発泡槽中でゲージ圧0.7kgf/cm2の蒸気にて加熱発泡させる。このとき、加熱時間を1、3、4、5分と変化させ、発泡粒子に収縮が発生する直前の発泡倍数を測定し、最高発泡倍数とした。最高発泡倍数は、発泡粒子10gをメスシリンダーに入れて体積を測定し、その体積を重量10gで除することにより、見かけの発泡倍数(cc/g)とする。
【0040】
本発明の方法では、上記の発泡性スチレン系樹脂粒子を加熱して嵩密度0.02〜0.008g/cm3の予備発泡粒子にする。
予備発泡は、水蒸気等で予備発泡する汎用のスチレン用予備発泡機を用いて行うことができる。
得られる予備発泡粒子の嵩密度が0.02g/cm3を超えると発泡成形体の重量が重くなりコストアップとなるので好ましくない。また嵩密度が0.008g/cm3未満であるとコストメリットはあるが発泡成形体に収縮等が発生しやすく、断熱性、強度などの物性が低下するので好ましくない。
【0041】
本発明の方法では、上記の予備発泡粒子を熟成して予備発泡粒子中の炭化水素系発泡剤の含有割合が1〜3重量%になったときに、予備発泡粒子を加熱して型内成形することにより、スチレン系樹脂発泡成形体を製造する。
予備発泡粒子の熟成に好適な温度は、通常20〜60℃程度である。
【0042】
熟成後の予備発泡粒子中の炭化水素系発泡剤の含有量が1重量%を下回ると、次工程の成形段階で2次発泡性が低くなり、粒子どうしが融着し難く、外観の劣る発泡成形体となるため好ましくない。また、炭化水素系発泡剤の含有量が3重量%を上回ると、粒子どうしが融着し易く、外観の優れた発泡成形体とすることができるが、成形サイクルが長くなり、生産性の面で好ましくない上、発泡成形体中の残留発泡剤量が多くなるので好ましくない。
【0043】
型内成形は、炭化水素系発泡剤の含有割合を調節した予備発泡粒子を成形型内に充填し、水蒸気等で再加熱することにより、所望の形の発泡成形体を製造することができる。型内成形は従来から使用されている発泡性スチレン系樹脂粒子用成形機を用いて行うことができる。
上記のようにして得られる発泡成形体は、嵩密度が0.02〜0.008g/cm3であり、1気圧下における沸点が50〜290℃の炭化水素の含有量が1000ppm以下である。
【0044】
【実施例】
以下、本発明を実施例および比較例にて詳細に説明するが、本発明はこれら実施例により限定されるものではない。
【0045】
製造例
(懸濁重合によるスチレン樹脂粒子の製造)
内容量100Lの攪拌機付き重合容器に、水40.0L、第三リン酸カルシウム(懸濁剤)100gおよびドデシルベンゼンスルホン酸カルシウム(界面活性剤)2.0gを入れ、続いて攪拌しながらスチレン40.0kg、ベンゾイルパーオキサイド(重合開始剤)96.0g、t−ブチルパーオキシベンゾエート(重合開始剤)28.0gを添加し、90℃に昇温して重合温度とした。この温度で6時間保持し、さらに125℃に昇温してから2時間後冷却し、スチレン樹脂粒子(A)を得た。このスチレン樹脂粒子(A)の重量平均分子量(Mw)は17万、分散度(Mw/Mn)は2.1、膨張割合(SR)は1.2であった。
【0046】
実施例1
スチレン樹脂粒子(A)を篩分けして粒子径0.6〜0.9mmのスチレン樹脂粒子(B)とした。
内容量5Lの攪拌機付き重合容器に、水2.0L、スチレン樹脂粒子(B)500g、ピロリン酸マグネシウム(懸濁剤)6.0gおよびドデシルベンゼンスルホン酸カルシウム(界面活性剤)0.3gを入れ、攪拌しながら70℃に昇温した。次いで、ベンゾイルパーオキサイド(重合開始剤)4.5g、t−ブチルパーオキシベンゾエート(重合開始剤)1.1gをスチレン200gに溶解し重合容器に入れた。30分後90℃に昇温し、あらかじめジビニルベンゼン(多官能ビニルモノマー)0.45gを溶解したスチレン1300gを2時間かけてポンプで一定量づつ重合容器に供給した。次いで、125℃に昇温してから2時間後冷却し、スチレン系樹脂粒子(C)を得た。
【0047】
スチレン系樹脂粒子(C)は、多官能ビニルモノマーを0.018mol%共重合してなり、Mwが44万、Mw/Mnが4.6、SRが2.1であった。
内容量5Lの攪拌機付き重合容器に、水2.2L、スチレン系樹脂粒子(C)1800g、ピロリン酸マグネシウム(懸濁剤)6.0gおよびドデシルベンゼンスルホン酸カルシウム(界面活性剤)0.4gを入れ、攪拌しながら70℃に昇温した。次いで、テトラブロモシクロオクタン(難燃剤)23.4g、ジクミルパーオキサイド(難燃助剤)5.4g、ジイソブチルアジペート(可塑剤)14.4gを重合容器内に入れ、密閉し、90℃に昇温した。昇温後、ブタン(炭化水素系発泡剤)162gを圧入して6時間保持した。次いで、30℃以下まで冷却し、発泡性スチレン系樹脂粒子を得た。取出した発泡性スチレン系樹脂粒子を乾燥した後、この発泡性スチレン系樹脂粒子について、1気圧下における沸点が50〜290℃の炭化水素の総含有量をGC−MS分析にて測定したところ、680ppmであった。次いで、13℃の恒温室で5日間保管し、蒸気発泡機を用いて、嵩発泡倍数80倍に予備発泡した。得られた予備発泡直後の予備発泡粒子中におけるブタンの含有割合は4.5重量%であった。予備発泡後、ブタンの含有割合が1〜3重量%になるまで25℃で熟成し、発泡ポリスチレン用成形機(積水工機社製 ACE−11QS)で成形して、板状の発泡成形体を得た。この発泡成形体を50℃の乾燥室で6時間養成し、密度を測定したところ0.0127g/cm3であった。またこの発泡成形体の外観は非常に良好であった。
【0048】
実施例2
シード重合によりスチレン系樹脂粒子を製造する際に添加するジビニルベンゼン量を0.26gとした以外は、実施例1と同様にして発泡性スチレン系樹脂粒子および発泡成形体を得た。なお、シード重合によって得られたスチレン系樹脂粒子は、多官能ビニルモノマーを0.0104mol%共重合してなり、Mwが46万、Mw/Mnが3.6、SRが1.7であった。
得られた発泡成形体は、密度が0.0125g/cm3であり、外観が非常に良好であった。
【0049】
実施例3
シード重合によりスチレン系樹脂粒子を製造する際に添加するジビニルベンゼン量を0.70gとした以外は、実施例1と同様にして発泡性スチレン系樹脂粒子および発泡成形体を得た。なお、シード重合によって得られたスチレン系樹脂粒子は、多官能ビニルモノマーを0.028mol%共重合してなり、Mwが49万、Mw/Mnが6.3、SRが2.4であった。
得られた発泡成形体は、密度が0.0128g/cm3であり、外観が良好であった。
【0050】
実施例4
シード重合によりスチレン系樹脂粒子を製造する際に添加するベンゾイルパーオキサイド量を7.0gとした以外は、実施例1と同様にして発泡性スチレン系樹脂粒子および発泡成形体を得た。なお、シード重合によって得られたスチレン系樹脂粒子は、多官能ビニルモノマーを0.018mol%共重合してなり、Mwが33万、Mw/Mnが5.1、SRが2.2であった。
得られた発泡成形体は、密度が0.0123g/cm3であり、外観が良好であった。
【0051】
実施例5
シード重合によりスチレン系樹脂粒子を製造する際に添加するベンゾイルパーオキサイド量を2.0gとした以外は、実施例1と同様にして発泡性スチレン系樹脂粒子および発泡成形体を得た。なお、シード重合によって得られたスチレン系樹脂粒子は、多官能ビニルモノマーを0.018mol%共重合してなり、Mwが60万、Mw/Mnが5.4、SRが2.2であった。
得られた発泡成形体は、密度が0.0118g/cm3であり、外観が良好であった。
【0052】
実施例6
発泡剤としてペンタン/ブタン(30g/130g)を用いた以外は、実施例1と同様にして発泡性スチレン系樹脂粒子および発泡成形体を得た。なお、シード重合によって得られたスチレン系樹脂粒子は、多官能ビニルモノマーを0.018mol%共重合してなり、Mwが44万、Mw/Mnが4.6、SRが2.3であった。
得られた発泡成形体は、密度が0.0118g/cm3であり、外観が良好であった。
【0053】
実施例7
可塑剤として使用するジイソブチルアジペートの添加量を5.4gとした以外は、実施例1と同様にして発泡性スチレン系樹脂粒子および発泡成形体を得た。なお、シード重合によって得られたスチレン系樹脂粒子は、多官能ビニルモノマーを0.018mol%共重合してなり、Mwが44万、Mw/Mnが4.6、SRが2.1であった。
得られた発泡成形体は、密度が0.0118g/cm3であり、外観が良好であった。
【0054】
実施例8
可塑剤として使用するジイソブチルアジペートの添加量を32.4gとした以外は、実施例1と同様にして発泡性スチレン系樹脂粒子および発泡成形体を得た。なお、シード重合によって得られたスチレン系樹脂粒子は、多官能ビニルモノマーを0.018mol%共重合してなり、Mwが44万、Mw/Mnが4.6、SRが2.1であった。
得られた発泡成形体は、密度が0.0118g/cm3であり、外観が良好であった。
【0055】
比較例1
スチレン系樹脂粒子(C)に代えてスチレン樹脂粒子(A)を使用し、可塑剤を添加しない以外は、実施例1と同様にして発泡性スチレン樹脂粒子および発泡成形体を得た。
この発泡性スチレン樹脂粒子は、多官能ビニルモノマーを共重合していないスチレン樹脂粒子(A)を用いており、可塑剤を含まないので、発泡性が低く、さらに得られた発泡成形体も収縮しやすく、外観、物性とも満足できるものではなかった。
【0056】
比較例2
スチレン系樹脂粒子(C)に代えてスチレン樹脂粒子(A)を使用し、ブタン量を200gとした以外は、実施例1と同様にして発泡性スチレン樹脂粒子および発泡成形体を得た。
この発泡性スチレン樹脂粒子は、多官能ビニルモノマーを共重合していないスチレン樹脂粒子(A)を用いており、ブタンを多量(11.1重量%)に含むので、発泡性は十分であるが、収縮しやすいものであった。また、予備発泡粒子中のブタンの含有量も多く、3重量%以下にするには70時間以上の熟成期間が必要で、生産上好ましくなかった。しかも、得られた発泡成形体の外観も満足できるものではなかった。
【0057】
比較例3
シード重合によりスチレン系樹脂粒子を製造する際に添加するジビニルベンゼン量を0.15gとした以外は、実施例1と同様にして発泡性スチレン系樹脂粒子および発泡成形体を得た。なお、シード重合によって得られたスチレン系樹脂粒子は、多官能ビニルモノマーを0.006mol%共重合してなり、Mwが27万、分散度が2.3、SRが1.3であった。
この発泡性スチレン系樹脂粒子は、多官能ビニルモノマーを少量(0.006mol%)共重合してなり、Mw/MnおよびSRの値が低いスチレン系樹脂粒子を用いているため、最低発泡嵩密度が0.022g/cm3と発泡が低く、成形時には収縮しやすい。また、得られた発泡成形体は、外観、物性ともに満足できるものではなかった。
【0058】
比較例4
シード重合によりスチレン系樹脂粒子を製造する際に添加するジビニルベンゼン量を0.85gとした以外は、実施例1と同様して発泡性スチレン系樹脂粒子および発泡成形体を得た。なお、シード重合によって得られたスチレン系樹脂粒子は、多官能ビニルモノマーを0.034mol%共重合してなり、ゲル化していて、SRは3.1であった。
この発泡性スチレン系樹脂粒子は、多官能ビニルモノマーを多量(0.034mol%)に共重合してなり、MwおよびMw/Mnが測定不能のスチレン系樹脂粒子を用いているため、最低発泡嵩密度が0.029g/cm3と発泡が非常に低くい。また、得られた発泡成形体の外観も満足できるものではなかった。
【0059】
比較例5
発泡剤としてペンタン/ブタン(75g/162g)を用いた以外は、実施例1と同様にして発泡性スチレン系樹脂粒子および発泡成形体を得た。なお、シード重合によって得られたスチレン系樹脂粒子は、多官能ビニルモノマーを0.018mol%共重合してなり、Mwが44万、Mw/Mnが4.6、SRが2.3であった。
この発泡性スチレン系樹脂粒子は、ペンタン/ブタンの重量比が大きい(0.45)発泡剤を含有してなるため、予備発泡、成形段階において収縮、溶けが著しかった。また、予備発泡粒子の残存発泡剤量が多く、残存発泡剤量を3重量%以下にするには熟成期間を長くする必要があり、成形サイクルも長くなるので実用には不適であった。しかも、得られた発泡成形体の外観は満足できるものではなかった。
【0060】
比較例6
可塑剤として使用するジイソブチルアジペートの添加量を45gとした以外は、実施例1と同様にして発泡性スチレン系樹脂粒子および発泡成形体を得た。なお、シード重合によって得られたスチレン系樹脂粒子は、多官能ビニルモノマーを0.018mol%共重合してなり、Mwが44万、Mw/Mnが4.6、SRが2.3であった。
この発泡性スチレン系樹脂粒子は、可塑剤を多量(2.5重量%)に含むので、粒子同士の結合が多く、不良物が多量に存在し、生産性が低くかった。また、成形時に収縮や溶けが発生し、外観が良好な発泡成形体を得ることができなかった。
【0061】
上記の実施例および比較例により得られた発泡性スチレン系樹脂粒子における炭化水素系発泡剤の含有量、可塑剤の含有量、スチレン系樹脂粒子および発泡成形体の炭化水素の含有量、発泡成形体の嵩密度、発泡性スチレン系樹脂粒子の最低発泡嵩密度および評価の結果をまとめて表1に示す。
【0062】
【表1】
【0063】
なお、発泡性スチレン系樹脂粒子の発泡性、予備発泡粒子の熟成時間および発泡成形体の外観の評価は、表2に示す基準で行った。
【0064】
【表2】
【0065】
【発明の効果】
本発明の発泡性スチレン系樹脂粒子は、シクロヘキサンなどの従来用いられる発泡助剤を使用しなくても高度に発泡し、それから得られる発泡成形体は、揮発性の炭化水素の含有量が少なく、低密度で外観も優れたものである。[0001]
[Industrial application fields]
The present invention relates to highly expandable expandable styrene resin particles, a low density styrene resin foam molded article having a low content of volatile hydrocarbons other than the foaming agent, and a method for producing the same. The styrenic resin foam molded article of the present invention is particularly preferably used as a heat insulating material for buildings.
[0002]
[Prior art and problems to be solved by the invention]
When the expandable styrenic resin particles containing 1 to 15% by weight of the foaming agent are heated above the softening point with water vapor or the like, particulate pre-expanded particles having closed cells are obtained. The pre-expanded particles are filled in a closed mold having small holes and slits, and the interior is further heated with steam or the like, so that the pre-expanded particles are expanded to fill the gaps between the particles. The desired foamed molded product is obtained by fusing together.
In recent years, such a foam-molded article is widely used as a heat-insulating building material for homes and the like because of its freedom of shape and excellent properties such as heat insulation by closed cells and water resistance.
[0003]
For heat insulating building materials, low density (0.02 g / cm Three In addition, the content of volatile hydrocarbons that are considered to be related to sick house (indoor air pollution) is strongly demanded.
Volatile hydrocarbons related to sick houses include not only aromatic organic compounds such as styrene, toluene, ethylbenzene and xylene, but also from 6 carbon atoms (boiling point 68 ° C under 1 atm) to 16 carbon atoms (boiling point 287 ° C). And aliphatic aliphatic hydrocarbons, cycloaliphatic hydrocarbons such as cyclohexane and methylcyclohexane, and acetates such as methyl acetate and butyl acetate.
[0004]
All of these volatile hydrocarbons have the effect of increasing the foaming ability of the expandable polystyrene resin particles, and have been conventionally used as foaming aids. Therefore, when these contents are reduced, not only is the foamability inferior and it becomes difficult to lower the density of the foam molded article, but the fusion property between the pre-foamed particles in the foam molded article also deteriorates. There is a problem that the mechanical strength is lowered.
[0005]
As a method for solving such a problem, for example, JP-A-11-106548 discloses a polystyrene particle having a molecular weight of 2 to 350,000, a residual styrene monomer of 1 to 300 ppm, and a plastic having an SP value of 7 to 10. Expandable styrenic resin particles containing an agent and a foaming agent have been proposed. However, even with such resin particles, the density is particularly 0.013 g / cm. Three If the foamed material is highly foamed below, the resulting foamed molded product tends to shrink, and satisfactory strength cannot be obtained.
[0006]
In addition, in order to produce a low density foamed molded article, it is necessary to obtain pre-expanded particles having a high expansion ratio. For this purpose, the pre-expanded particles are heated and foamed once again (multistage foaming), or pressurized (high temperature) ) A method using a pre-foaming machine is known. However, ordinary styrenic resin particles can be used as pre-foamed resin particles by these methods, and the foaming margin is small, and there is a problem of shrinkage and deformation immediately after molding. For the purpose of recovering the shrinkage and deformation of the foamed molded product, Usually, an operation called so-called curing, which is stored in a drying room at about 50 ° C. for about half a day, is performed.
[0007]
On the other hand, as a means for producing a low-density foam molded article that does not shrink or deform immediately after molding, Japanese Patent Publication No. 58-48578 discloses that base resin is acrylic instead of general-purpose polystyrene instead of general-purpose polystyrene. It describes that a resin obtained by dissolving and polymerizing a resin is used. However, according to this method, a special acrylic resin must be used, which causes an increase in cost.
Japanese Examined Patent Publication No. 58-58374 describes that a resin obtained by copolymerizing styrene or acrylic acid ester or methacrylic acid ester is used as a base resin instead of general-purpose polystyrene. However, this method lowers the glass transition temperature of the resin, leading to a decrease in the heat resistance of the foamed molded product, and the foamed molded product melts at the time of heat molding, and the appearance of the foamed molded product deteriorates significantly. There was a problem that the strength was inferior.
[0008]
Furthermore, Japanese Patent Laid-Open No. 6-100723 describes that polystyrene having a weight average molecular weight (Mw) of 150,000 to 250,000 contains isobutane as a foaming agent and glycerin fatty acid ester such as stearic acid triglyceride. ing. However, although lowering the molecular weight of the resin enables high foaming, a reduction in strength of the foamed molded product cannot be avoided.
[0009]
JP-A-10-1561 discloses that polystyrene having a molecular weight of 300 to 400,000 contains a higher fatty acid polyvalent ester such as stearic acid triglyceride, butane and pentane. According to this method, the strength reduction can be suppressed by relatively high molecular weight (300,000 or more), but in order to compensate for the reduction in foamability and the fusion property of the foamed molded product, the proportion of pentane used relative to butane As a result, there is a problem that the compression strength of the foamed molded product is lowered.
An object of the present invention is to obtain a low-density foamed molded article that is free from deformation and shrinkage without the above problems and without curing despite the low content of volatile hydrocarbons. Is.
[0010]
[Means for Solving the Problems]
The present inventors have solved the above problems with expandable styrene resin particles obtained by adding specific amounts of a specific foaming agent and plasticizer to specific styrene resin particles obtained by copolymerizing a polyfunctional vinyl monomer. The present inventors have found that this can be done and have completed the present invention.
[0011]
Thus, according to the present invention, 0.008 to 0.03 mol% of a polyfunctional vinyl monomer is copolymerized, and the content of hydrocarbon having a boiling point of 50 to 290 ° C. under 1 atm is 1000 ppm or less. The weight-average molecular weight Mw is 300 to 700,000, the polydispersity Mw / Mn is 3 to 7, the melt flow rate measurement, the orifice inner diameter is Bmm, and the resin strand outer diameter is Amm. A / B) is 1.6 to 2.5 Expandable styrene characterized by containing 5-9% by weight of a hydrocarbon-based foaming agent having a boiling point of less than 50 ° C. and a plasticizer of 0.2-2% by weight under 1 atm. Based resin particles are provided.
[0012]
Further, according to the present invention, 0.008 to 0.03 mol% of a polyfunctional vinyl monomer is copolymerized, and the content of hydrocarbon having a boiling point of 50 to 290 ° C. under 1 atm is 1000 ppm or less. The weight-average molecular weight Mw is 300 to 700,000, the polydispersity Mw / Mn is 3 to 7, the melt flow rate measurement, the orifice inner diameter is Bmm, and the resin strand outer diameter is Amm. A / B) is 1.6 to 2.5 Provided is a method for producing expandable styrene resin particles, which comprises impregnating a styrene resin particle with a hydrocarbon foaming agent having a boiling point of less than 50 ° C. and a plasticizer at 1 atm under heating.
[0013]
According to the present invention, the foamable styrene resin particles are heated to have a bulk density of 0.02 to 0.008 g / cm. Three When the pre-foamed particles are aged and the content of the hydrocarbon-based foaming agent in the pre-foamed particles is 1 to 3% by weight, the pre-foamed particles are heated and molded in the mold. A method for producing a styrenic resin foam molded article is provided.
[0014]
Moreover, according to the present invention, Obtained by the above in-mold molding method, Bulk density is 0.02-0.008g / cm Three And a content of hydrocarbon having a boiling point of 50 to 290 ° C. under 1 atm is 1000 ppm or less.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
The expandable styrenic resin particles of the present invention are obtained by copolymerizing a specific amount of a polyfunctional vinyl monomer, and a hydrocarbon having a boiling point of 50 to 290 ° C. at 1 atm is reduced to a specific content. In addition, when the weight average molecular weight Mw is 300 to 700,000, the polydispersity Mw / Mn is 3 to 7, the melt flow rate measurement, the inner diameter of the orifice is Bmm, and the outer diameter of the resin strand is Amm. / B) is 1.6 to 2.5 Styrenic resin particles contain a specific amount of a hydrocarbon foaming agent having a boiling point of less than 50 ° C. and a plasticizer under 1 atm.
[0016]
The styrenic resin particles used in the present invention contain a styrene homopolymer as a main component and a copolymer of a polyfunctional vinyl monomer and a styrene monomer.
Styrenic resin particles usually contain 50% by weight or more, preferably 80% by weight or more of styrene homopolymer, and 0.008 to 0.03 mol%, preferably 0.01 to 0.03 mol of polyfunctional vinyl monomer. % Copolymerization.
The polyfunctional vinyl monomer is not particularly limited as long as it is copolymerizable with the styrene monomer, and examples thereof include divinylbenzene and alkylene glycol dimethacrylate. In particular, divinylbenzene is preferred because of its low cost. In addition, as divinylbenzene, any of o-, m-, and p-divinylbenzene may be sufficient, and those mixtures may be sufficient.
[0017]
The styrene resin particles may contain a small amount of a copolymer of another comonomer copolymerizable with the styrene monomer and the styrene monomer. Examples of such comonomer include α-methylstyrene, acrylonitrile, methyl methacrylate and the like.
[0018]
The content of hydrocarbons having a boiling point of 50 to 290 ° C. under 1 atm in the styrene resin particles is 1000 ppm or less, preferably 900 ppm or less.
Examples of such hydrocarbons include unreacted residual styrene monomer and aliphatic hydrocarbons having 6 to 16 carbon atoms contained in styrene as a raw material, specifically cycloaliphatic, methylcyclohexane and the like. Aromatic hydrocarbons such as aromatic hydrocarbons, styrene, toluene, ethylbenzene, xylene, cumene, propylbenzene, and the like.
[0019]
The hydrocarbon most contained in the styrene resin particles is a styrene monomer, but the styrene resin particles used in the present invention have a styrene monomer content of 500 ppm or less. Preferably, 300 ppm or less is more preferable.
[0020]
The quantification of hydrocarbons in the present invention can be obtained by summing up the values obtained by the following two measurement methods.
(1) Measurement of hydrocarbons with 6 or more carbon atoms up to the styrene peak appearing in the gas chromatogram
The styrene resin foam molded article was dissolved in DMF (dimethylformamide), an internal standard solution (cyclopentanol) was added, and measurement was performed by gas chromatography. However, peaks that could not be identified were quantified in terms of the detected amount of toluene.
Gas chromatography: Shimadzu Corporation GC-14A
Column: PEG-20M PT25% 60/80 (2.5 m)
Measurement conditions: Column temperature 105 ° C
Detector temperature 220 ° C
[0021]
(2) Measurement of hydrocarbons up to 16 carbon atoms from the next peak of styrene appearing in the gas chromatogram
The styrene resin foam molded article was dissolved in methyl ethyl ketone (MEK), an internal standard solution (Eicosan) was added, and measurement was performed by gas chromatography. However, peaks that could not be identified were quantified in terms of the detected amount of toluene.
Gas chromatography: Shimadzu Corporation GC-17A
Column: DB-1 manufactured by J & W Scientific (60 m × 0.32 mm id df = 1.0 μm)
Measurement conditions: Column temperature [After holding at 40 ° C. for 1 minute, the temperature is increased to 280 ° C. at 4 ° C./minute]
FID temperature: 280 ° C
Carrier gas He
[0022]
The particle diameter of the styrene-based resin particles in the present invention is not particularly limited, but is usually about 0.3 to 2.0 mm and 0.3 to 1.4 mm from the viewpoint of filling into a mold at the time of molding. preferable.
As for the molecular weight of the styrene resin particles in the present invention, the weight average molecular weight (Mw) by GPC method is preferably 300,000 to 700,000. When the molecular weight of the styrenic resin particles is less than 300,000, the strength of the foamed molded product is reduced. When the molecular weight exceeds 700,000, sufficient foaming properties are difficult to obtain. Since shrinkage and deformation tend to be large, it is not preferable.
[0023]
Further, the polydispersity (Mw / Mn) of the styrene resin particles is preferably 3 to 7 in the numerical value obtained by the GPC method. When the polydispersity is less than 3, the foam moldability is lowered and it is difficult to obtain a foam molded article having an excellent appearance. On the other hand, when the polydispersity exceeds 7, the moldability is excellent, but the molding cycle is long and the cost is increased, which is not preferable.
[0024]
The styrene resin particles have an expansion ratio (SR) at the time of measurement of the melt flow rate, that is, an A / B value of 1.6 to 2 at the outer diameter Amm of the resin strand extruded from the orifice diameter Bmm. 5 is preferred. When the SR is less than 1.6, the foamability is insufficient, and the foamed molded product is likely to shrink due to low density, and the appearance is liable to deteriorate. In this case, it is difficult to recover the shrinkage even if the foamed molded body is trained. On the other hand, if the SR exceeds 2.5, the foaming property is lowered, and it is difficult to obtain a low-density foamed molded product, which is not preferable.
[0025]
Note that SR can be measured under the following conditions.
Measuring device: Toyo Seiki Seisakusho Co., Ltd. Product name: Melt indexer
Measurement temperature: 200 ° C
Load weight: 5kgf
Orifice diameter: 2.09 mm (B)
Strand diameter after extrusion: Amm (measured between 5mm from the strand tip)
Expansion ratio (SR) = A / B
Measuring method: 1 to 3 g of styrene resin particles are placed in a melt indexer heated to 200 ° C. in advance and left for about 3 minutes. Next, a load of 5 kgf is applied, and the styrene resin is extruded from an orifice having an orifice diameter of 2.09 mm. Next, the extruded strand is taken, and the strand diameter is arbitrarily measured at 5 points between 5 mm from the tip. The average value A is divided by the orifice diameter B to obtain the expansion ratio (SR).
[0026]
The styrene-based resin particles in the present invention have a branched structure because they are copolymerized with a polyfunctional vinyl monomer, and usually have a melt flow rate ( The MFR) is about 0.7 to 10 g / 10 min, and the fluidity at the time of melting is good. For example, when the styrene resin particles of the present invention have an Mw of 400,000, the MFR is about 3 g / 10 minutes, but the styrene resin particles having a conventional linear structure are only about 1 g / 10 minutes, The foam moldability was inferior.
[0027]
The above styrene resin particles are obtained by suspending a styrene monomer in water and polymerizing it, and / or dispersing styrene polymer particles (seed particles) in an aqueous medium. A polymerization product is obtained by a so-called seed polymerization method in which a styrene monomer is continuously or intermittently supplied to the polymer to obtain a polymerization product, and the polymerization product thus obtained is obtained with a desired particle size using an extruder. It is obtained by adjusting to
[0028]
The use ratio of the seed particles in the seed polymerization method is about 10 to 90% by weight, preferably 15 to 50% by weight, based on the total amount of the polymerization product at the end of the polymerization. When the use ratio of the seed particles is less than 10% by weight, it becomes difficult to control the polymerization rate of the polymer particles within an appropriate range when supplying the styrene monomer, and the resulting polymer may be polymerized. It is not preferable because it produces industrial disadvantages such as generation of a fine powdery polymer to reduce production efficiency. Further, if the amount of seed particles used exceeds 90% by weight, it is difficult to obtain excellent foam moldability, which is not preferable.
[0029]
In the suspension polymerization method and the seed polymerization method, a polymerization initiator may be used.
The polymerization initiator is not particularly limited as long as it is usually used in suspension polymerization of styrene. For example, a radical generating polymerization initiator can be used. Specifically, benzoyl peroxide, lauryl peroxide, t-butyl peroxide, t-butyl peroxypivalate, t-butyl peroxyisopropyl carbonate, t-butyl peroxyacetate, 2,2-t-butylperoxide Organic peroxides such as oxybutane, t-butylperoxy-3,3,5-trimethylhexanoate, di-t-butylperoxyhexahydroterephthalate, azobisisobutyronitrile, azobisdimethylvaleronitrile, etc. Of the azo compound. These polymerization initiators can be used alone or in combination of two or more.
[0030]
In the above polymerization, in order to reduce the styrene monomer remaining in the styrene resin particles, it is preferable to use a high-temperature decomposition type polymerization initiator and set the final polymerization temperature to 115 ° C. or higher. Examples of the high temperature decomposition type polymerization initiator include t-butyl peroxybenzoate, t-butyl peroxypivalate, t-butyl peroxyisopropyl carbonate, t-butyl peroxyacetate, 2,2-t-butyl peroxy. Examples include butane having a temperature of 100 to 115 ° C. for obtaining a half-life of 10 hours. An excessive addition of a high temperature decomposition type polymerization initiator is not preferable because alcohols as decomposition byproducts are generated.
[0031]
Further, in the above polymerization, the polymerization temperature is in the range of 80 to 120 ° C. in order to adjust the molecular weight of the styrenic resin particles and reduce the residual amount of monomer in order to obtain a half-life of 10 hours. It is preferable to use a combination of two or more initiators.
A suspending agent may be used to disperse styrene monomer droplets or seed particles in an aqueous medium during suspension polymerization or seed polymerization. Examples of the suspending agent include water-soluble polymers such as polyvinyl alcohol, methyl cellulose, polyacrylamide, and polyvinyl pyrrolidone, and poorly water-soluble inorganic compounds such as tricalcium phosphate and magnesium pyrophosphate. In addition, when using a slightly water-soluble inorganic compound, it is preferable to use an anionic surfactant together.
[0032]
Examples of the anionic surfactant include fatty acid soaps, N-acyl amino acids or salts thereof, carboxylates such as alkyl ether carboxylates, alkylbenzenesulfonates, alkylnaphthalenesulfonates, dialkylsulfosuccinate esters, alkylsulfoacetic acids Salts, sulfonates such as α-olefin sulfonates; sulfates such as higher alcohol sulfates, secondary higher alcohol sulfates, alkyl ether sulfates, polyoxyethylene alkylphenyl ether sulfates; alkyl ethers Examples thereof include phosphoric ester salts such as phosphoric ester salts and alkyl phosphoric ester salts.
Expandable styrene resin particles can be produced by impregnating the styrene resin particles obtained as described above with a hydrocarbon foaming agent and a plasticizer by a suspension polymerization impregnation method or a post-impregnation method.
[0033]
Examples of the hydrocarbon-based foaming agent used in the present invention include aliphatic hydrocarbons having 5 or less carbon atoms that are used in the production of general thermoplastic resin foams, such as n-butane, isobutane, n-pentane, isopentane, Neopentane and the like can be mentioned, among which butane (including isobutane) or a mixture of butane and pentane having a weight ratio of pentane (including isopentane) / butane of 0.05 to 0.3 is preferable. If the above weight ratio exceeds 0.3, the pentane content increases and the foamability increases, but the strength of the foamed molded product is lowered, which is not preferable.
[0034]
The content of the hydrocarbon foaming agent is 5 to 9% by weight, preferably 5 to 8% by weight, based on the styrene resin particles. When the content ratio is less than 5% by weight, not only is it difficult to reduce the density, but the effect of increasing the secondary foaming power at the time of molding cannot be obtained, so the appearance of the foamed molded product is inferior. On the other hand, if the content ratio exceeds 9% by weight, the shrinkage during foam molding, the adjustment time of the residual gas in the pre-foamed particles is delayed, and the molding cycle becomes long, which is not preferable from the viewpoint of productivity.
[0035]
The plasticizer used in the present invention is an important substance in that a foamed molded article having a high expansion ratio (low density) can be obtained by containing it in expandable styrene resin particles. Such a plasticizer is not particularly limited as long as it is generally used for a styrene resin, and examples thereof include glycerin fatty acid esters such as phthalic acid ester, glycerin diacetomonolaurate, and glycerin tristearate, and diacetylated monostearin. Examples thereof include acid glycerides and adipic acid esters such as diisobutyl adipate. Especially, when a foaming molding is used as a heat insulating material for construction, adipic acid ester such as diisobutyl adipate is preferable because it does not contaminate indoor air.
[0036]
The content of the plasticizer is about 0.2 to 2% by weight, preferably 0.3 to 1.8% by weight, based on the styrene resin particles. When the content of the plasticizer is less than 0.2% by weight, a sufficient plasticizing effect cannot be obtained and it is difficult to achieve high foaming. On the other hand, if the content of the plasticizer exceeds 2% by weight, not only shrinkage and melting occur during foam molding, but also the production cost increases, which is not preferable.
[0037]
The plasticizer may be added in the polymerization step of the styrene resin particles and / or the step of impregnating the styrene resin particles with the hydrocarbon foaming agent. Moreover, you may add when granulating with an extruder etc. and you may make it contain in a styrene-type resin particle.
The temperature at which the styrene resin particles contain the hydrocarbon foaming agent and the plasticizer varies depending on the particle size of the styrene resin particles, but is usually about 60 to 120 ° C, preferably 70 to 100 ° C. When the temperature at the time of inclusion is less than 60 ° C., the treatment time becomes long, which is not preferable. Moreover, when it exceeds 120 degreeC, the bond particle | grains of resin particles will increase and it is unpreferable.
[0038]
In the production of the expandable styrene resin particles of the present invention, the foamed cell nucleating agent, the filler, the flame retardant, the flame retardant aid, the lubricant, the coloring, which are conventionally used for the production of the expandable styrene resin particles. You may use an agent etc. suitably as needed.
The expandable styrenic resin particles of the present invention have a hydrocarbon content of 1000 ppm or less with a boiling point of 50 to 290 ° C. under 1 atm.
[0039]
Evaluation of the foamability of the above expandable styrene resin particles can be performed by the following method.
That is, expandable styrenic resin particles are placed in a foaming tank with a gauge pressure of 0.7 kgf / cm. 2 Heat foam with steam. At this time, the heating time was changed to 1, 3, 4, and 5 minutes, and the expansion ratio immediately before the expansion of the expanded particles was measured to obtain the maximum expansion ratio. The maximum expansion ratio is obtained by placing 10 g of expanded particles in a graduated cylinder, measuring the volume, and dividing the volume by a weight of 10 g to obtain an apparent expansion ratio (cc / g).
[0040]
In the method of the present invention, the above expandable styrene resin particles are heated to a bulk density of 0.02 to 0.008 g / cm. Three Of pre-expanded particles.
The pre-foaming can be performed using a general-purpose pre-foaming machine for styrene that pre-foams with water vapor or the like.
The bulk density of the pre-expanded particles obtained is 0.02 g / cm Three If it exceeds 1, the weight of the foamed molded product becomes heavy and the cost is increased, which is not preferable. The bulk density is 0.008 g / cm Three If it is less than the above, there is a cost merit, but shrinkage or the like is likely to occur in the foamed molded article, and physical properties such as heat insulation and strength are lowered, which is not preferable.
[0041]
In the method of the present invention, when the pre-foamed particles are aged and the content of the hydrocarbon-based foaming agent in the pre-foamed particles is 1 to 3% by weight, the pre-foamed particles are heated and molded in-mold. By doing so, a styrene resin foam molded article is produced.
The temperature suitable for the aging of the pre-foamed particles is usually about 20 to 60 ° C.
[0042]
When the content of the hydrocarbon-based foaming agent in the pre-expanded particles after aging is less than 1% by weight, the secondary foaming property becomes low in the molding step of the next process, the particles are hardly fused, and the foam has poor appearance. Since it becomes a molded object, it is not preferable. Further, if the content of the hydrocarbon-based foaming agent is more than 3% by weight, the particles can be easily fused with each other, and a foamed molded article having an excellent appearance can be obtained. In addition, the amount of residual foaming agent in the foamed molded article increases, which is not preferable.
[0043]
In-mold molding can produce a foam-molded article of a desired shape by filling pre-expanded particles in which the content ratio of the hydrocarbon-based foaming agent is adjusted in a mold and reheating with steam or the like. In-mold molding can be performed using a conventional molding machine for expandable styrene resin particles.
The foamed molded article obtained as described above has a bulk density of 0.02 to 0.008 g / cm. Three The content of hydrocarbon having a boiling point of 50 to 290 ° C. under 1 atm is 1000 ppm or less.
[0044]
【Example】
EXAMPLES Hereinafter, although an Example and a comparative example demonstrate this invention in detail, this invention is not limited by these Examples.
[0045]
Production example
(Production of styrene resin particles by suspension polymerization)
In a polymerization vessel equipped with a stirrer with an internal volume of 100 L, 40.0 L of water, 100 g of tribasic calcium phosphate (suspending agent) and 2.0 g of calcium dodecylbenzenesulfonate (surfactant) were added, followed by stirring with 40.0 kg of styrene. , 96.0 g of benzoyl peroxide (polymerization initiator) and 28.0 g of t-butyl peroxybenzoate (polymerization initiator) were added, and the temperature was raised to 90 ° C. to obtain a polymerization temperature. This temperature was maintained for 6 hours, and the temperature was further raised to 125 ° C., followed by cooling for 2 hours to obtain styrene resin particles (A). The styrene resin particles (A) had a weight average molecular weight (Mw) of 170,000, a dispersity (Mw / Mn) of 2.1, and an expansion ratio (SR) of 1.2.
[0046]
Example 1
The styrene resin particles (A) were sieved to obtain styrene resin particles (B) having a particle diameter of 0.6 to 0.9 mm.
In a polymerization vessel equipped with a stirrer with an internal capacity of 5 L, 2.0 L of water, 500 g of styrene resin particles (B), 6.0 g of magnesium pyrophosphate (suspending agent) and 0.3 g of calcium dodecylbenzenesulfonate (surfactant) are placed. The temperature was raised to 70 ° C. with stirring. Next, 4.5 g of benzoyl peroxide (polymerization initiator) and 1.1 g of t-butylperoxybenzoate (polymerization initiator) were dissolved in 200 g of styrene and placed in a polymerization vessel. After 30 minutes, the temperature was raised to 90 ° C., and 1300 g of styrene in which 0.45 g of divinylbenzene (polyfunctional vinyl monomer) had been dissolved in advance was supplied to the polymerization vessel in a certain amount by a pump over 2 hours. Subsequently, after heating up to 125 degreeC, it cooled after 2 hours and obtained the styrene-type resin particle (C).
[0047]
Styrenic resin particles (C) were obtained by copolymerizing 0.018 mol% of a polyfunctional vinyl monomer, Mw was 440,000, Mw / Mn was 4.6, and SR was 2.1.
In a polymerization vessel equipped with a stirrer with an internal volume of 5 L, 2.2 L of water, 1800 g of styrene resin particles (C), 6.0 g of magnesium pyrophosphate (suspending agent) and 0.4 g of calcium dodecylbenzenesulfonate (surfactant) The mixture was heated to 70 ° C. with stirring. Next, 23.4 g of tetrabromocyclooctane (flame retardant), 5.4 g of dicumyl peroxide (flame retardant aid), and 14.4 g of diisobutyl adipate (plasticizer) are placed in a polymerization vessel, sealed, and heated to 90 ° C. The temperature rose. After the temperature rise, 162 g of butane (hydrocarbon foaming agent) was injected and held for 6 hours. Subsequently, it cooled to 30 degrees C or less, and the expandable styrene resin particle was obtained. After the taken out expandable styrene resin particles were dried, the total content of hydrocarbons having a boiling point of 50 to 290 ° C. under 1 atm was measured for the expandable styrene resin particles by GC-MS analysis. It was 680 ppm. Subsequently, it was stored in a thermostatic chamber at 13 ° C. for 5 days, and pre-foamed to a bulk foaming factor of 80 times using a steam foaming machine. The content ratio of butane in the pre-expanded particles immediately after the pre-expansion was 4.5% by weight. After pre-foaming, it is aged at 25 ° C. until the content of butane is 1 to 3% by weight, molded with a molding machine for polystyrene foam (ACE-11QS manufactured by Sekisui Koki Co., Ltd.), and a plate-like foam molding is obtained. Obtained. The foamed molded body was trained in a drying room at 50 ° C. for 6 hours, and the density was measured to be 0.0127 g / cm. Three Met. The appearance of the foamed molded product was very good.
[0048]
Example 2
Expandable styrene resin particles and a foamed molded article were obtained in the same manner as in Example 1, except that the amount of divinylbenzene added when producing styrene resin particles by seed polymerization was 0.26 g. The styrene resin particles obtained by seed polymerization were obtained by copolymerizing 0.0104 mol% of a polyfunctional vinyl monomer, Mw was 460,000, Mw / Mn was 3.6, and SR was 1.7. .
The resulting foamed molded article has a density of 0.0125 g / cm. Three And the appearance was very good.
[0049]
Example 3
Expandable styrene resin particles and a foamed molded article were obtained in the same manner as in Example 1 except that the amount of divinylbenzene added when producing styrene resin particles by seed polymerization was 0.70 g. The styrene resin particles obtained by seed polymerization were copolymerized with 0.028 mol% of a polyfunctional vinyl monomer, and Mw was 490,000, Mw / Mn was 6.3, and SR was 2.4. .
The resulting foamed molded article has a density of 0.0128 g / cm. Three And the appearance was good.
[0050]
Example 4
Expandable styrene resin particles and a foam molded article were obtained in the same manner as in Example 1 except that the amount of benzoyl peroxide added when producing styrene resin particles by seed polymerization was 7.0 g. The styrene resin particles obtained by seed polymerization were obtained by copolymerizing 0.018 mol% of a polyfunctional vinyl monomer, Mw was 330,000, Mw / Mn was 5.1, and SR was 2.2. .
The resulting foamed molded article has a density of 0.0123 g / cm. Three And the appearance was good.
[0051]
Example 5
Expandable styrene resin particles and a foam molded article were obtained in the same manner as in Example 1, except that the amount of benzoyl peroxide added when producing styrene resin particles by seed polymerization was 2.0 g. The styrene resin particles obtained by seed polymerization were obtained by copolymerizing 0.018 mol% of a polyfunctional vinyl monomer, Mw was 600,000, Mw / Mn was 5.4, and SR was 2.2. .
The resulting foamed molded article has a density of 0.0118 g / cm. Three And the appearance was good.
[0052]
Example 6
Expandable styrene resin particles and a foamed molded article were obtained in the same manner as in Example 1 except that pentane / butane (30 g / 130 g) was used as the foaming agent. The styrene resin particles obtained by seed polymerization were obtained by copolymerizing 0.018 mol% of a polyfunctional vinyl monomer, Mw was 440,000, Mw / Mn was 4.6, and SR was 2.3. .
The resulting foamed molded article has a density of 0.0118 g / cm. Three And the appearance was good.
[0053]
Example 7
Expandable styrenic resin particles and a foamed molded article were obtained in the same manner as in Example 1 except that the amount of diisobutyl adipate used as a plasticizer was 5.4 g. The styrene resin particles obtained by seed polymerization were obtained by copolymerizing 0.018 mol% of a polyfunctional vinyl monomer, Mw was 440,000, Mw / Mn was 4.6, and SR was 2.1. .
The resulting foamed molded article has a density of 0.0118 g / cm. Three And the appearance was good.
[0054]
Example 8
Expandable styrenic resin particles and a foamed molded article were obtained in the same manner as in Example 1 except that the amount of diisobutyl adipate used as a plasticizer was 32.4 g. The styrene resin particles obtained by seed polymerization were obtained by copolymerizing 0.018 mol% of a polyfunctional vinyl monomer, Mw was 440,000, Mw / Mn was 4.6, and SR was 2.1. .
The resulting foamed molded article has a density of 0.0118 g / cm. Three And the appearance was good.
[0055]
Comparative Example 1
Expandable styrene resin particles and a foamed molded article were obtained in the same manner as in Example 1 except that the styrene resin particles (A) were used in place of the styrene resin particles (C) and no plasticizer was added.
These expandable styrene resin particles use styrene resin particles (A) that are not copolymerized with a polyfunctional vinyl monomer, and do not contain a plasticizer. It was easy to do and the appearance and physical properties were not satisfactory.
[0056]
Comparative Example 2
Expandable styrene resin particles and a foamed molded article were obtained in the same manner as in Example 1 except that the styrene resin particles (A) were used in place of the styrene resin particles (C) and the amount of butane was 200 g.
The expandable styrene resin particles use styrene resin particles (A) that are not copolymerized with a polyfunctional vinyl monomer and contain a large amount of butane (11.1% by weight). It was easy to shrink. In addition, the content of butane in the pre-expanded particles is large, and an aging period of 70 hours or more is required to make it 3% by weight or less, which is not preferable in production. Moreover, the appearance of the obtained foamed molded article was not satisfactory.
[0057]
Comparative Example 3
Expandable styrene resin particles and a foam-molded product were obtained in the same manner as in Example 1, except that the amount of divinylbenzene added when producing styrene resin particles by seed polymerization was 0.15 g. The styrene resin particles obtained by seed polymerization were copolymerized with 0.006 mol% of a polyfunctional vinyl monomer, and had an Mw of 270,000, a dispersity of 2.3, and an SR of 1.3.
These expandable styrene resin particles are obtained by copolymerizing a small amount (0.006 mol%) of a polyfunctional vinyl monomer, and use styrene resin particles having low values of Mw / Mn and SR. Is 0.022 g / cm Three And foaming is low, and it tends to shrink during molding. Further, the obtained foamed molded article was not satisfactory in both appearance and physical properties.
[0058]
Comparative Example 4
Expandable styrene resin particles and a foamed molded article were obtained in the same manner as in Example 1 except that the amount of divinylbenzene added when producing styrene resin particles by seed polymerization was changed to 0.85 g. The styrene resin particles obtained by seed polymerization were formed by copolymerizing 0.034 mol% of a polyfunctional vinyl monomer, gelled, and SR was 3.1.
This expandable styrene resin particle is obtained by copolymerizing a polyfunctional vinyl monomer in a large amount (0.034 mol%), and uses styrene resin particles whose Mw and Mw / Mn cannot be measured. Density is 0.029g / cm Three And foaming is very low. Further, the appearance of the obtained foamed molded article was not satisfactory.
[0059]
Comparative Example 5
Expandable styrene resin particles and a foamed molded article were obtained in the same manner as in Example 1 except that pentane / butane (75 g / 162 g) was used as the foaming agent. The styrene resin particles obtained by seed polymerization were obtained by copolymerizing 0.018 mol% of a polyfunctional vinyl monomer, Mw was 440,000, Mw / Mn was 4.6, and SR was 2.3. .
Since the expandable styrene resin particles contained a foaming agent having a large weight ratio of pentane / butane (0.45), shrinkage and dissolution were remarkable in the preliminary foaming and molding steps. In addition, the amount of the remaining foaming agent in the pre-expanded particles is large, and in order to reduce the amount of the remaining foaming agent to 3% by weight or less, it is necessary to lengthen the aging period and the molding cycle becomes long. And the external appearance of the obtained foaming molding was not satisfactory.
[0060]
Comparative Example 6
Expandable styrenic resin particles and a foamed molded article were obtained in the same manner as in Example 1 except that the amount of diisobutyl adipate used as a plasticizer was 45 g. The styrene resin particles obtained by seed polymerization were obtained by copolymerizing 0.018 mol% of a polyfunctional vinyl monomer, Mw was 440,000, Mw / Mn was 4.6, and SR was 2.3. .
Since the expandable styrene resin particles contained a large amount (2.5% by weight) of a plasticizer, there were many bonds between the particles, a large amount of defectives existed, and the productivity was low. Moreover, shrinkage | contraction and melt | dissolution generate | occur | produced at the time of shaping | molding, and the foaming molding with a favorable external appearance was not able to be obtained.
[0061]
The content of hydrocarbon-based foaming agent in the expandable styrene-based resin particles obtained by the above examples and comparative examples, the content of plasticizer, the content of hydrocarbons in the styrene-based resin particles and the foamed molded product, and foam molding Table 1 shows the bulk density of the body, the minimum foamed bulk density of the expandable styrenic resin particles, and the evaluation results.
[0062]
[Table 1]
[0063]
The evaluation of the foamability of the expandable styrenic resin particles, the aging time of the pre-expanded particles, and the appearance of the foamed molded product were performed according to the criteria shown in Table 2.
[0064]
[Table 2]
[0065]
【The invention's effect】
The expandable styrenic resin particles of the present invention are highly foamed without using a conventional foaming aid such as cyclohexane, and the foamed molded product obtained therefrom has a low content of volatile hydrocarbons. Low density and excellent appearance.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001085337A JP3805209B2 (en) | 2001-03-23 | 2001-03-23 | Expandable styrenic resin particles, styrenic resin foam moldings and methods for producing them |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001085337A JP3805209B2 (en) | 2001-03-23 | 2001-03-23 | Expandable styrenic resin particles, styrenic resin foam moldings and methods for producing them |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2002284915A JP2002284915A (en) | 2002-10-03 |
JP3805209B2 true JP3805209B2 (en) | 2006-08-02 |
Family
ID=18940863
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001085337A Expired - Lifetime JP3805209B2 (en) | 2001-03-23 | 2001-03-23 | Expandable styrenic resin particles, styrenic resin foam moldings and methods for producing them |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3805209B2 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5144088B2 (en) * | 2007-02-22 | 2013-02-13 | 積水化成品工業株式会社 | Expandable polystyrene resin particles and production method thereof, polystyrene resin foam particles and polystyrene resin foam molded article |
JP2010254940A (en) * | 2009-03-30 | 2010-11-11 | Sekisui Plastics Co Ltd | Expandable polystyrene resin particles for heat insulation used in hot water storage tanks of heat pump water heaters and heat insulation for hot water storage tanks of heat pump water heaters |
JP2011016934A (en) * | 2009-07-09 | 2011-01-27 | Sekisui Plastics Co Ltd | Member for soil-banking |
JP5403802B2 (en) * | 2009-08-25 | 2014-01-29 | 積水化成品工業株式会社 | Expandable styrenic resin particles and foamed moldings thereof |
JP5403803B2 (en) * | 2009-08-25 | 2014-01-29 | 積水化成品工業株式会社 | Expandable styrenic resin particles and foamed moldings thereof |
-
2001
- 2001-03-23 JP JP2001085337A patent/JP3805209B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JP2002284915A (en) | 2002-10-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5144088B2 (en) | Expandable polystyrene resin particles and production method thereof, polystyrene resin foam particles and polystyrene resin foam molded article | |
JP3732418B2 (en) | Expandable styrene resin particles | |
JP5016906B2 (en) | Expandable polystyrene resin particles and method for producing polystyrene resin foam molding | |
JP4226421B2 (en) | Expandable styrene resin particles and styrene resin foam molded article | |
JP2915134B2 (en) | Method for producing styrene-modified polyethylene resin particles | |
JP3805209B2 (en) | Expandable styrenic resin particles, styrenic resin foam moldings and methods for producing them | |
JP5824263B2 (en) | Expandable thermoplastic resin particles | |
JP3970188B2 (en) | Self-extinguishing foamable styrenic resin particles, pre-foamed particles and self-extinguishing foam | |
JP2004155870A (en) | Expandable styrenic resin particle for building material and its expanded molded product | |
JP5487668B2 (en) | Expandable styrene resin particles | |
JP2020094186A (en) | Expandable thermoplastic resin particles, thermoplastic pre-expanded particles, thermoplastic foamed molded article, and methods for producing the same | |
JP2011184516A (en) | Styrenic polymer particle, method for producing the same, foamable styrenic polymer particle and foam-molded product | |
JP5536357B2 (en) | Method for producing pre-expanded particles of styrene-modified polyethylene resin and styrene-modified polyethylene resin foam | |
JP2010189535A (en) | Expansion molded product of styrenic resin particle | |
JP2014062191A (en) | Foamable polystyrene-based resin particle, manufacturing method thereof, and polystyrene-based resin foamed molded product | |
JP5592731B2 (en) | Expandable polystyrene resin particles, process for producing the same, pre-expanded particles, and expanded molded body | |
JP4832716B2 (en) | Small particle size styrenic expandable resin particles, expanded beads and molded products | |
JP5666796B2 (en) | Method for producing styrenic polymer particles | |
JP7299043B2 (en) | Polystyrene expandable resin particles containing botanical fragrance, pre-expanded particles and foamed products thereof, and method for producing polystyrene expandable resin particles | |
JP5518510B2 (en) | Method for producing expandable polystyrene resin particles, method for producing polystyrene resin pre-expanded particles, and method for producing polystyrene resin foam molding | |
JP3994911B2 (en) | Styrenic expandable resin particles, expanded beads and expanded molded products | |
JP5552399B2 (en) | Expandable polystyrene resin particles, process for producing the same, pre-expanded particles, and expanded molded body | |
JP2010222489A (en) | Foamable styrenic resin particle | |
JP6677974B2 (en) | Method for producing expandable styrene resin particles | |
JP2004307729A (en) | Expandable polystyrene-based resin particle and polystyrene-based resin foam |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20050901 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20050920 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20051102 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20060418 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20060509 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 Ref document number: 3805209 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100519 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100519 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110519 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120519 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120519 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130519 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130519 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140519 Year of fee payment: 8 |
|
EXPY | Cancellation because of completion of term |