[go: up one dir, main page]

JP3802680B2 - Expandable resin composition having biodegradability - Google Patents

Expandable resin composition having biodegradability Download PDF

Info

Publication number
JP3802680B2
JP3802680B2 JP18390698A JP18390698A JP3802680B2 JP 3802680 B2 JP3802680 B2 JP 3802680B2 JP 18390698 A JP18390698 A JP 18390698A JP 18390698 A JP18390698 A JP 18390698A JP 3802680 B2 JP3802680 B2 JP 3802680B2
Authority
JP
Japan
Prior art keywords
resin composition
resin
foaming
polylactic acid
foam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP18390698A
Other languages
Japanese (ja)
Other versions
JP2000017038A (en
Inventor
孝敬 久保
真弘 山
寛 内藤
綱大 中江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kaneka Corp
Original Assignee
Kaneka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaneka Corp filed Critical Kaneka Corp
Priority to JP18390698A priority Critical patent/JP3802680B2/en
Publication of JP2000017038A publication Critical patent/JP2000017038A/en
Application granted granted Critical
Publication of JP3802680B2 publication Critical patent/JP3802680B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Polyurethanes Or Polyureas (AREA)
  • Biological Depolymerization Polymers (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、実質的に生分解性を有する包装材料として用いられる発泡体用樹脂組成物に関する。
【0002】
【従来の技術】
軽量性、緩衝性、成形加工性を生かしたプラスチック発泡成形体が包装、梱包材として多量に用いられており、その素材はポリスチレン(PS)、ポリオレフィンといった石油を原料とする化学製品が使用されている。この為、これらの製品は、使用後の処分が困難で、焼却すれば燃焼カロリーが高く焼却炉を傷め、また埋め立てても分解しないうえに容積が大きいために処分場のスペースを占有してしまうといった難点があり、大きな社会問題となっている。
【0003】
また、処分されずに投棄された発泡成形体が及ぼす、河川、海洋等の汚染など自然態系への影響も無視できなくなっている。そこで生態系の中で分解し地球環境への影響が少ない生分解性樹脂が開発された。例えば、微生物の体内で合成されるポリヒドロキシブチレート系樹脂、脂肪族グリコールと脂肪族カルボン酸からなるポリエステルまたはカプロラクトンを主成分とするポリエステル系樹脂等が提案されている。しかしながら、前者は、微生物が作り出すため純度が悪いうえ極めて生産性が悪く利用が制限される。
【0004】
そして後者は、原料が石油、天然ガスといった安価で多量に入手できるものであるから生産性は良好であるが、結晶性樹脂である上にガラス転移点が低いため生分解性発泡樹脂としては実用性に乏しい。更に原料を石油、天然ガスに依存しているため、分解すると地球上に存在する炭酸ガス系に新たに炭酸ガスが加算され炭酸ガスの抑制効果に寄与しない。また、長期的に見た場合、原料ソースが有限であるため、やがて入手困難となり、真の意味での地球環境保全に資し得ない。
【0005】
更に、グリコール酸や乳酸などもグリコリドやラクチドの開環重合により生分解性のポリマーとして得られ、縫合糸等の医療用繊維として利用されているが、繊維形成の為の必須要件として樹脂に結晶性を持たせているため、そのままでは発泡成形体として包装用途に大量に使用されるには至っていない。
【0006】
【発明が解決しようとする課題】
本発明は、生分解性を有しながら生産性に優れる発泡性樹脂組成物、即ち、微生物により殆ど分解され、使用後処分するに際しても地球環境への負荷がすくなく、高い生産性を有し、実用に耐えうる発泡性樹脂組成物を提供することにある。本発明者等は、高い発泡性を有する生分解性樹脂としての必要不可欠な条件、即ちベースポリマーの種類、高分子量化するためや発泡させるための添加剤及び添加条件等について、詳細に亘り鋭意検討を重ねた結果、実用上十分な生産性を有する生分解性発泡樹脂組成物を見出し、すでに発明提案(特願平9−314479)を行った。しかし、該発明で得られる発泡樹脂は現在使用されている発泡ポリスチレンに比して発泡セルが若干大きく、そのため断熱性、圧縮特性を要求される分野に於いてはやや不十分であった。
【0007】
【課題を解決するための手段】
本発明者等はかかる課題を解決すべく鋭意研究の結果、非晶性で高ガラス転移点温度を有する芳香族系樹脂を生分解性樹脂に少量ブレンドすることにより、発泡セルが小さく断熱性、圧縮特性に優れた樹脂組成物を見出し本発明に到達したものである。
【0008】
即ち本発明は、L体とD体のモル比が95/5〜60/40、又は40/60〜5/95であるポリ乳酸(A)と、ポリカーボネート、ポリスチレン及びガラス転移点温度が60℃以上の共重合ポリエチレンテレフタレートの群から選ばれた少なくとも1種の非晶性樹脂(B)とをA/B=99/1〜80/20の割合で配合し、イソシアネート基≧2.0当量/モルのポリイソシアネート化合物を該ポリ乳酸(A)に対して0.5〜5重量%配合した樹脂組成物である。
【0009】
【発明の実施の形態】
まず、基本条件の一つである生分解性樹脂は、自然界の炭酸ガス増加を最小限に抑制し、且つ、実用に耐えうる生産性、コストを考慮すると、とうもろこし等穀物の澱粉を出発物質とする乳酸を原料とするポリ乳酸樹脂が好ましい。しかし、通常繊維用として使用されるものは結晶性が必要であることより、光学異性体のL体がほぼ100%のものを使用している。これに対し発泡体を形成するためには少なくとも結晶性はできる限り小さくする必要がある。その理由は、結晶性樹脂は発泡剤を含浸する工程で結晶化が進行し、発泡性を阻害するからである。
【0010】
ベースポリマーとして使用するポリ乳酸に非晶性を付与するにはL体とD体のモル比を95/5〜5/95とすることが必要となるが、60/40〜40/60のポリ乳酸は非晶性であることは満足するが、ガラス転移点が50℃未満となり実用性がなくなってしまう。
【0011】
従って、本発明で言うポリ乳酸とは、ラクチドを開環重合してえられる実質的に非晶性のポリ乳酸樹脂であり、L体とD体のモル比が95/5〜60/40、又は40/60〜5/95の範囲の乳酸を用いる。L体とD体のモル比が95/5を超えるもの、或いは5/95未満のものは結晶性が高く、発泡倍率が上がらなかったり、発泡が不均一になり使用できない。好ましくはL体とD体のモル比が90/10〜70/30、又は30/70〜10/90の範囲が良い。
【0012】
一方、ビーズ発泡用に使用される樹脂は、発泡体を成形する迄の保管中に予め含浸させた発泡剤の揮散をできる限り抑えることが必要である。そのためには、常温よりもガラス転移点温度の高い樹脂を選定することである。ポリ乳酸は上記の範囲のL体/D体共重合物である限りガラス転移点温度は50℃以上あり、他の生分解性樹脂に比して際立って高いので非常に好都合である。乳酸以外のヒドロキシ酸またはグリコールとジカルボン酸との共重合物はガラス転移点が低下するので好ましくない。勿論、押し出し発泡シートの製造に於いても発泡剤の揮散を減少させ発泡性を高めるにはガラス転移点温度の高い方が有利である。
【0013】
本発明に使用されるポリ乳酸は高分子量のポリ乳酸が好ましく、その溶融粘度はJIS K 7201(荷重2.16kgf)に準拠したメルトインデックス値で1〜10の範囲であり、更に好ましくは1〜5の範囲である。
溶融粘度が1未満のポリ乳酸は、通常用いられる後述の方法では製造することは困難であり、10を超える溶融粘度を有するポリ乳酸は発泡倍率の低い発泡体しか得られず好ましくない。
【0014】
その理由は、以下に述べるポリイソシアネート化合物と反応させて同程度の高粘度樹脂組成物、低溶融粘度(低分子量)樹脂を用いた場合と高溶融粘度(高分子量)樹脂を用いた場合とではポリマーとポリイソシアネート化合物との反応(分岐)密度が異なり、低溶融粘度(低分子量)樹脂のほうが反応(分岐)密度が高くなるため架橋構造を取り発泡を阻害すると考えられるからである。
【0015】
高溶融粘度(高分子量)のポリ乳酸を得る手段として、通常の反応釜での高真空下、攪拌効率の良好な状態での溶融重合、二軸混練反応機による溶融重合、高真空下での薄膜重合法、溶融重合と固相重合の組み合わせによりメルトインデックス値で1〜10の高溶融粘度(高分子量)のポリ乳酸を得ることは可能であるが、高粘度であるため反応サイクルが長くなるための生産性の低下、樹脂の熱分解による品質低下に十分注意しなければならない。
【0016】
一方、本発明に使用される非晶性樹脂の要求特性は、非晶性の他に高ガラス転移点、発泡剤との親和性、ガスバリア性がある。非晶性及び高ガラス転移点は発泡性樹脂の必要条件であり、発泡剤との親和性は直接的に発泡性に関わる特性である。結晶性樹脂は発泡剤の含浸工程で結晶化が進行し、該結晶が発泡を阻害するため好ましくない。ガラス転移点はガスバリア性の点からポリ乳酸のガラス転移点と同等かそれ以上が必要であり50℃以上、好ましくは60℃以上である。更に発泡剤を樹脂に含浸するには、発泡助剤により樹脂の分子間距離を適当に拡張することが必要であり、非晶性樹脂と発泡助剤との親和性が重要となる。本発明者等はこれらについて多岐にわたり検討した結果、ポリカーボネート、ポリスチレン及び共重合ポリエチレンテレフタレートの非晶性樹脂が好ましいことが判明した。
【0017】
これらの樹脂はいずれも非晶性、高ガラス転移点、発泡剤との親和性、ガスバリア性の要件を満足している。例えば高ガラス転移点についていえばポリカーボネート120℃、ポリスチレン75℃、シクロヘキサンジオール・ポリエチレンテレフタレート共重合物80℃などがあり、いずれの樹脂も発泡助剤の一つであるアルコール類には膨潤する。従って、これら樹脂単体でも生分解性を除けば発泡性は良好である。
【0018】
しかし、ある程度高粘度のポリ乳酸と非晶性樹脂を混練した樹脂組成物に発泡剤を含浸、発泡させても発泡倍率は低くそのままでは実用に耐えるものとはし難い。高発泡倍率を得るには更に高溶融粘度(高分子量)化が必要である。
【0019】
本発明者等は鋭意検討の結果、イソシアネート基≧2.0当量/モルのポリイソシアネート化合物をメルトインデックス値1〜10のポリ乳酸に対して0.5〜5重量%、好ましくは1〜3重量%を溶融状態で混合、反応させることにより所望する高溶融粘度の樹脂組成物を得るに至った。
【0020】
ポリイソシアネート化合物が0.5重量%未満では樹脂組成物の溶融粘度があまり上昇せず、また5重量%を超えると未反応のポリイソシアネート化合物が残留したり、分岐密度が大になり、架橋反応が進んでゲル化物が多量に生成し、発泡性は逆に低下する。
【0021】
また、ポリイソシアネート化合物のイソシアネート官能基数は2.0当量/モル以上が必要で、2.3当量/モル以上が好ましい。ポリイソシアネート化合物のイソシアネート官能基数をなるべく多くし、分岐点の数を増やさないで超高粘度化することでゲル化物の生成を抑えることができる。
【0022】
ポリ乳酸と非晶性樹脂の配合比は99/1〜80/20が好ましく、更に好ましくは、99/5〜90/10である。配合比がこの範囲より小さいと発泡セルの微小化、断熱性、圧縮特性は殆ど改善されず、この範囲を超えると、両樹脂の相溶性に起因する分散不良による発泡斑が発生し好ましくない。更に、生分解性を有する発泡性樹脂という本来の目的を損なうことにもなる。
【0023】
ポリ乳酸及び非晶性樹脂とポリイソシアネート化合物を溶融状態で混合、反応させ高分子量化させる方法は公知の方法が可能である。例えば、ペレット化したポリ乳酸及び非晶性樹脂にポリイソシアネート化合物を添加し単軸または二軸混練機等で溶融混合する方法、予めポリ乳酸及び非晶性樹脂を単軸または二軸混練機等で溶融した後ポリイソシアネート化合物を添加する方法、単軸または二軸混練機等で溶融重合によりポリ乳酸を製造し又は製造中に非晶性樹脂及びポリイソシアネート化合物を添加する方法等により目的とする高粘度の樹脂組成物を得ることができる。
【0024】
ポリ乳酸及び非晶性樹脂の混練は実質的に反応が関与しないブレンドであることが望ましく、従ってポリカーボネートや共重合ポリエチレンテレフタレートはエステル交換反応による物性低下に注意する必要がある。
【0025】
ベースポリマーとしてのポリ乳酸を更に高分子量化させる添加剤としてイソシアネート化合物の他に、酸無水物、酸塩化物、カーボネート、エポキシ等種々の化合物があり、それぞれ効果は認められるもののポリイソシアネート化合物の効果が最も顕著であり、それ以外の化合物は充分高分子量化が達成できず発泡性が不十分である。ポリイソシアネート化合物はポリ乳酸との反応による高分子量化とともにポリイソシアネート化合物同志がアロハネート結合により更に高分子量化すると考えられると共にこの結合は溶融時一旦解離するため、可塑剤として作用し、樹脂組成物の溶融流動性が良くなり極めて好都合である。しかも、樹脂組成物が冷却固化するとアロハネート結合は再び形成され所望する粘度まで上昇する。
【0026】
使用されるポリイソシアネート化合物としては、芳香族、脂環族、脂肪族系のポリイソシアネートがあり、例えば、芳香族ポリイソシアネートとしてはトリレン、ジフェニルメタン、ナフチレン、トリジン、キシレン、トリフェニルメタンを骨格とするポリイソシアネート化合物、脂環族ポリイソシアネートとしてはイソホロン、水素化ジフェニルメタンを骨格とするポリイソシアネート化合物、脂肪族ポリイソシアネートとしてはヘキサメチレン、リジンを骨格とするポリイソシアネート化合物があり、いずれも使用可能であるが、汎用性、取扱い性、耐候性等からトリレン、ジフェニルメタン、特にジフェニルメタンのポリイソシアネートが好ましく使用される。
【0027】
予備発泡の後、及び2次発泡した発泡体は、極めて微細な発泡セルが形成され、現在使用されているポリスチレンの発泡セルと遜色のないものとなった。この理由は、発泡が形成しやすい非晶性樹脂をポリ乳酸にミクロ分散させることにより発泡起点が極めて多数となり、その発泡起点から一斉に発泡するため、結果的に発泡セルが微細化したと考えられる。
【0028】
本発明の樹脂組成物はペレットまたはビーズ状粒子とした後、発泡剤及び発泡助剤を含浸させる。含浸された粒子は通常加熱により第1次の発泡(予備発泡)で発泡倍率30〜50倍の発泡粒子とし、次いでこれらを金型に充填し更び加熱して2次発泡させ、所望の成形体に成形する。
【0029】
発泡剤及び発泡助剤を含浸させるペレットまたはビーズの大きさは成形体の大きさ、形状等に応じて適宜選択するが、発泡ポリスチレンの場合は通常直径0.5〜2mmの大きさのものが用いられる。精密な成形体の場合は直径0.5〜1mmが一般的である。
【0030】
ここで用いる発泡剤及び発泡助剤としては、プロパン、n−ブタン、イソブタン、n−ペンタン、イソペンタン、ネオペンタン、シクロペンタン、ヘキサン等の炭化水素類、塩化メチル、塩化メチレン、ジクロロジフルオロメタン等のハロゲン化炭化水素類、ジメチルエーテル、メチルエチルエーテル等のエーテル類等が発泡剤として、また、炭素数1〜4のアルコール、ケトン類、エーテル、ベンゼン、トルエン等が発泡助剤として用いられる。
【0031】
発泡剤と発泡助剤との組み合わせは、使用する樹脂により適宜選択する必要があるが、発泡剤としてブタン、ペンタンまたはそれら混合物が、、これと組み合わせる発泡助剤としては炭素数1〜4の一価のアルコールが好適である。その他の組み合わせも種々あり、目的や経済性に鑑みて選択することができる。
【0032】
発泡剤と発泡助剤の使用比率(体積比)は、発泡剤/発泡助剤=1/2〜10/1が可能であるが、発泡剤と発泡助剤との組み合わせによって変るが、1/1〜5/1が一般的である。発泡剤及び発泡助剤の含浸量は目的とする発泡倍率、ペレット又はビーズの保存期間によって異なるが、発泡剤は通常5〜15重量%である。一般に、低発泡品は含浸量を低く、高発泡品は含浸量を高くすることで対応可能である。
【0033】
発泡剤及び発泡助剤を含浸させたペレット又はビーズは、予備発泡させた後、所望の金型に入れ、更に加熱して発泡を進め、ペレットまたはビーズ同志を融着させて強固な成形体を成形する。ポリスチレン(PS)発泡体の成形方法と基本的には同一である。即ち、予備発泡、発泡成形共に熱容量の大きい水蒸気を用いる。熱風による発泡も可能ではあるが、熱容量が小さいため発泡効率は良くない。従って、高発泡品には不適である。
【0034】
更に均一で微細な発泡セルを形成させるためには発泡核剤を配合することが有用であり、用いる発泡核剤としては、固体状の粒子状物、例えば、タルク、シリカ、カオリン、ゼオライト、マイカ、アルミナ等の無機粒子、炭酸又は重炭酸塩、カルボン酸のアルカリ金属塩等の塩が好適に用いられる。この中でもタルクは本発明の樹脂組成物に対して特に好ましく用いられる。
【0035】
核剤は、通常粒子径0.5〜30μm程度のものが樹脂に対する分散状態が良く、安定した気泡が得られるので好ましい。添加する量は樹脂組成物に対して通常0.1重量%以上、多くても30重量%までに留めておくのが良い。更に好ましい範囲は0.5〜5重量%である。0.1重量%未満では効果が認められず、添加量が30重量%を超えると、効果に限度がある上に、機械物性の低下、比重の増大による重量増のため軽量であることの利点が損なわれてしまう。
【0036】
また、その他の添加剤についても、目的に応じ適宜添加することができ、例えば、熱安定剤、酸化防止剤、紫外線吸収剤、可塑剤等がある。但し、難燃剤は塩素、臭素などのハロゲン化物であることが多く、生分解や焼却処分時の有害物質発生という観点から最小限に留めておくのが良い。
【0037】
【実施例】
以下に実施例及び比較例により、本発明をさらに具体的に説明する。なお、評価は下記の方法で行なった。
【0038】
(評価方法)
(1)MI:ポリ乳酸:JIS K 7210に準拠した方法で測定。測定条件;測定温度190℃、オリフィス径2mm、荷重2.16kgf。
樹脂組成物:JIS K 7210に準拠した方法で測定。測定条件;測定
温度190℃、オリフィス径2mm、荷重21.6kgf。
【0039】
(2)発泡倍率(倍):メスシリンダーを用いて、発泡剤含浸ペレットの発泡前体積及び予備発泡粒子の体積を測定し、次式により発泡倍率(倍)を算出した。
発泡倍率(倍)=予備発泡粒子の体積/発泡剤含浸ペレットの発泡前体積
【0040】
(3)発泡セル評価:発泡剤含浸樹脂組成物及び対照として発泡用ポリスチレン粒子(「リューパール55KS Y−3171」大日本インキ工業(株)製)をそれぞれスチーム処理により30〜35倍発泡させ、該発泡粒子の中心点を通る面で切断し生成している発泡セルの状態を相対比較した。
◎:発泡セルの大きさが発泡ポリスチレンと同程度のもの
○:発泡セルの大きさが発泡ポリスチレンよりやや大きいもの
×:発泡セルの大きさが発泡ポリスチレンより明らかに大きいもの
−:発泡性不良にて比較できないもの
【0041】
(4)生分解性:予備発泡粒子をコンポストに2カ月間入れ、外観状態で次のように評価した。
◎:殆ど分解し、目視的には極少量の残渣あり
○:大部分は分解して消失しているが、目視的に一部分分解しない残渣あり
△:一部分は分解して消失しているが、目視的に大部分分解しない残渣あり
×:目視的に全く変化なし
【0042】
(5)耐熱性:上記予備発泡粒子から発泡体を成形し、該発泡成形体より100×100×30mmの試験片を切り出し、100℃でオーブン中2時間処理したときの寸法変化で評価した。
◎:全く変化なし
○:3%未満の変化
△:3〜10%未満の変化
×:10%以上の変化
−:発泡成形体採取できず比較できないもの
【0043】
(6)圧縮応力比:上記発泡体より30×30×30mmの試験片を切り出し、荷重速度10mm/分で測定し、50%圧縮時におけるポリスチレン(PS)との応力比で評価した。
【0044】
製造例
ポリ乳酸:市販のL−ラクチド、D−ラクチドをぞれぞれ酢酸エチルを用いて再結晶しして精製した。精製したL−ラクチド、D−ラクチド及び触媒としてオクチル酸スズを所定量攪拌付オートクレーブに仕込み、減圧脱気した後窒素ガス雰囲気下で所定温度、所定時間重合反応を行い表1の結果を得た。
【0045】
【表1】

Figure 0003802680
【0046】
実施例1〜12、比較例1〜5
P1〜10のポリ乳酸にポリスチレン樹脂を所定量とイソシアネート基2.7〜2.8当量/モルのイソシアネート化合物(「ミリオネートMR−200」日本ポリウレタン工業(株)製)をポリ乳酸に対して1.0重量%、タルク(「LMP100」富士タルク工業(株)製)1.0重量%を表2の組成になるように二軸混練機(PCM30、池貝鉄工(株)製)でシリンダー温度180℃で混練し、それぞれの樹脂組成物を得た。
【0047】
これら樹脂組成物のMIを測定後、回転式の反応容器に樹脂組成物2000部、発泡剤としてイソペンタン1200部、メタノール240部を仕込み、密封した後、反応容器の回転数10回/分、昇温速度20℃/時間の割合で昇温し、70℃に1時間保持した。その後、室温まで冷却し発泡剤含浸樹脂組成物を取りだし、風乾後、重量を測定し、含浸率を求めた。次いで得られた該樹脂組成物を水蒸気(92℃、1分)で予備発泡させ、発泡倍率および生分解性を測定、評価した。
【0048】
さらに、予備発泡粒子を1日熟成後、発泡成形機にて水蒸気圧0.5kg/cm2、加熱時間30秒の条件にて300×300×30mmの発泡成形体を得、これら発泡成形体より試験片を切り出し、耐熱性及び圧縮応力を評価した。各々の評価の対照として市販の発泡スチレン「リューパール55KSY−3171」(大日本インキ工業(株)製)を用いた。評価を表2、表3に示した。
【0049】
【表2】
Figure 0003802680
【0050】
【表3】
Figure 0003802680
【0051】
(評価結果)
ポリスチレン添加量が同一水準(添加量10%)で、L/D比が95/5〜5/95の樹脂組成物の発泡倍率が優れており、L/D比が90/10〜10/90特に優れていた。L/Dが60/40未満〜40/60を超えないものは発泡体の耐熱性及び圧縮応力等の機械物性が低く、且つ発泡セルも大きいものであった。ポリスチレンの添加量1%以上で発泡セルは均一、微細となり、5%以上では現在使用されているポリスチレン発泡粒子と遜色のないレベルに達した。
【0052】
実施例11〜20、比較例6〜8
P3のポリ乳酸にポリスチレン樹脂を所定量を配合し、ポリ乳酸に対してイソシアネート基が平均1.8当量/モル、平均2.0当量/モル(「ミリオネートMT」日本ポリウレタン工業(株)製)、平均2.3当量/モル(「ミリオネートMT」/「ミリオネートMR−200」日本ポリウレタン工業(株)製)、平均2.7当量/モル〜2.8当量/モル(「ミリオネートMR−200」日本ポリウレタン工業(株)製)、平均3.0当量/モル(「PAPI20J」三菱化学(株)製)を所定量及びタルク(「LMP100」富士タルク工業(株)製)1.0重量%を表3に示す組成になるように二軸混練機(PCM30、池貝鉄工(株)製)でシリンダー温度180℃で混練し、それぞれの樹脂組成物を得た。以下、発泡剤の含浸、発泡テスト及び評価は実施例1〜12、比較例1〜5と同様に行った。結果を表4、表5に示した。
【0053】
【表4】
Figure 0003802680
【0054】
【表5】
Figure 0003802680
【0055】
実施例21〜23、比較例8〜12
P3のポリ乳酸に表6に記載の樹脂を10重量%配合してなる混合物に、ポリ乳酸に対してイソシアネート基2.7〜2.8当量/モルのイソシアネート化合物を2重量%添加し、二軸混練機(PCM30、池貝鉄工(株)製)を用いシリンダー温度180℃で混練し、それぞれの樹脂組成物を得た。
以下、発泡剤の含浸、発泡及び評価を実施例1〜12、比較例1〜5と同様に行い、結果を表6、表7に示した。
【0056】
【表6】
Figure 0003802680
【0057】
【表7】
Figure 0003802680
【0058】
【発明の効果】
以上、本発明の樹脂組成物は発泡性、耐熱性、機械物性は従来から用いられてきたポリスチレン(PS)に匹敵するものが得られ、生分解性も著しく優れており、地球環境保全に資する樹脂である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a foam resin composition used as a substantially biodegradable packaging material.
[0002]
[Prior art]
Plastic foam moldings that make use of lightness, shock-absorbing properties, and moldability are used in large quantities as packaging and packaging materials, and the materials used are chemical products made from petroleum such as polystyrene (PS) and polyolefin. Yes. For this reason, these products are difficult to dispose of after use, and if incinerated, the burned calories are high, and the incinerator is damaged. This is a major social problem.
[0003]
In addition, the influence on the natural state such as the pollution of rivers, oceans, etc., caused by the foamed moldings that have been discarded without being disposed of can no longer be ignored. Therefore, biodegradable resins that decompose in the ecosystem and have little impact on the global environment have been developed. For example, polyhydroxybutyrate resins synthesized in the body of microorganisms, polyesters composed of aliphatic glycols and aliphatic carboxylic acids, or polyester resins mainly composed of caprolactone have been proposed. However, since the former is produced by microorganisms, its purity is poor and its productivity is extremely poor and its use is restricted.
[0004]
The latter has good productivity because the raw materials are inexpensive and can be obtained in large quantities such as natural gas, but it is a crystalline resin and has a low glass transition point, so it is practical as a biodegradable foamed resin. Poor sex. Furthermore, since the raw material depends on petroleum and natural gas, if it is decomposed, carbon dioxide gas is newly added to the carbon dioxide gas system existing on the earth and does not contribute to the carbon dioxide suppression effect. Moreover, when it sees from a long term, since a raw material source is limited, it will become difficult to obtain in the end, and it cannot contribute to global environmental conservation in a true sense.
[0005]
Furthermore, glycolic acid and lactic acid are also obtained as biodegradable polymers by ring-opening polymerization of glycolide and lactide, and are used as medical fibers such as sutures. Therefore, as it is, it has not been used in large quantities for packaging purposes as a foamed molded product.
[0006]
[Problems to be solved by the invention]
The present invention is a foamable resin composition excellent in productivity while having biodegradability, i.e., it is almost decomposed by microorganisms and has a high productivity with little impact on the global environment when disposed after use. An object of the present invention is to provide a foamable resin composition that can withstand practical use. The present inventors have eagerly studied in detail about the indispensable conditions as a biodegradable resin having high foamability, that is, the types of base polymers, additives for adding high molecular weight and foaming, and addition conditions. As a result of repeated studies, a biodegradable foamed resin composition having practically sufficient productivity was found, and an invention proposal (Japanese Patent Application No. 9-314479) has already been made. However, the foamed resin obtained in the present invention has a slightly larger foam cell than the currently used foamed polystyrene, and is therefore somewhat insufficient in fields requiring heat insulation and compression characteristics.
[0007]
[Means for Solving the Problems]
As a result of diligent research to solve such problems, the present inventors blended a small amount of an amorphous resin having a high glass transition temperature with an amorphous resin into a biodegradable resin, so that the foam cell is small and heat insulating, The present inventors have found a resin composition excellent in compression characteristics and have reached the present invention.
[0008]
That is, in the present invention, polylactic acid (A) having a molar ratio of L-form to D-form of 95/5 to 60/40, or 40/60 to 5/95, polycarbonate, polystyrene, and glass transition temperature are 60 ° C. At least one amorphous resin (B) selected from the above group of copolymerized polyethylene terephthalate is blended at a ratio of A / B = 99/1 to 80/20, and isocyanate groups ≧ 2.0 equivalents / This is a resin composition containing 0.5 to 5% by weight of a polyisocyanate compound in a molar amount relative to the polylactic acid (A).
[0009]
DETAILED DESCRIPTION OF THE INVENTION
First, biodegradable resin, which is one of the basic conditions, minimizes the increase in carbon dioxide in the natural world, and considering the productivity and cost that can withstand practical use, cereal starch such as corn is used as the starting material. A polylactic acid resin using lactic acid as a raw material is preferable. However, what is usually used for fibers requires crystallinity, so that the optical isomer L form is almost 100%. On the other hand, in order to form a foam, at least the crystallinity needs to be as small as possible. The reason is that the crystalline resin progresses in crystallization in the step of impregnating the foaming agent, thereby inhibiting the foamability.
[0010]
In order to impart amorphousness to the polylactic acid used as the base polymer, the molar ratio of L-form to D-form needs to be 95/5 to 5/95. Although it is satisfactory that lactic acid is amorphous, the glass transition point is less than 50 ° C. and the practicality is lost.
[0011]
Therefore, the polylactic acid referred to in the present invention is a substantially amorphous polylactic acid resin obtained by ring-opening polymerization of lactide, and the molar ratio of L-form to D-form is 95/5 to 60/40, Alternatively, lactic acid in the range of 40/60 to 5/95 is used. When the molar ratio of L-form to D-form exceeds 95/5 or less than 5/95, the crystallinity is high, the foaming ratio does not increase, and foaming becomes uneven and cannot be used. The molar ratio of L-form to D-form is preferably 90/10 to 70/30, or 30/70 to 10/90.
[0012]
On the other hand, the resin used for foaming the beads needs to suppress as much as possible the volatilization of the foaming agent impregnated in advance during storage until the foam is molded. For this purpose, a resin having a glass transition temperature higher than normal temperature is selected. As long as polylactic acid is an L-form / D-form copolymer in the above-mentioned range, it has a glass transition temperature of 50 ° C. or higher, which is very advantageous compared to other biodegradable resins. A hydroxy acid other than lactic acid or a copolymer of glycol and dicarboxylic acid is not preferred because the glass transition point is lowered. Of course, in the production of an extruded foam sheet, a higher glass transition temperature is advantageous in order to reduce the volatilization of the foaming agent and increase the foamability.
[0013]
The polylactic acid used in the present invention is preferably a high molecular weight polylactic acid, and its melt viscosity is in the range of 1 to 10 in terms of melt index value according to JIS K 7201 (load 2.16 kgf), more preferably 1 to 1. The range is 5.
Polylactic acid having a melt viscosity of less than 1 is difficult to produce by the generally used method described below, and polylactic acid having a melt viscosity of more than 10 is not preferable because only a foam having a low expansion ratio can be obtained.
[0014]
The reason for this is that the reaction with the polyisocyanate compound described below uses the same high viscosity resin composition, a low melt viscosity (low molecular weight) resin, and a high melt viscosity (high molecular weight) resin. This is because the reaction (branch) density is different between the polymer and the polyisocyanate compound, and the low melt viscosity (low molecular weight) resin has a higher reaction (branch) density, and therefore, it is considered that it takes a crosslinked structure and inhibits foaming.
[0015]
As a means of obtaining poly (lactic acid) with high melt viscosity (high molecular weight), high pressure in a normal reaction kettle, melt polymerization with good stirring efficiency, melt polymerization with a biaxial kneading reactor, high vacuum It is possible to obtain polylactic acid having a high melt viscosity (high molecular weight) of 1 to 10 in terms of melt index by a combination of thin film polymerization method, melt polymerization and solid phase polymerization, but the reaction cycle becomes longer because of high viscosity. Therefore, it is necessary to pay sufficient attention to the decrease in productivity and the deterioration in quality due to thermal decomposition of the resin.
[0016]
On the other hand, the required properties of the amorphous resin used in the present invention include a high glass transition point, affinity with a foaming agent, and gas barrier properties in addition to amorphous properties. Amorphous and high glass transition points are necessary conditions for the foamable resin, and affinity with the foaming agent is a characteristic directly related to foamability. Crystalline resin is not preferable because crystallization proceeds in the impregnation step of the foaming agent, and the crystal inhibits foaming. The glass transition point is required to be equal to or higher than the glass transition point of polylactic acid in terms of gas barrier properties, and is 50 ° C. or higher, preferably 60 ° C. or higher. Furthermore, in order to impregnate the resin with the foaming agent, it is necessary to appropriately extend the intermolecular distance of the resin with the foaming aid, and the affinity between the amorphous resin and the foaming aid is important. As a result of extensive studies on these matters, the present inventors have found that amorphous resins such as polycarbonate, polystyrene, and copolymerized polyethylene terephthalate are preferable.
[0017]
All of these resins satisfy the requirements of amorphousness, high glass transition point, affinity with foaming agents, and gas barrier properties. For example, regarding the high glass transition point, there are polycarbonate 120 ° C., polystyrene 75 ° C., cyclohexanediol / polyethylene terephthalate copolymer 80 ° C., etc., and any resin swells in alcohols which are one of foaming aids. Therefore, even these resins alone have good foamability except for biodegradability.
[0018]
However, even if a foaming agent is impregnated and foamed into a resin composition in which polylactic acid and an amorphous resin having a certain degree of viscosity are kneaded, foaming ratio is low and it is difficult to withstand practical use as it is. In order to obtain a high expansion ratio, it is necessary to further increase the melt viscosity (high molecular weight).
[0019]
As a result of intensive studies, the present inventors have determined that the polyisocyanate compound having an isocyanate group ≧ 2.0 equivalents / mol is 0.5 to 5% by weight, preferably 1 to 3% by weight based on the polylactic acid having a melt index value of 1 to 10. % Was mixed and reacted in a molten state to obtain a desired high melt viscosity resin composition.
[0020]
If the polyisocyanate compound is less than 0.5% by weight, the melt viscosity of the resin composition does not increase so much. If the polyisocyanate compound exceeds 5% by weight, unreacted polyisocyanate compound remains or the branch density increases, resulting in a crosslinking reaction. Progresses to produce a large amount of gelled product, and foamability is reduced.
[0021]
Further, the number of isocyanate functional groups of the polyisocyanate compound is required to be 2.0 equivalent / mol or more, and preferably 2.3 equivalent / mol or more. By increasing the number of isocyanate functional groups of the polyisocyanate compound as much as possible, and increasing the viscosity without increasing the number of branch points, the formation of gelled products can be suppressed.
[0022]
The blending ratio of polylactic acid and amorphous resin is preferably 99/1 to 80/20, more preferably 99/5 to 90/10. If the blending ratio is smaller than this range, the size reduction, thermal insulation and compression characteristics of the foamed cell are hardly improved. If the blending ratio exceeds this range, foaming spots due to poor dispersion due to the compatibility of both resins are not preferable. Furthermore, the original purpose of the foamable resin having biodegradability is impaired.
[0023]
A known method can be used as a method of mixing and reacting polylactic acid and an amorphous resin with a polyisocyanate compound in a molten state to increase the molecular weight. For example, a method in which a polyisocyanate compound is added to pelletized polylactic acid and an amorphous resin and melt-mixed with a uniaxial or biaxial kneader or the like, or polylactic acid and amorphous resin are previously uniaxial or biaxial kneader or the like The purpose is to add a polyisocyanate compound after being melted in a melt, to produce polylactic acid by melt polymerization with a uniaxial or biaxial kneader or the like, or to add an amorphous resin and a polyisocyanate compound during production. A highly viscous resin composition can be obtained.
[0024]
The kneading of the polylactic acid and the amorphous resin is desirably a blend that does not substantially involve a reaction. Therefore, it is necessary to pay attention to deterioration of physical properties of the polycarbonate and copolymerized polyethylene terephthalate due to the transesterification reaction.
[0025]
There are various compounds such as acid anhydrides, acid chlorides, carbonates, epoxies, etc. in addition to isocyanate compounds as additives for further increasing the molecular weight of polylactic acid as a base polymer. However, other compounds cannot achieve a sufficiently high molecular weight and have insufficient foamability. The polyisocyanate compound is considered to be increased in molecular weight by the reaction with polylactic acid and the polyisocyanate compound is further increased in molecular weight by an allophanate bond, and this bond is once dissociated when melted. The melt fluidity is improved, which is very convenient. In addition, when the resin composition is cooled and solidified, the allohanate bond is formed again and increases to the desired viscosity.
[0026]
The polyisocyanate compound used includes aromatic, alicyclic, and aliphatic polyisocyanates. For example, the aromatic polyisocyanate has tolylene, diphenylmethane, naphthylene, tolidine, xylene, and triphenylmethane as a skeleton. Polyisocyanate compounds, alicyclic polyisocyanates include isophorone, polyisocyanate compounds having a hydrogenated diphenylmethane skeleton, and aliphatic polyisocyanates include polyisocyanate compounds having a skeleton of hexamethylene and lysine, both of which can be used. However, from the viewpoint of versatility, handleability, weather resistance, and the like, tolylene, diphenylmethane, particularly polyisocyanate of diphenylmethane is preferably used.
[0027]
After pre-foaming and secondary foam, very fine foam cells were formed, which were inferior to currently used polystyrene foam cells. The reason for this is that an amorphous resin, which is easy to foam, is microdispersed in polylactic acid, so that the number of foaming origins becomes extremely large and foams all at once from the foaming origin. It is done.
[0028]
The resin composition of the present invention is made into pellets or beads, and then impregnated with a foaming agent and a foaming aid. The impregnated particles are usually heated to primary foaming (pre-foaming) to form foamed particles having a foaming ratio of 30 to 50 times, and then filled into a mold and further heated to secondary foam, and the desired molding. Mold into the body.
[0029]
The size of the pellet or bead impregnated with the foaming agent and the foaming aid is appropriately selected according to the size, shape, etc. of the molded body. In the case of foamed polystyrene, the diameter is usually 0.5-2 mm. Used. In the case of a precise molded body, a diameter of 0.5 to 1 mm is common.
[0030]
Examples of the foaming agent and foaming aid used herein include hydrocarbons such as propane, n-butane, isobutane, n-pentane, isopentane, neopentane, cyclopentane, and hexane, and halogens such as methyl chloride, methylene chloride, and dichlorodifluoromethane. Hydrocarbons, ethers such as dimethyl ether and methyl ethyl ether, etc. are used as foaming agents, and alcohols having 1 to 4 carbon atoms, ketones, ethers, benzene, toluene and the like are used as foaming aids.
[0031]
The combination of the foaming agent and the foaming aid must be appropriately selected depending on the resin to be used. Butane, pentane or a mixture thereof is used as the foaming agent, and the foaming aid combined with this is one having 1 to 4 carbon atoms. Hydric alcohol is preferred. There are various other combinations and can be selected in view of the purpose and economy.
[0032]
The use ratio (volume ratio) of the foaming agent and the foaming aid can be foaming agent / foaming aid = 1/2 to 10/1, but varies depending on the combination of the foaming agent and the foaming aid. 1-5 / 1 is common. The impregnation amount of the foaming agent and the foaming aid varies depending on the target foaming ratio and the storage period of the pellets or beads, but the foaming agent is usually 5 to 15% by weight. Generally, a low foam product can be handled by reducing the impregnation amount, and a high foam product can be handled by increasing the impregnation amount.
[0033]
The pellets or beads impregnated with the foaming agent and the foaming aid are pre-foamed and then placed in a desired mold and further heated to foam, and the pellets or beads are fused together to form a strong molded body. Mold. This is basically the same as the molding method of polystyrene (PS) foam. That is, steam having a large heat capacity is used for both preliminary foaming and foam molding. Although foaming with hot air is possible, the foaming efficiency is not good because the heat capacity is small. Therefore, it is unsuitable for highly foamed products.
[0034]
In order to form a more uniform and fine foam cell, it is useful to add a foam nucleating agent. Examples of the foam nucleating agent to be used include solid particles such as talc, silica, kaolin, zeolite, mica. Inorganic particles such as alumina, carbonates or bicarbonates, salts such as alkali metal salts of carboxylic acids are preferably used. Among these, talc is particularly preferably used for the resin composition of the present invention.
[0035]
As the nucleating agent, those having a particle diameter of about 0.5 to 30 μm are preferable because the dispersion state with respect to the resin is good and stable bubbles are obtained. The amount to be added is usually 0.1% by weight or more, preferably 30% by weight at the most with respect to the resin composition. A more preferred range is 0.5 to 5% by weight. If less than 0.1% by weight, no effect is observed. If the added amount exceeds 30% by weight, the effect is limited, and the advantage is that it is lightweight due to a decrease in mechanical properties and an increase in specific gravity. Will be damaged.
[0036]
Further, other additives can be appropriately added according to the purpose, and examples thereof include a heat stabilizer, an antioxidant, an ultraviolet absorber, and a plasticizer. However, flame retardants are often halides such as chlorine and bromine, and should be kept to a minimum from the viewpoint of generation of harmful substances during biodegradation and incineration.
[0037]
【Example】
Hereinafter, the present invention will be described more specifically with reference to examples and comparative examples. The evaluation was performed by the following method.
[0038]
(Evaluation methods)
(1) MI: Polylactic acid: Measured by a method based on JIS K 7210. Measurement conditions: measurement temperature 190 ° C., orifice diameter 2 mm, load 2.16 kgf.
Resin composition: Measured by a method based on JIS K 7210. Measurement conditions: measurement temperature 190 ° C., orifice diameter 2 mm, load 21.6 kgf.
[0039]
(2) Foaming ratio (times): Using a graduated cylinder, the volume before foaming of the foaming agent impregnated pellets and the volume of the pre-foamed particles were measured, and the foaming ratio (times) was calculated by the following formula.
Expansion ratio (times) = volume of pre-expanded particles / volume before expansion of foaming agent impregnated pellets
(3) Foamed cell evaluation: Foaming agent-impregnated resin composition and foaming polystyrene particles ("Lyupearl 55KS Y-3171" manufactured by Dainippon Ink Industries, Ltd.) as a control were foamed 30 to 35 times by steam treatment, The states of the foamed cells cut and produced on the plane passing through the center point of the foamed particles were relatively compared.
A: The size of the expanded cell is similar to that of the expanded polystyrene. ○: The expanded cell size is slightly larger than the expanded polystyrene. X: The expanded cell size is clearly larger than the expanded polystyrene. That cannot be compared [0041]
(4) Biodegradability: Pre-expanded particles were placed in compost for 2 months and evaluated in the following manner in the appearance.
A: Almost completely decomposed and there is a very small amount of residue visually. ○: Most of the residue is decomposed and disappeared, but there is a residue that is not partially decomposed visually. Δ: A portion is decomposed and disappeared. Residues that do not substantially decompose visually: No change at all visually [0042]
(5) Heat resistance: A foam was molded from the pre-foamed particles, and a test piece of 100 × 100 × 30 mm was cut out from the foamed molded product and evaluated by dimensional change when treated in an oven at 100 ° C. for 2 hours.
◎: No change ○: Change less than 3% Δ: Change less than 3-10% ×: Change of 10% or more −: Foam molded article cannot be collected and compared
(6) Compressive stress ratio: A 30 × 30 × 30 mm test piece was cut out from the foam, measured at a load speed of 10 mm / min, and evaluated by a stress ratio with polystyrene (PS) at 50% compression.
[0044]
Production Example Polylactic acid: Commercially available L-lactide and D-lactide were purified by recrystallization using ethyl acetate. Purified L-lactide, D-lactide, and tin octylate as a catalyst were charged in a predetermined amount of autoclave with stirring, degassed under reduced pressure, and then subjected to a polymerization reaction at a predetermined temperature and for a predetermined time in a nitrogen gas atmosphere to obtain the results in Table 1. .
[0045]
[Table 1]
Figure 0003802680
[0046]
Examples 1-12, Comparative Examples 1-5
A predetermined amount of polystyrene resin is added to polylactic acid of P1 to 10 and an isocyanate compound ("Millionate MR-200" manufactured by Nippon Polyurethane Industry Co., Ltd.) having an isocyanate group of 2.7 to 2.8 equivalents / mol is 1 per polylactic acid. A cylinder temperature of 180 wt.% And a talc (“LMP100” manufactured by Fuji Talc Kogyo Co., Ltd.) 1.0 wt. Each resin composition was obtained by kneading at ° C.
[0047]
After measuring the MI of these resin compositions, 2000 parts of the resin composition, 1200 parts of isopentane and 240 parts of methanol as a blowing agent were charged in a rotary reaction vessel and sealed, and then the reaction vessel was rotated at a rate of 10 revolutions / minute. The temperature was raised at a rate of 20 ° C./hour and held at 70 ° C. for 1 hour. Then, it cooled to room temperature, took out the foaming agent impregnation resin composition, air-dried, measured the weight, and calculated | required the impregnation rate. Next, the obtained resin composition was prefoamed with water vapor (92 ° C., 1 minute), and the expansion ratio and biodegradability were measured and evaluated.
[0048]
Further, after pre-expanded particles were aged for one day, a foam molded body of 300 × 300 × 30 mm was obtained with a foam molding machine under conditions of a water vapor pressure of 0.5 kg / cm 2 and a heating time of 30 seconds. A test piece was cut out and evaluated for heat resistance and compressive stress. As a control for each evaluation, a commercially available foamed styrene “Lyupearl 55KSY-3171” (manufactured by Dainippon Ink Industries, Ltd.) was used. The evaluation is shown in Tables 2 and 3.
[0049]
[Table 2]
Figure 0003802680
[0050]
[Table 3]
Figure 0003802680
[0051]
(Evaluation results)
The foaming ratio of the resin composition having the same polystyrene level (added amount 10%) and L / D ratio of 95/5 to 5/95 is excellent, and the L / D ratio is 90/10 to 10/90. Especially excellent. When L / D was less than 60/40 to 40/60, the mechanical properties such as heat resistance and compressive stress of the foam were low, and the foamed cells were large. When the addition amount of polystyrene was 1% or more, the foamed cells became uniform and fine, and when the addition amount was 5% or more, it reached a level comparable to the polystyrene foam particles currently used.
[0052]
Examples 11-20, Comparative Examples 6-8
A predetermined amount of polystyrene resin is blended with P3 polylactic acid, and the average isocyanate group is 1.8 eq / mol, average 2.0 eq / mol with respect to polylactic acid ("Millionate MT" manufactured by Nippon Polyurethane Industry Co., Ltd.) 2.3 equivalents / mole on average ("Millionate MT" / "Millionate MR-200" manufactured by Nippon Polyurethane Industry Co., Ltd.), average 2.7 equivalents / mole to 2.8 equivalents / mole ("Millionate MR-200") Nippon Polyurethane Industry Co., Ltd.), an average of 3.0 equivalents / mol (“PAPI20J” manufactured by Mitsubishi Chemical Co., Ltd.) and 1.0% by weight of talc (“LMP100” manufactured by Fuji Talc Industry Co., Ltd.) Each resin composition was obtained by kneading at a cylinder temperature of 180 ° C. with a biaxial kneader (PCM30, manufactured by Ikekai Tekko Co., Ltd.) so as to have the composition shown in Table 3. Hereinafter, impregnation of the foaming agent, foaming test and evaluation were performed in the same manner as in Examples 1 to 12 and Comparative Examples 1 to 5. The results are shown in Tables 4 and 5.
[0053]
[Table 4]
Figure 0003802680
[0054]
[Table 5]
Figure 0003802680
[0055]
Examples 21-23, Comparative Examples 8-12
2% by weight of an isocyanate compound having an isocyanate group of 2.7 to 2.8 equivalents / mol based on polylactic acid is added to a mixture obtained by blending 10% by weight of the resin described in Table 6 with P3 polylactic acid. Each resin composition was obtained by kneading at a cylinder temperature of 180 ° C. using a shaft kneader (PCM30, manufactured by Ikekai Tekko Co., Ltd.).
Hereinafter, impregnation, foaming and evaluation of the foaming agent were performed in the same manner as in Examples 1 to 12 and Comparative Examples 1 to 5, and the results are shown in Tables 6 and 7.
[0056]
[Table 6]
Figure 0003802680
[0057]
[Table 7]
Figure 0003802680
[0058]
【The invention's effect】
As described above, the resin composition of the present invention has foamability, heat resistance, and mechanical properties comparable to those of polystyrene (PS) that has been conventionally used, and is extremely excellent in biodegradability, contributing to global environmental conservation. Resin.

Claims (7)

L体とD体のモル比が95/5〜60/40、又は40/60〜5/95であるポリ乳酸(A)と、ポリカーボネート、ポリスチレン及びガラス転移点が60℃以上の共重合ポリエチレンテレフタレートの群から選ばれた非晶性樹脂(B)とをA/B=99/1〜80/20の割合で配合し、イソシアネート基≧2.0当量/モルのポリイソシアネート化合物を該ポリ乳酸に対して0.5〜5重量%配合した樹脂組成物。  Polylactic acid (A) having a molar ratio of L-form to D-form of 95/5 to 60/40, or 40/60 to 5/95, polycarbonate, polystyrene, and copolymer polyethylene terephthalate having a glass transition point of 60 ° C. or higher And an amorphous resin (B) selected from the group of A / B = 99/1 to 80/20, and a polyisocyanate compound having an isocyanate group ≧ 2.0 equivalents / mol is added to the polylactic acid. A resin composition containing 0.5 to 5% by weight. ポリ乳酸のL体とD体のモル比が90/10〜70/30、又は30/70〜10/90である請求項1に記載の樹脂組成物。  The resin composition according to claim 1, wherein the polylactic acid has an L-form and D-form molar ratio of 90/10 to 70/30, or 30/70 to 10/90. イソシアネート化合物がイソシアネート基≧2.3当量/モルである請求項1に記載の樹脂組成物。  The resin composition according to claim 1, wherein the isocyanate compound has an isocyanate group ≧ 2.3 equivalent / mol. イソシアネート化合物の配合量が1〜3重量%である請求項1に記載の樹脂組成物。  The resin composition according to claim 1, wherein the amount of the isocyanate compound is 1 to 3% by weight. ポリ乳酸と非晶性樹脂の配合割合が95/5〜90/10である請求項1に記載の樹脂組成物。  The resin composition according to claim 1, wherein the blending ratio of polylactic acid and amorphous resin is 95/5 to 90/10. 非晶性樹脂がポリスチレンである請求項1に記載の樹脂組成物。  The resin composition according to claim 1, wherein the amorphous resin is polystyrene. 請求項1〜6何れか一項に記載の樹脂組成物からなる発泡粒子。Expanded particles comprising the resin composition according to any one of claims 1 to 6.
JP18390698A 1998-06-30 1998-06-30 Expandable resin composition having biodegradability Expired - Fee Related JP3802680B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18390698A JP3802680B2 (en) 1998-06-30 1998-06-30 Expandable resin composition having biodegradability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18390698A JP3802680B2 (en) 1998-06-30 1998-06-30 Expandable resin composition having biodegradability

Publications (2)

Publication Number Publication Date
JP2000017038A JP2000017038A (en) 2000-01-18
JP3802680B2 true JP3802680B2 (en) 2006-07-26

Family

ID=16143892

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18390698A Expired - Fee Related JP3802680B2 (en) 1998-06-30 1998-06-30 Expandable resin composition having biodegradability

Country Status (1)

Country Link
JP (1) JP3802680B2 (en)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4635292B2 (en) * 2000-04-04 2011-02-23 東レ株式会社 POLYLACTIC ACID RESIN POWDER, PROCESS FOR PRODUCING THE SAME, AND AGRE
JP4610101B2 (en) * 2001-02-20 2011-01-12 株式会社クレハ Dust collection paper bag for electric vacuum cleaner
JP2009114458A (en) * 2002-11-29 2009-05-28 Toray Ind Inc Resin composition
JP4423947B2 (en) * 2002-11-29 2010-03-03 東レ株式会社 Resin composition
JP4491337B2 (en) * 2004-02-06 2010-06-30 大阪瓦斯株式会社 Biodegradable plastic material and molded body
CN101942182B (en) 2004-09-17 2012-05-23 东丽株式会社 Resin composition and molding comprising the same
JP4588440B2 (en) * 2004-12-28 2010-12-01 アキレス株式会社 Foam
JP4746891B2 (en) * 2005-02-24 2011-08-10 出光興産株式会社 Flame retardant resin composition and molded body thereof
JP4993866B2 (en) * 2005-03-01 2012-08-08 出光興産株式会社 Thermoplastic resin composition and molded body
JP5124951B2 (en) * 2006-02-03 2013-01-23 東レ株式会社 Resin composition and molded article comprising the same
JP2008056869A (en) * 2006-09-04 2008-03-13 Kaneka Corp Polylactic acid-based expandable particle, expanded particle, and expanded molding therefrom
EP2135724B1 (en) 2007-03-29 2017-06-07 Sekisui Plastics Co., Ltd. Polylactic acid-based resin foamed particles for in-mold foam-molding and method for producing the same, as well as method for producing polylactic acid-based resin foam-molded article
JP5113508B2 (en) * 2007-12-25 2013-01-09 ユニチカ株式会社 Biodegradable polyester resin composition and foam and molded product obtained therefrom
KR101082486B1 (en) 2007-12-28 2011-11-11 주식회사 삼양홀딩스 Biodegradable resin composition
EP2147934A1 (en) 2008-07-25 2010-01-27 Total Petrochemicals France Process to make a composition comprising a monovinylaromatic polymer and a polymer made from renewable resources
JP5309298B2 (en) * 2008-12-16 2013-10-09 名古屋市 Polylactic acid resin composition and method for producing the same
JP2009108328A (en) * 2009-01-09 2009-05-21 Fujitsu Ltd Resin casing using biodegradable resin composition
US20120009420A1 (en) 2010-07-07 2012-01-12 Lifoam Industries Compostable or Biobased Foams
US8962706B2 (en) 2010-09-10 2015-02-24 Lifoam Industries, Llc Process for enabling secondary expansion of expandable beads
JP5018947B2 (en) * 2010-09-24 2012-09-05 東レ株式会社 White polylactic acid film
CN107459799A (en) * 2017-08-02 2017-12-12 北京汽车股份有限公司 Composite foam material and preparation method thereof, part and automobile

Also Published As

Publication number Publication date
JP2000017038A (en) 2000-01-18

Similar Documents

Publication Publication Date Title
JP3802680B2 (en) Expandable resin composition having biodegradability
JP3937727B2 (en) Resin composition for foam having biodegradability
JP5014127B2 (en) Polyhydroxyalkanoate resin expanded particles, molded product thereof, and method for producing the expanded resin particles
US5314927A (en) Polyester foamed articles and method for producing the same
JP3871822B2 (en) Expandable resin composition having biodegradability
JP4019747B2 (en) Expandable particles, expanded particles and expanded molded articles comprising a polyester resin composition
JP3811747B2 (en) Expandable resin composition having biodegradability
JP2000230029A (en) Antistatic resin composition
JP3802681B2 (en) Expandable resin composition having biodegradability
JP4578094B2 (en) Biodegradable foam beads, method for producing the same, and biodegradable foam molded product
JP2002020526A (en) Expandable resin beads
JP2001098104A (en) Biodegradable expanded particles and molded products thereof
JP3737396B2 (en) Expanded particles and molded bodies
JP3787447B2 (en) Expandable resin composition having biodegradability
JP3907047B2 (en) Method for producing foamed molding
JP2609795B2 (en) Polyester expandable particles and foam
JP4293489B2 (en) Method for producing foamed molded article having biodegradation
JP3879433B2 (en) Polyester resin composition
JP2001164027A (en) Expanded polylactic acid particles, molded product thereof and method for producing the same
JP2005264166A (en) Foamed particle and molded product
JP2001098044A (en) Biodegradable and foamable polylactic acid resin composition
JP2003301067A (en) Heat resistant foamed particle of polylactic acid and its molded product, and manufacturing method thereof
JP3899303B2 (en) Foam molded body and method for producing the same
JP2000086802A (en) Biodegradable conductive resin composition for molded foam
JP2003301068A (en) Molded product made of foamed particles of polylactic acid and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040922

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20050509

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20050530

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050510

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050530

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20050627

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050627

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051012

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051018

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060425

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060428

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100512

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees