[go: up one dir, main page]

JP3802580B2 - Electrolyzed water generator - Google Patents

Electrolyzed water generator Download PDF

Info

Publication number
JP3802580B2
JP3802580B2 JP05080095A JP5080095A JP3802580B2 JP 3802580 B2 JP3802580 B2 JP 3802580B2 JP 05080095 A JP05080095 A JP 05080095A JP 5080095 A JP5080095 A JP 5080095A JP 3802580 B2 JP3802580 B2 JP 3802580B2
Authority
JP
Japan
Prior art keywords
electrode
chamber
power supply
electrolyzed water
electrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP05080095A
Other languages
Japanese (ja)
Other versions
JPH08164392A (en
Inventor
裕 鈴木
由美 内田
和義 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoshizaki Electric Co Ltd
Original Assignee
Hoshizaki Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoshizaki Electric Co Ltd filed Critical Hoshizaki Electric Co Ltd
Priority to JP05080095A priority Critical patent/JP3802580B2/en
Publication of JPH08164392A publication Critical patent/JPH08164392A/en
Application granted granted Critical
Publication of JP3802580B2 publication Critical patent/JP3802580B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、次亜塩素酸、次亜塩素酸ナトリウム等を含有し殺菌作用、消毒作用を有するpH3〜7の範囲の弱酸性〜中性の電解水を製造するための電解水生成装置に関する。
【0002】
【従来の技術】
次亜塩素酸、次亜塩素酸ナトリウム等を含有し殺菌作用、消毒作用を有する電解水を製造するための電解水生成装置の一形式として、特公平4−42077号公報に示されているように、電解槽内をイオン透過能を有する隔膜にて区画して形成された一対の隔室にそれぞれ電極を配置して陽極室と陰極室とを構成し、これら両電極室に供給される希薄食塩水を両電極間で電解する電解水生成装置がある。当該電解水生成装置においては、陽極室内で次亜塩素酸を含む酸性水が生成されるとともに、陰極室内でアルカリ性水が生成される。
【0003】
【発明が解決しようとする課題】
ところで、当該電解水生成装置においては、陽極室側生成水はpHが2〜3という強い酸性水となる。次亜塩素酸、次亜塩素酸ナトリウム等を含む水溶液ではpHが低い程殺菌力は高く、殺菌力の点からすれば低pH程好ましいが、処理すべき用途により最適なpHは異なる。例えば、野菜類では、水溶液が低pHである場合には褐色に変色し易く、その最適pHは6〜7である。また、手等皮膚の殺菌液、消毒液に使用する場合も中性に近いほうが好ましい。従って、当該電解水生成装置においては、陽極室側生成水のpHを調整して弱酸性〜中性にする手段が採られている。
【0004】
すなわち、当該電解水生成装置では、陽極室側生成水のpHを調整する手段として、酸性である陽極室側生成水と、アルカリ性である陰極室側生成水と、原水とを、規定された量だけ互いに混合する手段が採られている。しかしながら、かかる混合手段を採用するには、これらの陽極室側生成水、陰極室側生成水、および原水を規定量だけ混合するための各制御バルブが必要であるとともに、これらの各水の混合量を正確に制御するための制御装置、および面倒な制御方法が必要となる。
【0005】
従って、本発明の目的は、各種の制御バルブ、制御装置、および面倒な制御方法を要することなく、電解時に一方の電極室内にてpH3〜7の弱酸性〜中性の生成水を生成させることにある。
【0006】
【課題を解決するための手段】
本発明に係る電解水生成装置は、電解槽内をイオン透過能を有する隔膜にて区画して形成された一対の隔室のうち、一方の隔室には第1,第2の2枚の電極を互いに対向して配置して第1の電極室を構成するとともに、他方の隔室には第3の1枚の電極を配置して第2の電極室を構成してなり、被電解水の前記第1の電極室内での電解と、同第1の電極室と前記第2の電極室間での電気透析を同時に行うことを特徴とするものである。
【0007】
当該電解水生成装置においては、前記被電解水として希薄食塩水を採用し、同希薄食塩水を前記両電極室に供給する態様、前記被電解水として希薄食塩水を採用し、前記第1の電極室に同希薄食塩水を供給するとともに、前記第2の電極室には通常の水を供給する態様を採ることができる。
【0008】
また、当該電解水生成装置においては、前記両電極室に配置されている各電極は2つの直流電源のいずれかの極に接続するようにして、前記両電極室のうち、第1の電極室に配置されている第1電極を一方の直流電源の正極に接続するとともに、第2電極を一方の直流電源の負極と他方の直流電源の正極に接続し、かつ、第2の電極室に配置されている第3電極を他方の直流電源の負極に接続する構成とすることができる。また、当該電解生成水装置においては、前記両電極室に配置されている各電極を2つの直流電源のいずれかの極に接続するようにして、前記両電極室のうち、第1の電極室に配置されている第1電極を一方の直流電源の正極に接続第2電極を一方の直流電源の負極と他方の直流電源の正極に接続するとともに他方の直流電源の負極に接続し、かつ、第2の電極室に配置されている第3電極を一方の直流電源の負極と他方の直流電源の正極に接続するとともに他方の直流電源の負極に接続して、一方の直流電源の正極に対する前記第1電極の接続回路には、同第1電極と一方の直流電源との接続を断続する断続スイッチを介装し、一方の直流電源の負極と他方の直流電源の正極に対する前記第2電極および前記第3電極の接続回路には、これら両電極と両直流電源の接続を切替動作する第1切替えスイッチを介装し、かつ、他方の直流電源の負極に対する前記第2電極および前記第3電極の接続回路には、これら両電極と他方の直流電源の接続を切替動作する第2切替えスイッチを介装する構成とすることができる。これらの構成においては、第2電極として、水が自由に透過し得る通水性の良好な電極、例えばラスメタル、パンチングメタル等の多孔板の電極を採用することが好ましい。
【0009】
また、本発明に係る電解水生成装置は、電解槽内をイオン透過能を有する隔膜にて区画して形成された一対の隔室のうち、一方の隔室には第1,第2の2枚の電極を互いに対向して配置して第1の電極室を構成するとともに、他方の隔室には第3,第4の2枚の電極を互いに対向して配置して第2の電極室を構成してなり、被電解水の前記第1の電極室内での電解と同第1の電極室と前記第2の電極室間での電気透析を同時に行う第1の処理と、被電解水の前記第2の電極室内での電解と同第2の電極室と前記第1の電極室間での電気透析とを同時に行う第2の処理とを選択的に行うことを特徴とするものである。
【0010】
当該電解水生成装置においては、前記両電極室に配置されている各電極を2つの直流電源のいずれかの極に接続するようにし、前記両電極室のうち、第1の電極室に配置されている第1電極を一方の直流電源の正極と他方の直通電源の負極に接続するとともに、第2電極を一方の直流電源の負極と他方の直流電源の正極に接続し、かつ、第2の電極室に配置されている第3電極を一方の直流電源の負極と他方の直流電源の正極に接続するとともに、第4電極を一方の直流電源の正極と他方の直通電源の負極に接続し、一方の直流電源の正極に対する前記第1電極および前記第4電極の接続回路には、これら両電極と一方の直流電源の接続を切替動作する第1切替スイッチを介装し、一方の直流電源の負極と他方の直流電源の正極に対する前記第2電極および前記第3電極の接続回路には、これら両電極と両直流電源の接続を切替動作する第2切替スイッチを介装し、かつ、他方の直流電源の負極に対する前記第1電極および前記第4電極の接続回路には、これら両電極と他方の直流電源の接続を切替動作する第3切替スイッチを介装するように構成することができる。
【0011】
【発明の作用・効果】
このように構成した各電解水生成装置のうち、前者の電解水生成装置においては、2枚の電極が配置されている第1の電極室内で被電解水を電解することができ、同時に電解生成水を第1の電極室と第2の電極室間で電気透析することができる。この場合、これら両電極間の電流および/または電圧を調整することにより第1の電極室内で生成される生成水のpHを3〜7の範囲に調整することができる。
【0012】
当該電解水生成装置においては被電解水として希薄食塩水が採用されるが、この希薄食塩水は第1,第2の両電極室に同様に供給してもよく、またこの希薄食塩水を第1の電極室に供給するとともに第2の電極室には通常の水を供給するようにしてもよい。当該電解水生成装置においては、電解は主として第1の電極室内の第1電極と第2電極間でなされ、第2電極と第2の電極室の第3電極間では主としてナトリウムイオン等陽イオン成分の電気透析がなされることから、前者のごとく第2の電極室にも希薄食塩水を供給する場合には同食塩水はさほど有効には利用されない。これに対して、当該電解水生成装置において、後者のごとく第1の電極室には希薄食塩水を供給するとともに第2の電極室には通常の水を供給するようにした場合には、第1の電極室での電解生成水の生成には影響を及ぼすことがないとともに、第2の電極室へ供給する分の希薄食塩水の使用を節約することができて、希薄食塩水を有効に利用することができる。
【0013】
また、当該電解水生成装置において、第1の電極室の第2電極と第2の電極室の第3電極が第1の電極室の第1電極が非通電時に、極性を互いに選択的に切替え可能に構成すれば、電解水生成水の生成運転の途中または終了後に第2電極と第3電極を正、負各極性に交互に切替えて運転することでができて、各電極および各電極室内に付着する電解時に発生したスケールを除去することができる。これにより、電解生成装置を効率よく洗浄することができる。この場合、電解時に陽極専用として使用する第1電極には通電しないため負荷がかからず、第1電極として電解効率のよい白金イリジウム系の焼成電極を使用しても、イリジウムの溶出による第1電極の劣化が抑制され、第1電極の寿命を向上させることができる。また、第2電極および第3電極については、これら両電極間での電解を行わないことから、電解効率が低いが耐久性が高くてコストの低い白金鍍金チタン系の電極を採用することができて、有利である。
【0014】
また、上記した各電解水生成装置のうちの後者の電解水生成装置においては、被電解水の第1の電極室内での電解と同第1の電極室と第2の電極室間での電気透析を同時に行う第1の処理と、被電解水の第2の電極室内での電解と同第2の電極室と前記第1の電極室間での電気透析とを同時に行う第2の処理とを選択的に行うことができる。これらの各処理においては、前者の電解水生成装置の場合と同様に、電解生成水のpHを3〜7の弱酸性〜中性の範囲に調整することができるとともに、各処理を交互に行うことにより、両電極室が陽極室と陰極室に交互に切替えられて、これにより各電極室および各電極上のスケールが除去され、電解水生成装置を清浄な状態に保持し得て長時間の連続運転が可能となる。
【0015】
【実施例】
(第1実施例)
図1は本発明の第1実施例に係る電解水生成装置10を示しており、電解槽11は隔膜12にて内部を2つの隔室に区画されている。各隔室のうち、一方の隔室には2枚の電極13a,13bが配設されかつ他方の隔室には1枚の電極13cが配置されて、一方の隔室が第1電極室14aに、他方の隔室が第2電極室14bに構成されている。隔膜12はイオン透過性を有する半透膜である。各電極のうち、第1電極13aおよび第3電極13cは平板状あり、また第2電極13bはラスメタルからなる通水性の良好なものである。第1電極13aと第2電極13bは第1電極室14a内にて互いに対向しており、また第2電極13bと第3電極13cは隔膜12を挟んで互いに対向している。
【0016】
これらの電極13a,13b,13cは2個の直流電源15a,15bに接続されている。これらの直流電源15a,15bは互いに直列的に接続されており、第1電極13aは第1電源15aの陽極に接続され、第2電極13bは両電源15a,15bの陰極、陽極を接続する接続線に接続され、第3電極13cは第2電源15bの陰極に接続されている。当該電解水生成装置10においては、供給ポンプ16aの駆動により貯溜タンク16bから希薄食塩水が両電極室14a,14bに供給され、同食塩水は第1電極室14a内にて電解され、かつ第1電極室14aと第2電極室14b間では電気透析がなされて、電解生成されて電気透析された一方の生成水が第1電極室14aから第1流出管17aを通して流出され、かつ他方の生成水が第2電極室14bから第2流出管17bを通して流出される。
【0017】
このように構成した電解水生成装置10においては、第1電極13aおよび第2電極13bが配置されている第1電極室14aが電解槽として機能するとともに、第3電極13cが配置されている第2電極室14bと第1電極室14a間が電気透析槽として機能し、供給される希薄食塩水は第1電極室内の第1電極13aと第2電極13b間で電解され、電解生成水は隔膜12を介して対向する第2電極13bと第3電極13c間で電気透析される。この場合、第1電極室14aで生成されるナトリウムイオン等陽イオン成分が第2電極室14b側へ透過して、第1電極室14aで生成される電解水を弱アルカリ性から中性〜酸性に移行させる。このため、第2電極13bと第3電極13c間の電流および/または電圧を調整することにより、第1電極室14a内で生成される陽イオン成分の透過量を制御し得て、第1電極室側生成水のpHを3〜7の範囲に容易に調整することができる。
【0018】
当該電解水生成装置10を使用して希薄食塩水の電解実験1および電解実験2を行った。電解実験1においては、被電解水として0.10wt%の希薄食塩水を採用し、第1電極13aと第2電極13b間の電流,電圧を20A,5Vに、第2電極13bと第3電極13c間の電流、電圧を表1に示す値に、各流出管17a,17bからの生成水の流出量を2.0L/minにそれぞれ設定して行い、各電極室14a,14bから流出する生成水として表1に示す特性の第1電極室側生成水と、第2電極室側生成水を得た。また、電解実験2においては、被電解水として0.15wt%の希薄食塩水を採用し、第1電極13aと第2電極13b間の電流,電圧を30A,6Vに、第2電極13bと第3電極13c間の電流,電圧を表2に示す値に、各流出管17a,17bからの生成水の流出量を0.5L/minにそれぞれ設定して行い、各電極室14a,14bから流出する生成水として表2に示す特性の第1電極室側生成水および第2電極室側生成水を得た。
【0019】
【表1】

Figure 0003802580
【0020】
【表2】
Figure 0003802580
【0021】
(第2実施例)
図2は本発明の第2実施例に係る電解水生成装置20を示しており、当該電解水生成装置20において、電解槽21は第1実施例に係る電解水生成装置10の電解槽11と同一の構成のもので、隔膜22にて区画された各区画室のうち一方の隔室は第1電極23aと第2電極23bを配置されて第1電極室24aに構成され、かつ他方の隔室は第3電極23cを配置されて第2電極室24bに構成されている。各電極23a,23b,23cは各直流電源25a,25bに対して、第1実施例の各電極13a,13b,13cと同様に直列的に接続されている。しかして、当該電解水生成装置20においては、供給ポンプ26aの駆動により、第1電極室24aに貯溜タンク26bから希薄食塩水が供給され、かつ第2電極室24bには通常の水である水道水が供給される。
【0022】
このように構成した電解水生成装置20においては、第1電極23aおよび第2電極23bが配置されている第1電極室24aが電解槽として機能するとともに、第3電極23cが配置されている第2電極室24bと第1電極室24a間が電気透析槽として機能し、供給される希薄食塩水は第1電極室24a内の第1電極23aと第2電極23b間で行われ、隔膜22を介して対向する第2電極23bと第3電極23c間では電気透析が行われる。この電気透析においては、第1電極室24aで生成されるナトリウムイオン等陽イオン成分が第2電極室24b側へ透過して、第1電極室24aで生成される生成水を弱アルカリ性から中性〜酸性に移行させる。
【0023】
従って、第2電極23bと第3電極23c間の電流および/または電圧を調整することにより第1電極室24a内で生成される陽イオン成分の透過量を制御し得て、第1電極室側生成水のpHを3〜7の範囲に容易に調整することができる。この場合、第1電極室24aのみに希薄食塩水を供給しているにすぎないが、第1電極室側生成水の生成には何等の影響も及ぼすことがないとともに、第2電極室24bへは水道水を供給することにより希薄食塩水の使用を節約することができて、希薄食塩水を有効に利用することができる。
【0024】
当該電解水生成装置20を使用して希薄食塩水の電解実験を行った。電解実験においては、被電解水として0.10wt%の希薄食塩水(水温26℃)を採用して、この希薄食塩水を第1電極室24aに流量2.5L/minで供給するとともに、第2電極室24bには水道水(水温26℃)を流量2.0L/minで供給して電解、および電気透析を行った。また、第1電極23aと第2電極23b間、および第2電極23bと第3電極23c間の電流,電圧は表3に示す値に設定した。各電極室24a,24bから流出する生成水として表3に示す特性の第1電極室側生成水と第2電極室側生成水が得られ、かかる特性に基づく第2電極23bと第3電極23c間の電圧と第1電極室側生成水のpH、有効塩素量との関係を図5および図6のグラフに示す。
【0025】
【表3】
Figure 0003802580
【0026】
(実施例3)
図3は本発明の第3実施例に係る電解水生成装置30を示しており、電解槽31は隔膜32にて内部を2つの隔室に区画されている。各隔室のうち、一方の隔室には2枚の電極33a,33bが配設されかつ他方の隔室にも2枚の電極33c,33dが配置されて、一方の隔室が第1電極室34aに構成され、かつ他方の隔室が第2電極室34bに構成されている。隔膜32はイオン透過性を有する半透膜である。各電極のうち、第1電極33aおよび第4電極33dは平板状あり、また第2電極33bおよび第3電極33cはラスメタルからなる通水性の良好なものである。第1電極33aと第2電極33bは第1電極室34a内にて互いに対向し、第3電極33cと第4電極33dは第2電極室34b内にて互いに対向しており、また第2電極33bと第3電極33cは隔膜32を挟んで互いに対向している。
【0027】
これらの電極33a,33b,33c,33dは2個の直流電源35a,35bに接続されている。これらの直流電源35a,35bは互いに直列的に接続されており、第1,第4電極33a,33dは第1電源35aの陽極と第2電源35bの陰極に第1,第2切替スイッチ36a,36bを介して接続され、第2,第3電極33b,33cは第3切替えスイッチ36cを介して両電源35a,35bの陰極、陽極を接続する接続線に接続されている。
【0028】
各切替えスイッチ36a,36b,36cは互いに連動して動作するもので、図3に示す接続状態においては、第1電極室34aを電解槽に構成するとともに第2電極室34bと第1電極室24a間を電気透析槽に構成し、連動して切替え動作することにより、第1電極室34aと第2電極室34b間を電気透析槽に構成するとともに第2電極室34bを電解槽に構成する。本実施例においては以下、前者を第1の処理態様と称するとともに、後者を第2の処理態様を称する。
【0029】
当該電解水生成装置30においては、供給ポンプ37aの駆動により貯溜タンク37bから希薄食塩水が両電極室34a,34bに供給され、同食塩水は両電極室34a,34bにて処理され、各処理水は切替えバルブ38aを介して第1流出管38b、第2流出管38cから流出される。切替えバルブ38aは各切替えスイッチ36a,36b,36cと連動して切替え動作するもので、図示の状態においては第1流出管38bを第1電極室34aに接続するとともに、第2流出管38cを第2電極室34bに接続し、切替え動作によりこれとは逆の接続状態を構成する。
【0030】
このように構成した電解水生成装置30においては、図3に示す第1の処理態様においては、第1電極室34aが電解槽として機能するとともに第2電極室34bと第1電極室34a間が電気透析槽として機能し、供給される希薄食塩水は第1電極室34a内の第1電極33aと第2電極33b間で電解が行われ、第2電極33bと第2電極室34b内の第4電極33d間で電気透析が行われる。この電気透析においては、第1電極室34aで生成されるナトリウムイオン等の陽イオン成分が第2電極室34b側へ透過して、第1電極室34aで生成される第1電極室側生成水を弱アルカリ性から中性〜酸性に移行させる。
【0031】
従って、第2電極33bと第4電極33d間の電流および/または電圧を調整することにより第1電極室34a内で生成される陽イオン成分の透過量を制御し得て、第1電極室側生成水のpHを3〜7の範囲に容易に調整することができる。第1電極室34aにて生成される第1電極室側生成水は第1流出管38bから流出され、第2電極室34b内で生成される第2電極室側生成水は第2流出管38cから流出される。
【0032】
また、当該電解水生成装置30の図3に示す第1の処理態様において、各切替えスイッチ36a,36b,36cおよび切替えバルブ38aを切替え動作させると、第2の処理態様が構成される。この第2の処理態様においては、第1電解室34aと第2電極室34b間が電気透析槽として機能するとともに第2電極室34bが電解槽として機能し、供給される希薄食塩水は第2電極室34b内の第3電極33cと第4電極33d間で電解が行われ、第3電極33cと第1電極室34a内の第1電極33a間で電気透析が行われる。この電気透析においては、第2電極室34bで生成されるナトリウムイオンが第1電極室34a側へ透過して、第2電極室34bで生成される第2電極側生成水を弱アルカリ性から中性〜酸性に移行させる。
【0033】
従って、第3電極33cと第1電極33a間の電流および/または電圧を調整することにより第2電極室34b内で生成される陽イオンの透過量を制御し得て、第2電極室側生成水のpHを3〜7の範囲に容易に調整することができる。第2電極室34bにて生成される第2電極室側生成水は第1流出管38bから流出され、第1電極室34a内で生成される第1電極室側生成水は第2流出管38cから流出される。
【0034】
このように、当該電解水生成装置30においては、第1,第2のいずれの処理態様においても、電解生成水のpHを3〜7を弱酸性〜中性の範囲に調整することができるが、特に第1,第2の処理態様を交互に切換えて行うことにより、両電極室34a,34bが電解槽に交互に切替えられて、各電極室34a,34bおよび各電極33a〜33d上のスケールが除去され、電解水生成装置30を清浄な状態に保持し得て長時間の連続運転が可能となる。
【0035】
(実施例4)
図4には本発明の第4実施例に係る電解水生成装置40が示されている。当該電解水生成装置40において、電解槽41は基本的には図1に示す第1実施例に係る電解生成装置10の電解槽11と同一であり、第2電極43bと第3電極43cの直流電源45a,45bに対する接続関係がわずかに相違する。従って、以下にはかかる相違について詳細に説明するとともに、同一の構成部材および構成部位については、40番台の類似の符号を付してその詳細な説明を省略する。
【0036】
しかして、当該電解水生成装置40において、各電極43a,43b,43cは2個の直流電源45a,45bに接続されている。これらの直流電源45a,45bは互いに直列的に接続されており、第1電極43aは第1スイッチ48aを介して第1電源45aの陽極に接続され、かつ第2電極43bと第3電極43cは第2スイッチ48bを介して両電源45a,45bの陰極、陽極を接続する接続線に接続されているとともに、第3スイッチ48cを介して第2電源45bの陰極に接続されている。第1スイッチ48aは開閉スイッチであり、また第2,第3スイッチ48b,48cは切替えスイッチであって、これら両スイッチ48b,48cは互いに連動して動作する。
【0037】
各電極43a〜43cが図4に示す接続状態にある場合には、第1電極室44aが電解槽を構成するとともに第2電極室44bと第1電極室44a間が電気透析槽を構成する。従って、当該電解水生成装置40はこの接続状態においては、第1実施例に係る電解水生成装置10と同様に電解、および電気透析が行われ、第1電極室44aからはpH3〜7の生成水が流出する。
【0038】
一方、当該電解水生成装置40においては、電解水の生成運転途中または終了後に第1電極43aへの通電を停止した状態で第2電極43bと第3電極43cへ通電するとともに、所定時間通電した後、両切替えスイッチ48b,48cにより両電極43b,43cの電源に対する接続を切替えて所定時間通電する。これにより、両電極43b,43cを正、負各極性に交互に切替えることでができて、各電極43a〜43cおよび各電極室44a,44b内に付着する電解時に発生したスケールを除去することができて、電解水生成装置を効率よく洗浄することができる。当該電解水生成装置40の運転では例えば、電解水の生成運転を20時間行い、次いで洗浄運転を10分間おこなう。この洗浄運転では、両電極43b,43cの正負の切替えを5分後に行う。
【0039】
ところで、この洗浄運転では、電解時に陽極専用として使用する第1電極43aには通電しないため負荷がかからず、第1電極43aとして電解効率のよい白金イリジウム系の焼成電極を使用しても、イリジウムの溶出による第1電極43aの劣化が防止され、第1電極43aの寿命を向上させることができる。また、第2電極43bおよび第3電極43cについては、これら両電極間では電解を行わないことから、電解効率は低いが耐久性が高くてコストの低い白金鍍金チタン系の電極を採用することができる。このため、当該電解水生成装置40は電解水生成にとって極めて有利である。
【図面の簡単な説明】
【図1】本発明の第1実施例に係る電解水生成装置の概略構成図である。
【図2】同第2実施例に係る電解水生成装置の概略構成図である。
【図3】同第3実施例に係る電解水生成装置の概略構成図である。
【図4】同第4実施例に係る電解水生成装置の概略構成図である。
【図5】同第2実施例に係る電解水生成装置での電解実験における第2,第3電極間の電圧と第1電極室側生成水のpHの関係を示すグラフである。
【図6】同第2実施例に係る電解水生成装置での電解実験における第2,第3電極間の電圧と第1電極室側生成水の有効塩素量の関係を示すグラフである。
【符号の説明】
10,20,30,40…電解水生成装置、11,21,31,41…電解槽、12,22,32,42…隔膜、13a,23a,33a,43a…第1電極、13b,23b,33b,43b…第2電極、13c,23c,33c,43c…第3電極、33d…第4電極、14a,24a,34a,44a…第1電極室、14b,24b,34b,44b…第2電極室、15a,25a,35a,45a…第1電源、15b,25b,35b,45b…第2電源、36a,36b,36c…切替えスイッチ、38a…切替えバルブ、48b,48c…切替えスイッチ。[0001]
[Industrial application fields]
The present invention relates to an electrolyzed water generator for producing weakly acidic to neutral electrolyzed water having a pH of 3 to 7 and containing hypochlorous acid, sodium hypochlorite and the like and having a bactericidal action and a disinfecting action.
[0002]
[Prior art]
As shown in Japanese Examined Patent Publication No. 4-42077 as one type of electrolyzed water generating apparatus for producing electrolyzed water containing hypochlorous acid, sodium hypochlorite and the like and having a bactericidal action and a disinfecting action. The electrodes are arranged in a pair of compartments formed by partitioning the inside of the electrolytic cell with a diaphragm having ion permeability to constitute an anode chamber and a cathode chamber. There is an electrolyzed water generator for electrolyzing saline between both electrodes. In the electrolyzed water generating apparatus, acidic water containing hypochlorous acid is generated in the anode chamber, and alkaline water is generated in the cathode chamber.
[0003]
[Problems to be solved by the invention]
By the way, in the electrolyzed water generating apparatus, the anode chamber side generated water is a strong acidic water having a pH of 2 to 3. In an aqueous solution containing hypochlorous acid, sodium hypochlorite and the like, the lower the pH, the higher the sterilizing power. From the viewpoint of the sterilizing power, the lower the pH, the more preferable. For example, in the case of vegetables, when the aqueous solution has a low pH, it tends to turn brown, and the optimum pH is 6-7. Moreover, when using it for the disinfection liquid and disinfection liquid of skins, such as a hand, the one close | similar to neutrality is preferable. Therefore, in the electrolyzed water generating apparatus, means for adjusting the pH of the anode chamber side generated water to make it weakly acidic to neutral is adopted.
[0004]
That is, in the electrolyzed water generating apparatus, as a means for adjusting the pH of the anode chamber-side generated water, the anode chamber-side generated water that is acidic, the cathode chamber-side generated water that is alkaline, and the raw water are defined in specified amounts. Only means of mixing with each other are taken. However, in order to adopt such a mixing means, each control valve for mixing the anode chamber side generated water, the cathode chamber side generated water, and the raw water by a specified amount is necessary, and mixing of each of these waters is required. A control device for accurately controlling the amount and a troublesome control method are required.
[0005]
Accordingly, an object of the present invention is to generate slightly acidic to neutral generated water having a pH of 3 to 7 in one electrode chamber during electrolysis without requiring various control valves, control devices, and troublesome control methods. It is in.
[0006]
[Means for Solving the Problems]
The electrolyzed water generating apparatus according to the present invention includes a first chamber, a second chamber, and a second chamber among a pair of chambers formed by partitioning an inside of an electrolytic cell with a diaphragm having ion permeability. The electrodes are arranged so as to face each other to form a first electrode chamber, and a third electrode is arranged in the other compartment to form a second electrode chamber. The electrolysis in the first electrode chamber and the electrodialysis between the first electrode chamber and the second electrode chamber are simultaneously performed.
[0007]
In the electrolyzed water generating apparatus, a dilute saline solution is used as the electrolyzed water, the dilute saline solution is supplied to both electrode chambers, a dilute saline solution is used as the electrolyzed water, and the first A mode in which the diluted saline solution is supplied to the electrode chamber and normal water is supplied to the second electrode chamber can be employed.
[0008]
Further, in the electrolyzed water generating apparatus, each electrode disposed in both electrode chambers has two DC power supplies. At any pole of The first electrode disposed in the first electrode chamber of the two electrode chambers is connected to the positive electrode of one DC power source, Second electrode Are connected to the negative electrode of one DC power supply and the positive electrode of the other DC power supply, and the third electrode arranged in the second electrode chamber is connected to the negative electrode of the other DC power supply. Further, in the electrolyzed water generating apparatus, each electrode disposed in both electrode chambers has two DC power supplies. At any pole of Of the two electrode chambers, the first electrode arranged in the first electrode chamber is connected to the positive electrode of one DC power source. Shi , Second electrode Connected to the negative pole of one DC power supply and the positive pole of the other DC power supply And connect it to the negative electrode of the other DC power supply. And the third electrode disposed in the second electrode chamber is connected to the negative electrode of one DC power supply and the positive electrode of the other DC power supply and to the negative electrode of the other DC power supply, The connection circuit of the first electrode with respect to the positive electrode is provided with an intermittent switch for interrupting connection between the first electrode and one of the DC power sources, and the first electrode with respect to the negative electrode of one DC power source and the positive electrode of the other DC power source. The connection circuit between the two electrodes and the third electrode is provided with a first changeover switch for switching the connection between the two electrodes and the two DC power sources, and the second electrode and the second electrode with respect to the negative electrode of the other DC power source. The connection circuit of the third electrode can be configured to include a second changeover switch that switches the connection between these electrodes and the other DC power source. In these configurations, it is preferable to employ, as the second electrode, an electrode with good water permeability through which water can freely pass, for example, a porous plate electrode such as a lath metal or a punching metal.
[0009]
Moreover, the electrolyzed water generating apparatus according to the present invention includes a first chamber, a second chamber, and a second chamber in a pair of compartments formed by partitioning the inside of an electrolytic cell with a diaphragm having ion permeability. The first electrode chamber is configured by disposing the two electrodes facing each other, and the second and third electrode chambers are configured by disposing the third and fourth electrodes facing each other in the other compartment. A first treatment in which electrolysis of the electrolyzed water in the first electrode chamber and electrodialysis between the first electrode chamber and the second electrode chamber are performed simultaneously; And a second process of simultaneously performing electrolysis in the second electrode chamber and electrodialysis between the second electrode chamber and the first electrode chamber. is there.
[0010]
In the electrolyzed water generating apparatus, each of the electrodes arranged in the two electrode chambers has two DC power supplies. At any pole of And connecting the first electrode disposed in the first electrode chamber of the two electrode chambers to the positive electrode of one DC power source and the negative electrode of the other direct power source, Second electrode Is connected to the negative electrode of one DC power supply and the positive electrode of the other DC power supply, and the third electrode arranged in the second electrode chamber is connected to the negative electrode of one DC power supply and the positive electrode of the other DC power supply. In addition, the fourth electrode is connected to the positive electrode of one DC power supply and the negative electrode of the other direct power supply, and the connection circuit of the first electrode and the fourth electrode with respect to the positive electrode of one DC power supply includes both of these electrodes and one A first changeover switch for switching the connection of the DC power supply is interposed, and the connection circuit of the second electrode and the third electrode with respect to the negative electrode of one DC power supply and the positive electrode of the other DC power supply includes both electrodes. And a second changeover switch for switching the connection of both DC power supplies, and the connection circuit of the first electrode and the fourth electrode with respect to the negative electrode of the other DC power supply includes both the electrodes and the other DC power supply. Switch the power connection It can be configured to disposed a changeover switch.
[0011]
[Operation and effect of the invention]
Among the electrolyzed water generating devices configured as described above, in the former electrolyzed water generating device, the electrolyzed water can be electrolyzed in the first electrode chamber in which two electrodes are arranged, and at the same time, electrolyzed Water can be electrodialyzed between the first electrode chamber and the second electrode chamber. In this case, the pH of the produced water generated in the first electrode chamber can be adjusted to a range of 3 to 7 by adjusting the current and / or voltage between these electrodes.
[0012]
In the electrolyzed water generating apparatus, dilute saline is adopted as water to be electrolyzed, but this dilute saline may be supplied to both the first and second electrode chambers in the same manner. Ordinary water may be supplied to the second electrode chamber while being supplied to the first electrode chamber. In the electrolyzed water generating apparatus, electrolysis is mainly performed between the first electrode and the second electrode in the first electrode chamber, and sodium ion or the like is mainly performed between the second electrode and the third electrode in the second electrode chamber. Positive ion Since the components are subjected to electrodialysis, the saline solution is not so effectively used when the diluted saline solution is supplied also to the second electrode chamber as in the former case. On the other hand, in the electrolyzed water generating apparatus, when the dilute saline solution is supplied to the first electrode chamber and the normal water is supplied to the second electrode chamber as in the latter case, The production of electrolyzed water in the first electrode chamber is not affected, and the use of dilute saline for supplying the second electrode chamber can be saved. Can be used.
[0013]
In the electrolyzed water generating apparatus, the polarity of the second electrode of the first electrode chamber and the third electrode of the second electrode chamber are selectively switched to each other when the first electrode of the first electrode chamber is not energized. If possible, the second electrode and the third electrode can be alternately switched between positive and negative polarities during or after the operation of generating electrolyzed water, and the operation can be performed in each electrode and each electrode chamber. It is possible to remove the scale generated during the electrolysis that adheres to the substrate. Thereby, an electrolysis production | generation apparatus can be wash | cleaned efficiently. In this case, the first electrode used exclusively for the anode during electrolysis is not energized, so that no load is applied. Even if a platinum iridium-based sintered electrode having high electrolysis efficiency is used as the first electrode, the first electrode due to elution of iridium is used. Deterioration of the electrode is suppressed, and the life of the first electrode can be improved. In addition, since the second electrode and the third electrode are not subjected to electrolysis between these two electrodes, platinum-plated titanium-based electrodes having low electrolysis efficiency but high durability and low cost can be employed. It is advantageous.
[0014]
Further, in the latter electrolyzed water generating device among the above electrolyzed water generating devices, electrolysis in the first electrode chamber of the water to be electrolyzed and electricity between the first electrode chamber and the second electrode chamber are the same. A first process for simultaneously performing dialysis, and a second process for simultaneously performing electrolysis in the second electrode chamber of electrolyzed water and electrodialysis between the second electrode chamber and the first electrode chamber; Can be selectively performed. In each of these treatments, as in the case of the former electrolyzed water generator, the pH of the electrolyzed water can be adjusted to a weakly acidic to neutral range of 3 to 7, and each treatment is performed alternately. Thus, the electrode chambers are alternately switched between the anode chamber and the cathode chamber, thereby removing the scales on the electrode chambers and the electrodes, and maintaining the electrolyzed water generating device in a clean state. Continuous operation is possible.
[0015]
【Example】
(First embodiment)
FIG. 1 shows an electrolyzed water generating apparatus 10 according to a first embodiment of the present invention, in which an electrolytic cell 11 is partitioned into two compartments by a diaphragm 12. Of the compartments, two compartments 13a and 13b are disposed in one compartment, and one electrode 13c is disposed in the other compartment, and one compartment is the first electrode compartment 14a. In addition, the other compartment is configured as the second electrode chamber 14b. The diaphragm 12 is a semipermeable membrane having ion permeability. Among the electrodes, the first electrode 13a and the third electrode 13c are flat and the second electrode 13b is made of a lath metal and has good water permeability. The first electrode 13a and the second electrode 13b oppose each other in the first electrode chamber 14a, and the second electrode 13b and the third electrode 13c oppose each other with the diaphragm 12 interposed therebetween.
[0016]
These electrodes 13a, 13b and 13c are connected to two DC power sources 15a and 15b. These DC power supplies 15a and 15b are connected in series, the first electrode 13a is connected to the anode of the first power supply 15a, and the second electrode 13b is a connection that connects the cathodes and anodes of both power supplies 15a and 15b. The third electrode 13c is connected to the cathode of the second power supply 15b. In the electrolyzed water generating apparatus 10, dilute saline solution is supplied from the storage tank 16b to both the electrode chambers 14a and 14b by driving the supply pump 16a, and the saline solution is electrolyzed in the first electrode chamber 14a. Electrodialysis is performed between the first electrode chamber 14a and the second electrode chamber 14b, and one of the generated water electrolyzed and electrodialyzed flows out from the first electrode chamber 14a through the first outlet pipe 17a, and the other generation Water flows out from the second electrode chamber 14b through the second outflow pipe 17b.
[0017]
In the electrolyzed water generating apparatus 10 configured as described above, the first electrode chamber 14a in which the first electrode 13a and the second electrode 13b are disposed functions as an electrolytic cell, and the third electrode 13c is disposed in the first electrode chamber 14a. The space between the two electrode chamber 14b and the first electrode chamber 14a functions as an electrodialysis tank, and the supplied diluted saline is electrolyzed between the first electrode 13a and the second electrode 13b in the first electrode chamber, and the electrolytically generated water is separated from the diaphragm. Electrodialysis is performed between the second electrode 13 b and the third electrode 13 c that are opposed to each other through the electrode 12. In this case, a cation component such as sodium ion generated in the first electrode chamber 14a permeates to the second electrode chamber 14b side, and the electrolyzed water generated in the first electrode chamber 14a is changed from weak alkaline to neutral to acidic. Transition. For this reason, by adjusting the current and / or voltage between the second electrode 13b and the third electrode 13c, the transmission amount of the cation component generated in the first electrode chamber 14a can be controlled, and the first electrode The pH of the room side product water can be easily adjusted in the range of 3-7.
[0018]
Using the electrolyzed water generating apparatus 10, electrolysis experiment 1 and electrolysis experiment 2 of dilute saline were conducted. In the electrolysis experiment 1, 0.10 wt% dilute saline was adopted as the electrolyzed water, the current and voltage between the first electrode 13a and the second electrode 13b were set to 20A and 5V, and the second electrode 13b and the third electrode were used. The current and voltage between 13c are set to the values shown in Table 1, and the outflow amount of the generated water from each outflow pipe 17a, 17b is set to 2.0 L / min. As water, first electrode chamber side generated water and second electrode chamber side generated water having the characteristics shown in Table 1 were obtained. Further, in the electrolysis experiment 2, 0.15 wt% dilute saline is used as the electrolyzed water, the current and voltage between the first electrode 13a and the second electrode 13b are set to 30A and 6V, and the second electrode 13b and the second electrode 13b are used. The current and voltage between the three electrodes 13c are set to the values shown in Table 2, and the outflow amount of the generated water from each outflow pipe 17a, 17b is set to 0.5 L / min, respectively, and the outflow from each electrode chamber 14a, 14b. As the generated water, the first electrode chamber side generated water and the second electrode chamber side generated water having the characteristics shown in Table 2 were obtained.
[0019]
[Table 1]
Figure 0003802580
[0020]
[Table 2]
Figure 0003802580
[0021]
(Second embodiment)
FIG. 2 shows an electrolyzed water generating apparatus 20 according to a second embodiment of the present invention. In the electrolyzed water generating apparatus 20, an electrolyzer 21 is an electrolyzer 11 of the electrolyzed water generating apparatus 10 according to the first embodiment. Of the compartments having the same configuration, one of the compartments partitioned by the diaphragm 22 is configured as the first electrode compartment 24a by arranging the first electrode 23a and the second electrode 23b, and the other compartment The third electrode 23c is disposed in the second electrode chamber 24b. The electrodes 23a, 23b, and 23c are connected in series to the DC power sources 25a and 25b in the same manner as the electrodes 13a, 13b, and 13c of the first embodiment. Thus, in the electrolyzed water generating apparatus 20, the supply pump 26a is driven to supply diluted saline to the first electrode chamber 24a from the storage tank 26b, and the second electrode chamber 24b is a normal water supply. Water is supplied.
[0022]
In the electrolyzed water generating apparatus 20 configured as described above, the first electrode chamber 24a in which the first electrode 23a and the second electrode 23b are disposed functions as an electrolytic cell, and the third electrode 23c is disposed in the first electrode chamber 24a. The space between the two electrode chambers 24b and the first electrode chamber 24a functions as an electrodialysis tank, and the supplied diluted saline is performed between the first electrode 23a and the second electrode 23b in the first electrode chamber 24a. Electrodialysis is performed between the second electrode 23b and the third electrode 23c facing each other. In this electrodialysis, cation components such as sodium ions generated in the first electrode chamber 24a permeate to the second electrode chamber 24b side, and the generated water generated in the first electrode chamber 24a is weakly alkaline to neutral. ~ Move to acidic.
[0023]
Therefore, by adjusting the current and / or voltage between the second electrode 23b and the third electrode 23c, the amount of transmission of the cation component generated in the first electrode chamber 24a can be controlled, and the first electrode chamber side The pH of the produced water can be easily adjusted to a range of 3-7. In this case, the diluted saline is only supplied to the first electrode chamber 24a, but it does not have any influence on the generation of the first electrode chamber-side generated water, and is supplied to the second electrode chamber 24b. By supplying tap water, the use of dilute saline can be saved, and dilute saline can be used effectively.
[0024]
Using the electrolyzed water generating apparatus 20, an electrolysis experiment of dilute saline was conducted. In the electrolysis experiment, a 0.10 wt% diluted saline solution (water temperature 26 ° C.) was adopted as the electrolyzed water, and this diluted saline solution was supplied to the first electrode chamber 24a at a flow rate of 2.5 L / min. In the two-electrode chamber 24b, tap water (water temperature 26 ° C.) was supplied at a flow rate of 2.0 L / min to perform electrolysis and electrodialysis. The current and voltage between the first electrode 23a and the second electrode 23b and between the second electrode 23b and the third electrode 23c were set to the values shown in Table 3. The first electrode chamber side generated water and the second electrode chamber side generated water having the characteristics shown in Table 3 are obtained as the generated water flowing out from the electrode chambers 24a and 24b, and the second electrode 23b and the third electrode 23c based on the characteristics are obtained. The graph of FIG. 5 and FIG. 6 shows the relationship between the voltage between them, the pH of the first electrode chamber side generated water, and the effective chlorine amount.
[0025]
[Table 3]
Figure 0003802580
[0026]
(Example 3)
FIG. 3 shows an electrolyzed water generating apparatus 30 according to a third embodiment of the present invention, in which an electrolytic cell 31 is partitioned into two compartments by a diaphragm 32. Among each compartment, two electrodes 33a and 33b are arranged in one compartment, and two electrodes 33c and 33d are also arranged in the other compartment, and one compartment is a first electrode. The chamber 34a is configured, and the other compartment is configured as the second electrode chamber 34b. The diaphragm 32 is a semipermeable membrane having ion permeability. Among the electrodes, the first electrode 33a and the fourth electrode 33d are plate-shaped, and the second electrode 33b and the third electrode 33c are made of lath metal and have good water permeability. The first electrode 33a and the second electrode 33b oppose each other in the first electrode chamber 34a, the third electrode 33c and the fourth electrode 33d oppose each other in the second electrode chamber 34b, and the second electrode 33b and the third electrode 33c face each other with the diaphragm 32 interposed therebetween.
[0027]
These electrodes 33a, 33b, 33c and 33d are connected to two DC power sources 35a and 35b. These DC power sources 35a and 35b are connected in series with each other, and the first and fourth electrodes 33a and 33d are connected to the anode of the first power source 35a and the cathode of the second power source 35b, respectively. The second and third electrodes 33b and 33c are connected via a third changeover switch 36c to a connection line that connects the cathodes and anodes of both power sources 35a and 35b.
[0028]
The changeover switches 36a, 36b, 36c operate in conjunction with each other. In the connected state shown in FIG. 3, the first electrode chamber 34a is configured as an electrolytic cell, and the second electrode chamber 34b and the first electrode chamber 24a are configured. By configuring the gap between the first electrode chamber 34a and the second electrode chamber 34b, the second electrode chamber 34b is configured as an electrolytic cell. In the present embodiment, hereinafter, the former is referred to as a first processing mode and the latter is referred to as a second processing mode.
[0029]
In the electrolyzed water generating apparatus 30, the supply pump 37a is driven to supply dilute saline from the storage tank 37b to both electrode chambers 34a and 34b, and the saline is processed in both electrode chambers 34a and 34b. Water flows out from the first outflow pipe 38b and the second outflow pipe 38c through the switching valve 38a. The switching valve 38a performs switching operation in conjunction with each switching switch 36a, 36b, 36c. In the state shown in the figure, the first outflow pipe 38b is connected to the first electrode chamber 34a, and the second outflow pipe 38c is connected to the second outflow pipe 38c. Connected to the two-electrode chamber 34b, a reverse connection state is formed by the switching operation.
[0030]
In the electrolyzed water generating apparatus 30 configured as described above, in the first treatment mode shown in FIG. 3, the first electrode chamber 34a functions as an electrolytic cell and the space between the second electrode chamber 34b and the first electrode chamber 34a. The diluted saline solution that functions as an electrodialysis tank is electrolyzed between the first electrode 33a and the second electrode 33b in the first electrode chamber 34a, and the second saline solution in the second electrode 33b and the second electrode chamber 34b. Electrodialysis is performed between the four electrodes 33d. In this electrodialysis, cation components such as sodium ions generated in the first electrode chamber 34a permeate to the second electrode chamber 34b side, and the first electrode chamber side generated water generated in the first electrode chamber 34a. From weakly alkaline to neutral to acidic.
[0031]
Accordingly, by adjusting the current and / or voltage between the second electrode 33b and the fourth electrode 33d, the transmission amount of the cation component generated in the first electrode chamber 34a can be controlled, and the first electrode chamber side The pH of the produced water can be easily adjusted to a range of 3-7. The first electrode chamber-side generated water generated in the first electrode chamber 34a flows out of the first outflow pipe 38b, and the second electrode chamber-side generated water generated in the second electrode chamber 34b is the second outflow pipe 38c. Spilled from.
[0032]
Moreover, in the 1st process aspect shown in FIG. 3 of the said electrolyzed water production | generation apparatus 30, if each switching switch 36a, 36b, 36c and the switching valve 38a are switched, a 2nd process aspect will be comprised. In this second treatment mode, the space between the first electrolysis chamber 34a and the second electrode chamber 34b functions as an electrodialysis tank, and the second electrode chamber 34b functions as an electrolysis tank. Electrolysis is performed between the third electrode 33c and the fourth electrode 33d in the electrode chamber 34b, and electrodialysis is performed between the third electrode 33c and the first electrode 33a in the first electrode chamber 34a. In this electrodialysis, sodium ions generated in the second electrode chamber 34b permeate to the first electrode chamber 34a side, and the second electrode side generated water generated in the second electrode chamber 34b is changed from weakly alkaline to neutral. ~ Move to acidic.
[0033]
Therefore, by adjusting the current and / or voltage between the third electrode 33c and the first electrode 33a, the amount of cation generated in the second electrode chamber 34b can be controlled, and the second electrode chamber side generation can be controlled. The pH of water can be easily adjusted to the range of 3-7. The second electrode chamber side generated water generated in the second electrode chamber 34b flows out of the first outflow pipe 38b, and the first electrode chamber side generated water generated in the first electrode chamber 34a is the second outflow pipe 38c. Spilled from.
[0034]
Thus, in the electrolyzed water generating apparatus 30, the pH of the electrolyzed water can be adjusted from 3 to 7 in a weakly acidic to neutral range in both the first and second treatment modes. In particular, by alternately switching the first and second processing modes, both electrode chambers 34a and 34b are alternately switched to the electrolytic cell, and the scales on the electrode chambers 34a and 34b and the electrodes 33a to 33d are changed. Is removed, and the electrolyzed water generating device 30 can be maintained in a clean state, and a continuous operation for a long time becomes possible.
[0035]
(Example 4)
FIG. 4 shows an electrolyzed water generating apparatus 40 according to a fourth embodiment of the present invention. In the electrolyzed water generating apparatus 40, the electrolyzer 41 is basically the same as the electrolyzer 11 of the electrolyzer 10 according to the first embodiment shown in FIG. 1, and the direct current of the second electrode 43b and the third electrode 43c. The connection relationship to the power supplies 45a and 45b is slightly different. Accordingly, in the following, such differences will be described in detail, and the same constituent members and constituent parts will be denoted by similar reference numerals in the 40's and detailed description thereof will be omitted.
[0036]
Therefore, in the electrolyzed water generating apparatus 40, each electrode 43a, 43b, 43c is connected to two DC power sources 45a, 45b. These DC power supplies 45a and 45b are connected in series with each other, the first electrode 43a is connected to the anode of the first power supply 45a via the first switch 48a, and the second electrode 43b and the third electrode 43c are The second power supply 45b is connected to a connection line connecting the cathodes and anodes of both power supplies 45a and 45b, and is connected to the cathode of the second power supply 45b via a third switch 48c. The first switch 48a is an open / close switch, and the second and third switches 48b and 48c are changeover switches. Both the switches 48b and 48c operate in conjunction with each other.
[0037]
When the electrodes 43a to 43c are in the connected state shown in FIG. 4, the first electrode chamber 44a constitutes an electrolytic cell, and the second electrode chamber 44b and the first electrode chamber 44a constitute an electrodialysis vessel. Therefore, in this connected state, the electrolyzed water generating device 40 performs electrolysis and electrodialysis in the same manner as the electrolyzed water generating device 10 according to the first embodiment, and generates pH 3 to 7 from the first electrode chamber 44a. Water flows out.
[0038]
On the other hand, in the electrolyzed water generating apparatus 40, the second electrode 43 b and the third electrode 43 c are energized in a state where energization to the first electrode 43 a is stopped during or after the electrolyzed water generation operation is completed, and energized for a predetermined time. Thereafter, the connection between the electrodes 43b and 43c with respect to the power source is switched by both the changeover switches 48b and 48c, and the power is supplied for a predetermined time. Thereby, both electrodes 43b and 43c can be switched alternately between positive and negative polarities, and the scale generated during electrolysis adhering to each electrode 43a to 43c and each electrode chamber 44a and 44b can be removed. And the electrolyzed water generating device can be efficiently cleaned. In the operation of the electrolyzed water generating apparatus 40, for example, the electrolyzed water generating operation is performed for 20 hours, and then the cleaning operation is performed for 10 minutes. In this cleaning operation, the positive and negative switching of both electrodes 43b and 43c is performed after 5 minutes.
[0039]
By the way, in this cleaning operation, the first electrode 43a used exclusively for the anode during electrolysis is not energized, so no load is applied. Even if a platinum iridium-based fired electrode having high electrolysis efficiency is used as the first electrode 43a, Deterioration of the first electrode 43a due to elution of iridium is prevented, and the life of the first electrode 43a can be improved. In addition, since the second electrode 43b and the third electrode 43c are not subjected to electrolysis between these two electrodes, it is possible to employ a platinum-plated titanium-based electrode with low electrolysis efficiency but high durability and low cost. it can. For this reason, the said electrolyzed water generating apparatus 40 is very advantageous for electrolyzed water production | generation.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram of an electrolyzed water generating apparatus according to a first embodiment of the present invention.
FIG. 2 is a schematic configuration diagram of an electrolyzed water generating apparatus according to the second embodiment.
FIG. 3 is a schematic configuration diagram of an electrolyzed water generating apparatus according to the third embodiment.
FIG. 4 is a schematic configuration diagram of an electrolyzed water generating apparatus according to the fourth embodiment.
FIG. 5 is a graph showing the relationship between the voltage between the second and third electrodes and the pH of the first electrode chamber side generated water in the electrolysis experiment in the electrolyzed water generating apparatus according to the second example.
FIG. 6 is a graph showing the relationship between the voltage between the second and third electrodes and the effective chlorine content of the first electrode chamber side generated water in the electrolysis experiment in the electrolyzed water generating apparatus according to the second example.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10, 20, 30, 40 ... Electrolyzed water production | generation apparatus, 11, 21, 31, 41 ... Electrolyzer, 12, 22, 32, 42 ... Diaphragm, 13a, 23a, 33a, 43a ... 1st electrode, 13b, 23b, 33b, 43b ... second electrode, 13c, 23c, 33c, 43c ... third electrode, 33d ... fourth electrode, 14a, 24a, 34a, 44a ... first electrode chamber, 14b, 24b, 34b, 44b ... second electrode Chamber, 15a, 25a, 35a, 45a ... first power source, 15b, 25b, 35b, 45b ... second power source, 36a, 36b, 36c ... changeover switch, 38a ... changeover valve, 48b, 48c ... changeover switch.

Claims (7)

電解槽内をイオン透過能を有する隔膜にて区画して形成された一対の隔室のうち、一方の隔室には第1,第2の2枚の電極を互いに対向して配置して第1の電極室を構成するとともに、他方の隔室には第3の1枚の電極を配置して第2の電極室を構成してなり、被電解水の前記第1の電極室内での電解と、同第1の電極室と前記第2の電極室間での電気透析を同時に行うことを特徴とする電解水生成装置。Of the pair of compartments formed by partitioning the inside of the electrolytic cell with a diaphragm having ion permeability, the first and second two electrodes are arranged opposite to each other in one compartment. 1 electrode chamber, and a third electrode is disposed in the other compartment to form a second electrode chamber. Electrolysis of water to be electrolyzed in the first electrode chamber And an electrolyzed water generating apparatus, wherein electrodialysis is simultaneously performed between the first electrode chamber and the second electrode chamber. 請求項1に記載の電解水生成装置において、前記被電解水として希薄食塩水を採用し、同希薄食塩水を前記両電極室に供給することを特徴とする電解水生成装置。The electrolyzed water generating apparatus according to claim 1, wherein dilute saline is adopted as the electrolyzed water, and the dilute saline is supplied to both electrode chambers. 請求項1に記載の電解水生成装置において、前記被電解水として希薄食塩水を採用し、前記第1の電極室に同希薄食塩水を供給するとともに、前記第2の電極室には通常の水を供給することを特徴とする電解水生成装置。2. The electrolyzed water generating device according to claim 1, wherein dilute saline is adopted as the electrolyzed water, the dilute saline is supplied to the first electrode chamber, and a normal electrode is supplied to the second electrode chamber. An electrolyzed water generating apparatus characterized by supplying water. 請求項1,2または3に記載の電解水生成装置において、前記両電極室に配置されている各電極は2つの直流電源のいずれかの極に接続されており、前記両電極室のうち、第1の電極室に配置されている第1電極は一方の直流電源の正極に接続されているとともに、第2電極は一方の直流電源の負極と他方の直流電源の正極に接続され、かつ、第2の電極室に配置されている第3電極は他方の直流電源の負極に接続されていることを特徴とする電解水生成装置。In the electrolyzed water generating apparatus according to claim 1, 2, or 3, each electrode arranged in the two electrode chambers is connected to one of the poles of two DC power supplies, The first electrode disposed in the first electrode chamber is connected to the positive electrode of one DC power supply, the second electrode is connected to the negative electrode of one DC power supply and the positive electrode of the other DC power supply, and A third electrode disposed in the second electrode chamber is connected to the negative electrode of the other DC power source. 請求項1,2または3に記載の電解水生成装置において、前記両電極室に配置されている各電極は2つの直流電源のいずれかの極に接続されており、前記両電極室のうち、第1の電極室に配置されている第1電極は一方の直流電源の正極に接続され、第2電極は一方の直流電源の負極と他方の直流電源の正極に接続されているとともに他方の直流電源の負極に接続され、かつ、第2の電極室に配置されている第3電極は一方の直流電源の負極と他方の直流電源の正極に接続されているとともに他方の直流電源の負極に接続されていて、一方の直流電源の正極に対する前記第1電極の接続回路には、同第1電極と一方の直流電源との接続を断続する断続スイッチが介装され、一方の直流電源の負極と他方の直流電源の正極に対する前記第2電極および前記第3電極の接続回路には、これら両電極と両直流電源の接続を切替動作する第1切替えスイッチが介装され、かつ、他方の直流電源の負極に対する前記第2電極および前記第3電極の接続回路には、これら両電極と他方の直流電源の接続を切替動作する第2切替えスイッチが介装されていることを特徴とする電解水生成装置。In the electrolyzed water generating apparatus according to claim 1, 2, or 3, each electrode arranged in the two electrode chambers is connected to one of the poles of two DC power supplies, The first electrode disposed in the first electrode chamber is connected to the positive electrode of one DC power supply, and the second electrode is connected to the negative electrode of one DC power supply and the positive electrode of the other DC power supply and the other DC The third electrode connected to the negative electrode of the power source and disposed in the second electrode chamber is connected to the negative electrode of one DC power source and the positive electrode of the other DC power source and to the negative electrode of the other DC power source. The connection circuit of the first electrode with respect to the positive electrode of one DC power source is provided with an intermittent switch for interrupting the connection between the first electrode and the one DC power source, The second electrode with respect to the positive electrode of the other DC power source And the third electrode connection circuit is provided with a first changeover switch for switching the connection between these electrodes and both DC power supplies, and the second electrode and the third electrode with respect to the negative electrode of the other DC power supply. An electrolyzed water generating apparatus characterized in that a second changeover switch for switching the connection between these electrodes and the other DC power source is interposed in the electrode connection circuit. 電解槽内をイオン透過能を有する隔膜にて区画して形成された一対の隔室のうち、一方の隔室には第1,第2の2枚の電極を互いに対向して配置して第1の電極室を構成するとともに、他方の隔室には第3,第4の2枚の電極を互いに対向して配置して第2の電極室を構成してなり、被電解水の前記第1の電極室内での電解と同第1の電極室と前記第2の電極室間での電気透析を同時に行う第1の処理と、被電解水の前記第2の電極室内での電解と同第2の電極室と前記第1の電極室間での電気透析とを同時に行う第2の処理とを選択的に行うことを特徴とする電解水生成装置。Of the pair of compartments formed by partitioning the inside of the electrolytic cell with a diaphragm having ion permeability, the first and second two electrodes are arranged opposite to each other in one compartment. 1 electrode chamber, and in the other compartment, the third and fourth electrodes are arranged opposite to each other to form a second electrode chamber, and Electrolysis in the first electrode chamber and electrolysis in the first electrode chamber and the second electrode chamber at the same time, and electrolysis in the second electrode chamber of water to be electrolyzed. An electrolyzed water generating apparatus characterized by selectively performing a second process for simultaneously performing electrodialysis between a second electrode chamber and the first electrode chamber. 請求項6に記載の電解水生成装置において、前記両電極室に配置されている各電極は2つの直流電源のいずれかの極に接続されており、前記両電極室のうち、第1の電極室に配置されている第1電極は一方の直流電源の正極と他方の直通電源の負極に接続されているとともに、第2電極は一方の直流電源の負極と他方の直流電源の正極に接続され、かつ、第2の電極室に配置されている第3電極は一方の直流電源の負極と他方の直流電源の正極に接続されているとともに、第4電極は一方の直流電源の正極と他方の直通電源の負極に接続されていて、一方の直流電源の正極に対する前記第1電極および前記第4電極の接続回路には、これら両電極と一方の直流電源の接続を切替動作する第1切替えスイッチが介装され、一方の直流電源の負極と他方の直流電源の正極に対する前記第2電極および前記第3電極の接続回路には、これら両電極と両直流電源の接続を切替動作する第2切替えスイッチが介装され、かつ、他方の直流電源の負極に対する前記第1電極および前記第4電極の接続回路には、これら両電極と他方の直流電源の接続を切替動作する第3切替えスイッチが介装されていることを特徴とする電解水生成装置。In the electrolytic water generation apparatus according to claim 6, wherein each electrode is disposed on the electrodes chamber is connected to one pole of the two DC power supply, one of the two electrodes chamber, a first electrode The first electrode arranged in the chamber is connected to the positive electrode of one DC power supply and the negative electrode of the other direct power supply, and the second electrode is connected to the negative electrode of one DC power supply and the positive electrode of the other DC power supply. The third electrode disposed in the second electrode chamber is connected to the negative electrode of one DC power source and the positive electrode of the other DC power source, and the fourth electrode is connected to the positive electrode of one DC power source and the other DC power source. A first change-over switch that is connected to the negative electrode of the direct power supply and that switches the connection between the two electrodes and the one DC power supply in the connection circuit of the first electrode and the fourth electrode with respect to the positive electrode of one DC power supply. Is installed, the negative electrode of one DC power supply The connection circuit of the second electrode and the third electrode with respect to the positive electrode of the other DC power source is provided with a second changeover switch for switching the connection between these electrodes and both DC power sources, and the other DC power source. A connection circuit between the first electrode and the fourth electrode with respect to the negative electrode is provided with a third changeover switch for switching the connection between these electrodes and the other DC power supply. apparatus.
JP05080095A 1994-10-11 1995-03-10 Electrolyzed water generator Expired - Fee Related JP3802580B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05080095A JP3802580B2 (en) 1994-10-11 1995-03-10 Electrolyzed water generator

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP6-245602 1994-10-11
JP24560294 1994-10-11
JP05080095A JP3802580B2 (en) 1994-10-11 1995-03-10 Electrolyzed water generator

Publications (2)

Publication Number Publication Date
JPH08164392A JPH08164392A (en) 1996-06-25
JP3802580B2 true JP3802580B2 (en) 2006-07-26

Family

ID=26391269

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05080095A Expired - Fee Related JP3802580B2 (en) 1994-10-11 1995-03-10 Electrolyzed water generator

Country Status (1)

Country Link
JP (1) JP3802580B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017119073A1 (en) * 2016-01-06 2017-07-13 株式会社エーゼット Electrolyzed water-producing apparatus and electrolyzed water-producing method

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11169856A (en) * 1996-06-04 1999-06-29 Mizu Kk Electrolytic water producing device
JPH10128338A (en) * 1996-10-29 1998-05-19 Ebara Corp Method and device for preventing scale from being deposited in electric regeneration type continuous desalting apparatus
WO2012048280A2 (en) * 2010-10-08 2012-04-12 Ceramatec, Inc. Electrochemical systems and methods for operating electrochemical cell with an acidic anolyte
JP5210455B1 (en) * 2012-11-20 2013-06-12 日科ミクロン株式会社 Wash water generator
JP5210456B1 (en) * 2012-11-20 2013-06-12 日科ミクロン株式会社 Wash water generator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017119073A1 (en) * 2016-01-06 2017-07-13 株式会社エーゼット Electrolyzed water-producing apparatus and electrolyzed water-producing method

Also Published As

Publication number Publication date
JPH08164392A (en) 1996-06-25

Similar Documents

Publication Publication Date Title
JP3349710B2 (en) Electrolyzer and electrolyzed water generator
JP3802580B2 (en) Electrolyzed water generator
JP6171047B1 (en) Electrolyzed water production apparatus and operation method thereof
JPH11123381A (en) Preparation of electrolytic ionic water and prepared water
JP3575713B2 (en) Method and apparatus for generating electrolyzed water
JP3667405B2 (en) Electrolyzed water generator
JP3509999B2 (en) Electrolyzed water generator
JP3353964B2 (en) Method and apparatus for producing electrolyzed water
JP3561346B2 (en) Electrolyzed water generator
JP2003034889A (en) Method for electrolysis in device for generating strong- electrolyzed water
JP3359661B2 (en) Method for cleaning / sterilizing a continuous electrolytic water regulator and an electrolytic water regulator provided with a mechanism for performing the method
JP3568290B2 (en) Electrolyzed water generator
JP3398173B2 (en) Electrolysis method of saline solution
JPH09206755A (en) Formation of alkaline ionized and hypochlorous acid sterilizing water and device therefor
JPH09108673A (en) Method of electrolyzing salt water
JP3518900B2 (en) Method for producing electrolyzed water
JP4363639B2 (en) Electrolytic ion water generator
JP2004089975A (en) Strong electrolytic water generator
JP3547819B2 (en) Electrolyzed water generator
JP3677331B2 (en) Electrolyzed water generator
JPH09108677A (en) Electrolytic water generator
JPH0970581A (en) Ionic water producing device
JPH11221566A (en) Production of electrolytic water
JP2000126775A (en) Method and apparatus for electrolytic sterilization
JPH06346266A (en) Method for electrolyzing brine

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050104

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050307

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050412

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050610

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060411

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060428

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees