[go: up one dir, main page]

JP3802237B2 - Air conditioner with ice storage tank - Google Patents

Air conditioner with ice storage tank Download PDF

Info

Publication number
JP3802237B2
JP3802237B2 JP21620898A JP21620898A JP3802237B2 JP 3802237 B2 JP3802237 B2 JP 3802237B2 JP 21620898 A JP21620898 A JP 21620898A JP 21620898 A JP21620898 A JP 21620898A JP 3802237 B2 JP3802237 B2 JP 3802237B2
Authority
JP
Japan
Prior art keywords
ice
storage tank
valve
compressor
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP21620898A
Other languages
Japanese (ja)
Other versions
JP2000046433A (en
Inventor
博和 井崎
美暁 黒澤
修 桑原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP21620898A priority Critical patent/JP3802237B2/en
Publication of JP2000046433A publication Critical patent/JP2000046433A/en
Application granted granted Critical
Publication of JP3802237B2 publication Critical patent/JP3802237B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P60/00Technologies relating to agriculture, livestock or agroalimentary industries
    • Y02P60/80Food processing, e.g. use of renewable energies or variable speed drives in handling, conveying or stacking
    • Y02P60/85Food storage or conservation, e.g. cooling or drying

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、氷蓄熱槽を備えた空気調和装置に係り、氷蓄熱ユニットに蓄熱された冷熱を放熱して放冷冷房運転を実施する氷蓄熱槽を備えた空気調和装置に関する。
【0002】
【従来の技術】
一般に、図3に示すように、圧縮機1、熱源側熱交換器2、四方弁3及び電動膨張弁4を備えた熱源側ユニット5と、氷蓄熱槽6内にコイル7が水没状態で配設されてコイル7外周に氷が形成可能な氷蓄熱ユニット8と、利用側熱交換器9を備えた利用側ユニット10とを有し、製氷運転、放冷冷房運転、通常冷房運転を実施可能とする空気調和装置11が知られている。
【0003】
製氷運転は、圧縮機1からのガス冷媒が熱源側熱交換器2を経て液冷媒となり、その後に電動膨張弁4を通り、氷蓄熱槽6内のコイル7に流入して蒸発し、この氷蓄熱槽6内で製氷動作が実施された後、ガス冷媒が圧縮機1へ戻されて実施される。
【0004】
放冷冷房運転は、熱源側ユニット5の圧縮機1を停止させ、氷蓄熱ユニット8に設置されて冷媒を圧送する液ポンプ又はガスポンプなどの循環ポンプ12(図3では液冷媒を圧送する液ポンプ)を稼働させることによりなされている。つまり、循環ポンプ12の稼働により、氷蓄熱ユニット8における氷蓄熱槽6のコイル7内で、氷に蓄熱された冷熱を吸収して凝縮した液冷媒が利用側熱交換器9へ圧送され、この利用側熱交換器9において液冷媒が蒸発して、この蒸発潜熱と氷の冷熱の放熱とにより放冷冷房運転が実施される。
【0005】
通常冷房運転は、圧縮機1から熱源側熱交換器2へ導かれて液冷媒となった冷媒を、氷蓄熱槽6のコイル7内へ流すことなく、利用側熱交換器9へ供給して液冷媒を蒸発し、この蒸発潜熱により実施される。
【0006】
【発明が解決しようとする課題】
ところで、上述の放冷冷房運転では、特に循環ポンプ12が液ポンプの場合に、この循環ポンプ12にキャビテーションが発生するおそれがある。更に、冷媒の種類に対応した仕様の液ポンプが必要となる。
【0007】
本発明の課題は、上述の事情を考慮してなされたものであり、信頼性を向上させることができる氷蓄熱槽を備えた空気調和装置を提供することにある。
【0008】
【課題を解決するための手段】
請求項1記載の発明は、圧縮機及び熱源側熱交換器を備えた熱源側ユニットと、氷蓄熱槽内にコイルが水没状態で配設されてこのコイル外周に氷が形成可能な氷蓄熱ユニットと、利用側熱交換器を備えた利用側ユニットとを有し、製氷運転、冷房運転を実施可能とする氷蓄熱槽を備えた空気調和装置において、上記氷蓄熱槽内の上記コイルと上記利用側熱交換器との間に、冷媒を貯溜可能な複数のタンクが並列状態で配設され、上記コイル内で凝縮した液冷媒が上記タンク内に貯溜されて、これらのタンク内へ交互に供給される高圧ガス冷媒により上記利用側熱交換器へ圧送可能に構成されたことを特徴とするものである。
【0009】
請求項2記載の発明は、請求項1に記載の発明において、上記複数のタンクへ交互に供給される高圧ガス冷媒は、熱源側ユニットの圧縮機の停止時における当該圧縮機と熱源側熱交換器との間の高圧ガス冷媒であることを特徴とするものである。
【0010】
請求項3記載の発明は、請求項1に記載の発明において、上記複数のタンクへ交互に供給される高圧ガス冷媒は、熱源側ユニットの圧縮機よりも容量の小さな小容量圧縮機から供給される高圧ガス冷媒であることを特徴とするものである。
【0011】
請求項1に記載の発明には、次の作用がある。
氷蓄熱ユニットのコイル内において氷の冷熱により凝縮された液冷媒が複数のタンク内に貯溜され、これらの液冷媒が、タンク内へ交互に供給される高圧ガス冷媒により利用側熱交換器へ圧送可能に構成されたことから、氷蓄熱ユニットのコイル内における液冷媒を利用側熱交換器へ圧送する液ポンプが不要となり、従って、この液ポンプに発生する虞のあるキャビテーションを確実に回避でき、信頼性を向上させることができる。
【0012】
請求項2に記載の発明には、次の作用がある。
熱源側ユニットの圧縮機の停止時における当該圧縮機と熱源側熱交換器との間の高圧ガス冷媒を複数のタンクへ交互に供給することから、この圧縮機を駆動させず、ほとんど無動力で、氷蓄熱ユニットのコイル内における過冷却状態の液冷媒を利用側熱交換器へ圧送させることができる。
【0013】
請求項3に記載の発明には、次の作用がある。
【0014】
熱源側ユニットの圧縮機よりも容量の小さな小容量圧縮機から供給される高圧ガス冷媒を複数のタンクへ交互に供給することから、この小容量圧縮機は汎用の圧縮機であれば良く、冷媒の種類に応じてその仕様を変更する必要がないので、部品の共用化を図ることができ、コストを低減できる。
【0015】
【発明の実施の形態】
以下、本発明の実施の形態を図面に基づいて説明する。
【0016】
[A]第一の実施の形態
図1は、本発明に係る氷蓄熱槽を備えた空気調和装置の第一の実施の形態を示す管路図である。
【0017】
この図1に示す空気調和装置20は、熱源側ユニット21、氷蓄熱ユニット22及び利用側ユニット23を有して構成される。熱源側ユニット21の冷媒配管24が、氷蓄熱ユニット22の冷媒配管25、26を介して利用側ユニット23の冷媒配管27に接続される。
【0018】
熱源側ユニット21は、冷媒配管24に圧縮機28、四方弁29、熱源側熱交換器30及び電動膨張弁31が順次接続されて構成される。また、利用側ユニット23は、冷媒配管27に利用側熱交換器32及び電動膨張弁33が配設されて構成され、この電動膨張弁33は、空調負荷に応じて開度が調整される。
【0019】
氷蓄熱ユニット22は、コイル34を収容した氷蓄熱槽35を備えると共に、冷媒配管25に第1開閉弁36が、冷媒配管26に第2開閉弁37がそれぞれ配設される。更に、冷媒配管25には、第1開閉弁36の配設位置よりも利用側ユニット23側に、接続配管38を介してコイル34の一端が接続され、この接続配管38に電動膨張弁39が配設される。また、コイル34の他端は、第3開閉弁40を備えた接続配管41を介して、冷媒配管26における第2開閉弁37配設位置の利用側ユニット23側に接続される。
【0020】
氷蓄熱槽35には水が充満され、コイル34はこの氷蓄熱槽35内に水没状態で配設される。このコイル34内には、空気調和装置20の製氷運転時に熱源側熱交換器30から液冷媒が流入して蒸発し、これにより、コイル34の外周に氷が付着して形成される。
【0021】
上記接続配管38には、電動膨張弁39とコイル34との間に、二股に分岐する分岐配管42を介して2個のサージタンク43A及び43Bが並列状態で接続される。これらのサージタンク43A、43Bが合流配管44を介して、冷媒配管25における第1開閉弁36配設位置と接続配管38接続位置との間に接続される。これにより、サージタンク43A及び43Bは、氷蓄熱槽35内のコイル34と利用側熱交換器32との間に配設されて、氷蓄熱槽35内の氷に蓄熱された冷熱により凝縮された液冷媒が貯留可能に設けられる。
【0022】
分岐配管42には、サージタンク43A、43Bの流入側に流入側逆止弁45A、45Bが、また、合流配管44には、サージタンク43A、43Bの流出側に流出側逆止弁46A、46Bがそれぞれ配設されている。これらの流入側逆止弁45A、45Bは、氷蓄熱槽35のコイル34からサージタンク43A、43Bへのみ流れる冷媒の流れを許容し、流出側逆止弁46A、46Bは、サージタンク43A、43Bから利用側熱交換器32側へのみ流れる冷媒の流れを許容する。
【0023】
サージタンク43A、43Bは、熱源側ユニット21の冷媒配管24における四方弁29と熱源側熱交換器30との間に、分岐配管47を介して接続される。この分岐配管47には、サージタンク43Aに接続される分岐部48Aに第1タンク開閉弁49が、また、サージタンク43Bに接続される分岐部48Bに第2タンク開閉弁50がそれぞれ配設される。
【0024】
これらの第1タンク開閉弁49、第2タンク開閉弁50が選択的に開閉されることにより、圧縮機28の停止時におけるこの圧縮機28と熱源側熱交換器30との間の高圧ガス冷媒が、サージタンク43A、43B内に交互に供給可能に構成される。これにより、サージタンク43A、43B内に貯留された液冷媒が利用側熱交換器32へ圧送可能に設けられる。
【0025】
次に、空気調和装置20の製氷運転、放冷冷房運転、通常冷房運転を説明する。
【0026】
[A−1]製氷運転
空気調和装置20の製氷運転は、例えば、夜間10時から翌朝8時までの電力料金の安い時間帯に、熱源側熱交換器30からの液冷媒を氷蓄熱槽35のコイル34内へ供給し、氷蓄熱槽35内に氷を作る運転である。
【0027】
この場合には、電動膨張弁33、第1タンク開閉弁49及び第2タンク開閉弁50が閉弁され、第1開閉弁36、第2開閉弁37、第3開閉弁40及び電動膨張弁39が開弁操作される。
【0028】
この状態で、熱源側ユニット21の圧縮機28が稼働されると、この圧縮機28から吐出されたガス冷媒は、熱源側熱交換器30にて凝縮され、電動膨張弁31及び39を経て減圧され、氷蓄熱槽35のコイル34内へ流入する。このコイル34内に流入した冷媒は蒸発して、コイル34の外周に氷を付着した状態で形成する。その後、コイル34内のガス冷媒は接続配管41及び冷媒配管26を経て四方弁29へ至り、圧縮機28に戻される。
【0029】
[A−2]放冷冷房運転
空気調和装置20の放冷冷房運転は、例えば、昼間気温が上昇する時間帯に、氷蓄熱槽35のコイル34内で氷の冷熱により液化されてサージタンク43A、43B内に貯留された液冷媒を、このサージタンク43A、43Bから利用側熱交換器32へ圧送することにより実施される。
【0030】
この場合には、第1開閉弁36、第2開閉弁37及び電動膨張弁39が閉弁され、電動膨張弁33及び第3開閉弁40が開弁操作される。また、熱源側ユニット21の圧縮機28は、製氷運転終了後の停止状態にある。
【0031】
この状態で、第1タンク開閉弁49、第2タンク開閉弁50を選択的に開閉操作する。例えば、第1タンク開閉弁49を開操作すると(第2タンク開閉弁50は閉状態)、熱源側ユニット21の圧縮機28と熱源側熱交換器30との間の高圧ガス冷媒が、第1タンク開閉弁49を経てサージタンク43A内へ流入する。これにより、このサージタンク43A内の貯留液冷媒が流出側逆止弁46A、合流配管44、冷媒配管25及び27を経て利用側熱交換器32内へ流入する。サージタンク43A内に貯留した液冷媒は、氷蓄熱槽35のコイル34内を通り、氷蓄熱槽35内の氷に蓄熱された冷熱により凝縮された液冷媒であるため、利用側熱交換器32内で蒸発することにより、上記氷の冷熱の放熱(放冷)と蒸発潜熱とにより室内を効率的に冷却する。
【0032】
利用側熱交換器32にて蒸発したガス冷媒は、接続配管41及び第3開閉弁40を経て氷蓄熱槽35のコイル34内へ流入し、上述の如く、氷蓄熱槽35内の氷により液冷媒となって、流入側逆止弁45Bを経てサージタンク43B内へ流入する。
【0033】
この時、サージタンク43A内が高圧であるため、氷蓄熱槽35のコイル34内の液冷媒は、サージタンク43A内へ流れることなくサージタンク43B内へ流れる。同様に、サージタンク43B内がサージタンク43Aに比べて低圧であるため、サージタンク43B内の貯留冷媒が流出側逆止弁46Bを経て利用側熱交換器32側へ流出することもない。
【0034】
サージタンク43A内の貯留冷媒が所定値以下まで低下した時点で第1タンク開閉弁49を閉弁状態とし、第2タンク開閉弁50を開弁操作させる。すると、サージタンク43B内に貯留された液冷媒が、流出側逆止弁46B、合流配管44、冷媒配管25、27及び電動膨張弁33を経て利用側熱交換器32へ流入し蒸発して、前述と同様に、放冷及び蒸発潜熱により室内を効率的に冷房する。この利用側熱交換器32からのガス冷媒は、接続配管41及び第3開閉弁40を経て氷蓄熱槽35のコイル34内で氷の冷熱により凝縮され、分岐配管42及び流入側逆止弁45Aを経てサージタンク43A内へ流入する。
【0035】
サージタンク43B内の液冷媒が所定値以下まで低下した時点で、第2タンク開閉弁50を閉弁し、第1タンク開閉弁49を開弁操作して、上述の動作を繰り返す。この放冷冷房運転実施時には、一般に外気温度が高温であるため、熱源側熱交換器30内の冷媒温度が高く、熱源側ユニット21において圧縮機28と熱源側熱交換器30との間に高圧ガス冷媒が長時間維持されて、上述の放冷冷房運転が継続される。
【0036】
しかし、上述の放冷冷房運転中に、氷蓄熱ユニット22内で冷媒量が増加した場合には、この放冷冷房運転状態において、第1開閉弁36を閉弁状態としたままで第2開閉弁37を開弁操作し、四方弁29を冷房位置に設定して圧縮機28を稼働させ、ポンプダウンを実施する。これにより、氷蓄熱ユニット22内の余剰の冷媒が回収され、熱源側ユニット21における圧縮機28と熱源側熱交換器30との間に高圧ガス冷媒が確保されて、上述の放冷冷房運転が再び継続される。
【0037】
[A−3]通常冷房運転
空気調和装置20の通常冷房運転は、氷蓄熱槽35内の氷に蓄熱された冷熱を利用しないで実施される冷房運転であり、第1タンク開閉弁49、第2タンク開閉弁50、電動膨張弁39及び第3開閉弁40が閉弁され、第1開閉弁36、第2開閉弁37並びに電動膨張弁31及び33が開弁操作される。
【0038】
この状態で、圧縮機28が稼働されると、この圧縮機28から吐出されたガス冷媒は、熱源側熱交換器30にて凝縮され、電動膨張弁31、冷媒配管25及び電動膨張弁33を経て利用側熱交換器32へ流入し、この利用側熱交換器32にて蒸発して、蒸発潜熱により室内を冷房した後、冷媒配管26及び四方弁29を経て圧縮機28へ戻される。
【0039】
上記実施の形態の空気調和装置20は、上述のように構成されたことから、次の効果▲1▼及び▲2▼を奏する。
【0040】
▲1▼氷蓄熱槽35のコイル34内において氷の冷熱により凝縮した液冷媒がサージタンク43A、43B内に貯留され、これらの液冷媒が、サージタンク43A、43B内へ交互に供給される高圧ガス冷媒により利用側ユニット23へ圧送可能に構成されたことから、氷蓄熱槽35のコイル34内における液冷媒を利用側ユニット23へ圧送する液ポンプなどの循環ポンプが不要となり、従って、この液ポンプに発生する恐れのあるキャビテーションを確実に回避でき、信頼性を向上させることができる。
【0041】
▲2▼熱源側ユニット21の圧縮機28停止時における圧縮機28と熱源側熱交換器30との間の高圧ガス冷媒を、第1タンク開閉弁49、第2タンク開閉弁50を交互に開閉操作して分岐配管47を介しサージタンク43A、43B内へ交互に供給することから、圧縮機28を駆動させず、ほとんど無動力で、氷蓄熱槽35のコイル34内における液冷媒を利用側熱交換器32へ圧送させることができる。
【0042】
[B]第二の実施の形態
図2は、本発明に係る氷蓄熱槽を備えた空気調和装置の第二の実施の形態を示す管路図である。この第二の実施の形態において、前記第一の実施の形態と同様な部分は、同一の符号を付すことにより説明を省略する。
【0043】
この第二の実施の形態の空気調和装置60は、前記空気調和装置20の分岐配管47、第1タンク開閉弁49及び第2タンク開閉弁50が削除され、代わりに小容量圧縮機61及び四方弁62が、第1配管63、第2配管64、第3配管65及び第4配管66に配設されたものである。第1配管63、第2配管64、第3配管65及び第4配管66は、それぞれの一端が四方弁62の各ポートに接続されると共に、第1配管63、第2配管64の他端が小容量圧縮機61の吐出口と吸込口にそれぞれ接続される。また、第3配管65、第4配管66の他端がサージタンク43A、43Bにそれぞれ接続される。
【0044】
四方弁62の切り換え操作により、第1配管63及び第3配管65の連通並びに第2配管64及び第4配管66の連通と、第1配管63及び第4配管66の連通並びに第2配管64及び第3配管65の連通とが、選択的に切り換わる。また、上記小容量圧縮機61は、熱源側ユニット21における圧縮機28よりも小さな容量(1/10〜1/20)の圧縮機であり、空気調和装置60の放冷冷房運転時にのみ稼働される。この小容量圧縮機61から吐出される冷媒は、熱源側ユニット21の圧縮機28から吐出される冷媒と同一組成である。
【0045】
更に、前記空気調和装置20の流入側逆止弁45A、45B、流出側逆止弁46A、46Bは、それぞれ流入側開閉弁67A、67B、流出側開閉弁68A、68Bに置き換えられて構成される。
【0046】
製氷運転及び通常冷房運転時には、流入側開閉弁67A及び67B、並びに流出側開閉弁68A及び68Bが全て閉弁操作され、且つ小容量圧縮機61が停止する。
【0047】
放冷冷房運転時には、流入側開閉弁67A及び流出側開閉弁68Bと、流入側開閉弁67B及び流出側開閉弁68Aとが交互に開閉操作され、小容量圧縮機61が稼働する。四方弁62が第1配管63及び第3配管65を連通させ、第2配管64及び第4配管66を連通させる状態に切り換えられ、更に、流入側開閉弁67B及び流出側開閉弁68Aが開弁操作され、流入側開閉弁67A及び流出側開閉弁68Bが閉弁操作されているときには、小容量圧縮機61にて吐出された高圧ガス冷媒は、第1配管63、四方弁62及び第3配管65を経てサージタンク43A内へ流入する。これにより、このサージタンク43A内に貯留され、且つ氷蓄熱槽35の氷の冷熱により凝縮した液冷媒が、流出側開閉弁68A、合流配管44及び冷媒配管25などを経て利用側熱交換器32へ圧送され、この利用側熱交換器32にて蒸発して室内が放冷冷房される。利用側熱交換器32にて蒸発してガス冷媒は、接続配管41及び第3開閉弁40を通って氷蓄熱槽35のコイル34内へ至り、氷の冷熱により液冷媒となって、流入側開閉弁67Bを経てサージタンク43B内へ貯留される。
【0048】
サージタンク43A内の液冷媒が所定値以下まで低下したときに、四方弁62を切り換えて第1配管63及び第4配管66を連通状態とし、第2配管64及び第3配管65を連通状態とし、更に、流入側開閉弁67A及び流出側開閉弁68Bを開弁操作し、流入側開閉弁67B及び流出側開閉弁68Aを閉弁操作すると、小容量圧縮機61にて吐出された高圧ガス冷媒は、第1配管63、四方弁62及び第4配管66を経てサージタンク43B内へ流入する。これにより、サージタンク43B内に貯留された液冷媒が、流出側開閉弁68B、合流配管44及び冷媒配管25等を経て利用側熱交換器32へ圧送され、この利用側熱交換器32にて蒸発して室内が放冷冷房される。利用側熱交換器32にて蒸発したガス冷媒は、氷蓄熱槽35のコイル34内を通って氷の冷熱により凝縮され、流入側開閉弁67Aを経てサージタンク43A内に貯留される。
【0049】
サージタンク43B内の液冷媒が所定値以下まで低下したときに四方弁62を切り換えて、上述の操作を繰り返し放冷冷房運転を継続させる。
【0050】
従って、この第二の実施の形態の空気調和装置60においても、前記実施の形態の効果▲1▼と同様の効果を奏する他、次の効果▲3▼を奏する。
【0051】
▲3▼熱源側ユニット21の圧縮機28よりも容量の小さな小容量圧縮機61から供給される高圧ガス冷媒を、四方弁62の切り換え操作によりサージタンク43A、43B内へ交互に供給することから、小容量圧縮機61は汎用の圧縮機であればよく、冷媒の種類に応じてその仕様を変更する必要がないので、部品の共用化を図ることができ、コストを低減できる。
【0052】
以上、一実施の形態に基づいて本発明を説明したが、本発明はこれに限定されるものではない。
【0053】
例えば、第一の実施の形態の空気調和装置20において、流入側逆止弁45A、45B、流出側逆止弁46A、46Bは、それぞれ、第二の実施の形態の空気調和装置60における流入側開閉弁67A、67B、流出側開閉弁68A、68Bであってもよく、更に、空気調和装置60の流入側開閉弁67A、67B、流出側開閉弁68A、68Bは、それぞれ、空気調和装置20の流入側逆止弁45A、45B、流出側逆止弁46A、46Bであってもよい。また、サージタンク43A、43Bは3以上あってもよい。
【0054】
【発明の効果】
以上のように、本発明に係る氷蓄熱槽を備えた空気調和装置によれば、氷蓄熱槽内のコイルと利用側熱交換器との間に、冷媒を貯留可能な複数のタンクが並列状態で配設され、上記コイル内の液冷媒が上記タンク内に貯留されて、これらのタンク内へ交互に供給される高圧ガス冷媒により利用側熱交換器へ圧送可能に構成されたことから、氷蓄熱ユニットのコイル内における液冷媒を利用側熱交換器へ圧送する液ポンプが不要となり、液ポンプに発生するおそれのあるキャビテーションを確実に回避できるので、信頼性を向上させることができる。
【図面の簡単な説明】
【図1】本発明に係る氷蓄熱槽を備えた空気調和装置の第一の実施の形態を示す管路図である。
【図2】本発明に係る氷蓄熱槽を備えた空気調和装置の第二の実施の形態を示す管路図である。
【図3】従来の氷蓄熱槽を備えた空気調和装置を示す管路図である。
【符号の説明】
20 空気調和装置
21 熱源側ユニット
22 氷蓄熱ユニット
23 利用側ユニット
28 圧縮機
29 四方弁
32 利用側熱交換器
34 コイル
35 氷蓄熱槽
43A、43B サージタンク
49 第1タンク開閉弁
50 第2タンク開閉弁
60 空気調和装置
61 小容量圧縮機
62 四方弁
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an air conditioner including an ice heat storage tank, and more particularly to an air conditioner including an ice heat storage tank that dissipates cold heat stored in an ice heat storage unit and performs a cooling and cooling operation.
[0002]
[Prior art]
In general, as shown in FIG. 3, a coil 7 is placed in a submerged state in a heat source unit 5 including a compressor 1, a heat source side heat exchanger 2, a four-way valve 3 and an electric expansion valve 4, and an ice heat storage tank 6. It has an ice heat storage unit 8 that can be formed on the outer periphery of the coil 7 and a use side unit 10 equipped with a use side heat exchanger 9, and can perform ice making operation, cooling cooling operation, and normal cooling operation. An air conditioner 11 is known.
[0003]
In the ice making operation, the gas refrigerant from the compressor 1 becomes a liquid refrigerant through the heat source side heat exchanger 2, and then passes through the electric expansion valve 4 to flow into the coil 7 in the ice heat storage tank 6 and evaporate. After the ice making operation is carried out in the heat storage tank 6, the gas refrigerant is returned to the compressor 1 and carried out.
[0004]
In the cooling and cooling operation, the compressor 1 of the heat source side unit 5 is stopped, and the circulating pump 12 such as a liquid pump or a gas pump that is installed in the ice heat storage unit 8 and pumps the refrigerant (in FIG. 3, a liquid pump that pumps the liquid refrigerant). ). That is, the operation of the circulation pump 12 causes the liquid refrigerant condensed by absorbing the cold stored in the ice in the coil 7 of the ice storage tank 6 in the ice storage unit 8 to be pumped to the use side heat exchanger 9. The liquid refrigerant evaporates in the use side heat exchanger 9, and the cooling and cooling operation is performed by the latent heat of evaporation and the heat radiation of ice.
[0005]
In the normal cooling operation, the refrigerant that has been led from the compressor 1 to the heat source side heat exchanger 2 to become liquid refrigerant is supplied to the use side heat exchanger 9 without flowing into the coil 7 of the ice heat storage tank 6. The liquid refrigerant is evaporated, and this latent heat of vaporization is carried out.
[0006]
[Problems to be solved by the invention]
By the way, in the above-described cooling and cooling operation, cavitation may occur in the circulation pump 12 particularly when the circulation pump 12 is a liquid pump. Furthermore, a liquid pump having specifications corresponding to the type of refrigerant is required.
[0007]
The subject of this invention is made in view of the above-mentioned situation, and is providing the air conditioning apparatus provided with the ice thermal storage tank which can improve reliability.
[0008]
[Means for Solving the Problems]
The invention according to claim 1 is a heat source side unit including a compressor and a heat source side heat exchanger, and an ice heat storage unit in which a coil is disposed in a submerged state in an ice heat storage tank so that ice can be formed on the outer periphery of the coil. And an air-conditioning apparatus having an ice heat storage tank capable of performing ice making operation and cooling operation, and the coil in the ice heat storage tank and the utilization A plurality of tanks capable of storing refrigerant are arranged in parallel with the side heat exchanger, and liquid refrigerant condensed in the coil is stored in the tank and supplied alternately to these tanks. The high-pressure gas refrigerant is configured to be capable of being pumped to the use side heat exchanger.
[0009]
According to a second aspect of the present invention, in the first aspect of the invention, the high-pressure gas refrigerant that is alternately supplied to the plurality of tanks exchanges heat with the compressor when the compressor of the heat source unit is stopped. It is a high-pressure gas refrigerant between the containers.
[0010]
According to a third aspect of the present invention, in the first aspect of the invention, the high-pressure gas refrigerant that is alternately supplied to the plurality of tanks is supplied from a small-capacity compressor having a smaller capacity than the compressor of the heat source unit. It is characterized by being a high-pressure gas refrigerant.
[0011]
The invention described in claim 1 has the following action.
Liquid refrigerant condensed by the cold heat of ice in the coil of the ice heat storage unit is stored in a plurality of tanks, and these liquid refrigerants are pumped to the heat exchanger on the use side by high-pressure gas refrigerant that is alternately supplied into the tanks. Since it is configured to be possible, a liquid pump that pumps the liquid refrigerant in the coil of the ice heat storage unit to the use-side heat exchanger is unnecessary, and therefore cavitation that may occur in the liquid pump can be reliably avoided, Reliability can be improved.
[0012]
The invention according to claim 2 has the following effects.
Since the high-pressure gas refrigerant between the compressor and the heat source side heat exchanger is alternately supplied to a plurality of tanks when the compressor of the heat source side unit is stopped, the compressor is not driven and almost no power is supplied. Further, the supercooled liquid refrigerant in the coil of the ice heat storage unit can be pumped to the use side heat exchanger.
[0013]
The invention according to claim 3 has the following effects.
[0014]
Since the high-pressure gas refrigerant supplied from the small-capacity compressor having a smaller capacity than the compressor of the heat source side unit is alternately supplied to the plurality of tanks, the small-capacity compressor may be a general-purpose compressor. Since it is not necessary to change the specification according to the type of the parts, it is possible to share the parts and reduce the cost.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0016]
[A] First Embodiment FIG. 1 is a pipeline diagram showing a first embodiment of an air conditioner equipped with an ice heat storage tank according to the present invention.
[0017]
The air conditioner 20 shown in FIG. 1 includes a heat source side unit 21, an ice heat storage unit 22, and a use side unit 23. The refrigerant pipe 24 of the heat source side unit 21 is connected to the refrigerant pipe 27 of the usage side unit 23 via the refrigerant pipes 25 and 26 of the ice heat storage unit 22.
[0018]
The heat source side unit 21 is configured by sequentially connecting a compressor 28, a four-way valve 29, a heat source side heat exchanger 30, and an electric expansion valve 31 to a refrigerant pipe 24. The use side unit 23 is configured by arranging a use side heat exchanger 32 and an electric expansion valve 33 in the refrigerant pipe 27, and the opening degree of the electric expansion valve 33 is adjusted according to the air conditioning load.
[0019]
The ice heat storage unit 22 includes an ice heat storage tank 35 in which a coil 34 is accommodated, and a first opening / closing valve 36 is disposed in the refrigerant pipe 25 and a second opening / closing valve 37 is disposed in the refrigerant pipe 26. Furthermore, one end of a coil 34 is connected to the refrigerant pipe 25 via a connection pipe 38 closer to the use side unit 23 side than the position where the first on-off valve 36 is disposed, and an electric expansion valve 39 is connected to the connection pipe 38. Arranged. In addition, the other end of the coil 34 is connected to the use side unit 23 side of the refrigerant pipe 26 at the position where the second on-off valve 37 is disposed via a connection pipe 41 provided with the third on-off valve 40.
[0020]
The ice heat storage tank 35 is filled with water, and the coil 34 is disposed in the ice heat storage tank 35 in a submerged state. In the coil 34, the liquid refrigerant flows from the heat source side heat exchanger 30 and evaporates during the ice making operation of the air conditioner 20, thereby forming ice attached to the outer periphery of the coil 34.
[0021]
Two surge tanks 43 </ b> A and 43 </ b> B are connected in parallel between the electric expansion valve 39 and the coil 34 to the connection pipe 38 through a bifurcated branch pipe 42. These surge tanks 43 </ b> A and 43 </ b> B are connected between the position where the first opening / closing valve 36 is disposed and the connection position of the connection pipe 38 in the refrigerant pipe 25 via the junction pipe 44. Thus, the surge tanks 43A and 43B are disposed between the coil 34 in the ice heat storage tank 35 and the use side heat exchanger 32, and are condensed by the cold stored in the ice in the ice heat storage tank 35. A liquid refrigerant is provided so as to be stored.
[0022]
The branch pipe 42 has inflow side check valves 45A and 45B on the inflow side of the surge tanks 43A and 43B, and the junction pipe 44 has outflow side check valves 46A and 46B on the outflow side of the surge tanks 43A and 43B. Are arranged respectively. These inflow side check valves 45A and 45B allow the flow of refrigerant flowing only from the coil 34 of the ice heat storage tank 35 to the surge tanks 43A and 43B, and the outflow side check valves 46A and 46B are surge tanks 43A and 43B. The flow of the refrigerant that flows only to the use side heat exchanger 32 side is allowed.
[0023]
The surge tanks 43 </ b> A and 43 </ b> B are connected via a branch pipe 47 between the four-way valve 29 and the heat source side heat exchanger 30 in the refrigerant pipe 24 of the heat source side unit 21. In the branch pipe 47, a first tank opening / closing valve 49 is disposed at a branching portion 48A connected to the surge tank 43A, and a second tank opening / closing valve 50 is disposed at a branching portion 48B connected to the surge tank 43B. The
[0024]
The first tank opening / closing valve 49 and the second tank opening / closing valve 50 are selectively opened / closed, whereby the high-pressure gas refrigerant between the compressor 28 and the heat source side heat exchanger 30 when the compressor 28 is stopped. However, it is comprised so that it can supply alternately in surge tank 43A, 43B. Thereby, the liquid refrigerant stored in the surge tanks 43 </ b> A and 43 </ b> B is provided so as to be capable of being pumped to the use side heat exchanger 32.
[0025]
Next, the ice making operation, the cooling and cooling operation, and the normal cooling operation of the air conditioner 20 will be described.
[0026]
[A-1] Ice making operation The ice making operation of the air conditioner 20 is performed by, for example, supplying the liquid refrigerant from the heat source side heat exchanger 30 to the ice heat storage tank 35 during a time when the electricity rate is low from 10:00 to 8:00 the next morning. This is an operation for supplying ice into the coil 34 and making ice in the ice heat storage tank 35.
[0027]
In this case, the electric expansion valve 33, the first tank on-off valve 49, and the second tank on-off valve 50 are closed, and the first on-off valve 36, the second on-off valve 37, the third on-off valve 40, and the electric expansion valve 39 are closed. Is opened.
[0028]
In this state, when the compressor 28 of the heat source side unit 21 is operated, the gas refrigerant discharged from the compressor 28 is condensed in the heat source side heat exchanger 30 and decompressed through the electric expansion valves 31 and 39. And flows into the coil 34 of the ice heat storage tank 35. The refrigerant that has flowed into the coil 34 evaporates and is formed with ice attached to the outer periphery of the coil 34. Thereafter, the gas refrigerant in the coil 34 reaches the four-way valve 29 through the connection pipe 41 and the refrigerant pipe 26 and is returned to the compressor 28.
[0029]
[A-2] Cooling and cooling operation The cooling and cooling operation of the air conditioner 20 is performed by, for example, a surge tank 43A that is liquefied by the cold heat of ice in the coil 34 of the ice heat storage tank 35 during the time when the daytime temperature rises. The liquid refrigerant stored in 43B is pumped from the surge tanks 43A and 43B to the use side heat exchanger 32.
[0030]
In this case, the first on-off valve 36, the second on-off valve 37, and the electric expansion valve 39 are closed, and the electric expansion valve 33 and the third on-off valve 40 are opened. Further, the compressor 28 of the heat source side unit 21 is in a stopped state after the ice making operation is finished.
[0031]
In this state, the first tank opening / closing valve 49 and the second tank opening / closing valve 50 are selectively opened / closed. For example, when the first tank opening / closing valve 49 is opened (the second tank opening / closing valve 50 is closed), the high-pressure gas refrigerant between the compressor 28 of the heat source side unit 21 and the heat source side heat exchanger 30 becomes the first. It flows into the surge tank 43A through the tank opening / closing valve 49. Thereby, the stored liquid refrigerant in the surge tank 43A flows into the use side heat exchanger 32 through the outflow side check valve 46A, the junction pipe 44, and the refrigerant pipes 25 and 27. The liquid refrigerant stored in the surge tank 43 </ b> A is a liquid refrigerant that passes through the coil 34 of the ice heat storage tank 35 and is condensed by the cold heat stored in the ice in the ice heat storage tank 35. By evaporating inside, the room is efficiently cooled by heat radiation (cooling) of the ice and the latent heat of evaporation.
[0032]
The gas refrigerant evaporated in the use side heat exchanger 32 flows into the coil 34 of the ice heat storage tank 35 through the connection pipe 41 and the third on-off valve 40, and is liquidated by the ice in the ice heat storage tank 35 as described above. It becomes a refrigerant and flows into the surge tank 43B through the inflow side check valve 45B.
[0033]
At this time, since the inside of the surge tank 43A is at a high pressure, the liquid refrigerant in the coil 34 of the ice heat storage tank 35 flows into the surge tank 43B without flowing into the surge tank 43A. Similarly, since the pressure in the surge tank 43B is lower than that in the surge tank 43A, the stored refrigerant in the surge tank 43B does not flow out to the use side heat exchanger 32 through the outflow check valve 46B.
[0034]
When the stored refrigerant in the surge tank 43A falls to a predetermined value or less, the first tank opening / closing valve 49 is closed, and the second tank opening / closing valve 50 is opened. Then, the liquid refrigerant stored in the surge tank 43B flows into the use side heat exchanger 32 through the outflow side check valve 46B, the junction pipe 44, the refrigerant pipes 25 and 27, and the electric expansion valve 33, and evaporates. As described above, the room is efficiently cooled by cooling and latent heat of vaporization. The gas refrigerant from the use-side heat exchanger 32 is condensed by the cold heat of ice in the coil 34 of the ice heat storage tank 35 through the connection pipe 41 and the third on-off valve 40, and is branched into the branch pipe 42 and the inflow side check valve 45A. And then flows into the surge tank 43A.
[0035]
When the liquid refrigerant in the surge tank 43B falls below a predetermined value, the second tank on / off valve 50 is closed and the first tank on / off valve 49 is opened to repeat the above operation. At the time of carrying out this cooling operation, since the outside air temperature is generally high, the refrigerant temperature in the heat source side heat exchanger 30 is high, and a high pressure is provided between the compressor 28 and the heat source side heat exchanger 30 in the heat source side unit 21. The gas refrigerant is maintained for a long time, and the above-described cooling and cooling operation is continued.
[0036]
However, if the amount of refrigerant increases in the ice heat storage unit 22 during the above-described cooling cooling operation, the second opening / closing operation is performed while the first on-off valve 36 is kept closed in this cooling cooling operation state. The valve 37 is opened, the four-way valve 29 is set to the cooling position, the compressor 28 is operated, and the pump is downed. As a result, surplus refrigerant in the ice heat storage unit 22 is recovered, high-pressure gas refrigerant is secured between the compressor 28 and the heat source side heat exchanger 30 in the heat source side unit 21, and the above-described cooling and cooling operation is performed. Will continue again.
[0037]
[A-3] Normal cooling operation The normal cooling operation of the air conditioner 20 is a cooling operation that is performed without using the cold energy stored in the ice in the ice heat storage tank 35. The two-tank on-off valve 50, the electric expansion valve 39, and the third on-off valve 40 are closed, and the first on-off valve 36, the second on-off valve 37, and the electric expansion valves 31 and 33 are opened.
[0038]
When the compressor 28 is operated in this state, the gas refrigerant discharged from the compressor 28 is condensed in the heat source side heat exchanger 30, and the electric expansion valve 31, the refrigerant pipe 25 and the electric expansion valve 33 are passed through. Then, it flows into the use side heat exchanger 32, evaporates in the use side heat exchanger 32, cools the room by latent heat of evaporation, and then returns to the compressor 28 through the refrigerant pipe 26 and the four-way valve 29.
[0039]
Since the air conditioner 20 of the above embodiment is configured as described above, the following effects (1) and (2) are achieved.
[0040]
(1) The liquid refrigerant condensed in the coil 34 of the ice heat storage tank 35 due to the cold heat of the ice is stored in the surge tanks 43A and 43B, and these liquid refrigerants are alternately supplied into the surge tanks 43A and 43B. Since the gas refrigerant can be pumped to the use side unit 23, a circulation pump such as a liquid pump for pumping the liquid refrigerant in the coil 34 of the ice heat storage tank 35 to the use side unit 23 becomes unnecessary. Cavitation that may occur in the pump can be reliably avoided and reliability can be improved.
[0041]
(2) The first tank on-off valve 49 and the second tank on-off valve 50 are alternately opened and closed with the high-pressure gas refrigerant between the compressor 28 and the heat source side heat exchanger 30 when the compressor 28 of the heat source side unit 21 is stopped. Since it is operated and alternately supplied into the surge tanks 43A and 43B via the branch pipe 47, the compressor 28 is not driven and the liquid refrigerant in the coil 34 of the ice heat storage tank 35 is used almost without any power. It can be pumped to the exchanger 32.
[0042]
[B] Second Embodiment FIG. 2 is a pipeline diagram showing a second embodiment of an air conditioner equipped with an ice heat storage tank according to the present invention. In the second embodiment, the same parts as those in the first embodiment are denoted by the same reference numerals, and the description thereof is omitted.
[0043]
In the air conditioner 60 of the second embodiment, the branch pipe 47, the first tank on / off valve 49, and the second tank on / off valve 50 of the air conditioner 20 are deleted, and a small capacity compressor 61 and four-way compressor are used instead. The valve 62 is provided in the first pipe 63, the second pipe 64, the third pipe 65, and the fourth pipe 66. One end of each of the first pipe 63, the second pipe 64, the third pipe 65, and the fourth pipe 66 is connected to each port of the four-way valve 62, and the other ends of the first pipe 63 and the second pipe 64 are connected. The small capacity compressor 61 is connected to the discharge port and the suction port, respectively. The other ends of the third pipe 65 and the fourth pipe 66 are connected to the surge tanks 43A and 43B, respectively.
[0044]
By the switching operation of the four-way valve 62, the communication of the first pipe 63 and the third pipe 65, the communication of the second pipe 64 and the fourth pipe 66, the communication of the first pipe 63 and the fourth pipe 66, and the second pipe 64 and The communication of the third pipe 65 is selectively switched. The small capacity compressor 61 is a compressor having a smaller capacity (1/10 to 1/20) than the compressor 28 in the heat source side unit 21 and is operated only during the cooling and cooling operation of the air conditioner 60. The The refrigerant discharged from the small capacity compressor 61 has the same composition as the refrigerant discharged from the compressor 28 of the heat source side unit 21.
[0045]
Further, the inflow side check valves 45A and 45B and the outflow side check valves 46A and 46B of the air conditioner 20 are replaced with inflow side on / off valves 67A and 67B and outflow side on / off valves 68A and 68B, respectively. .
[0046]
During the ice making operation and the normal cooling operation, the inflow side on / off valves 67A and 67B and the outflow side on / off valves 68A and 68B are all closed, and the small capacity compressor 61 is stopped.
[0047]
During the cooling and cooling operation, the inflow side on / off valve 67A and the outflow side on / off valve 68B, and the inflow side on / off valve 67B and the outflow side on / off valve 68A are alternately opened / closed to operate the small capacity compressor 61. The four-way valve 62 is switched to a state where the first pipe 63 and the third pipe 65 are communicated and the second pipe 64 and the fourth pipe 66 are communicated, and the inflow side on-off valve 67B and the outflow side on-off valve 68A are opened. When the inflow side on / off valve 67A and the outflow side on / off valve 68B are operated to close, the high-pressure gas refrigerant discharged from the small-capacity compressor 61 passes through the first pipe 63, the four-way valve 62, and the third pipe. It flows into the surge tank 43A through 65. Thereby, the liquid refrigerant stored in the surge tank 43A and condensed by the cold heat of the ice in the ice heat storage tank 35 passes through the outflow side on-off valve 68A, the junction pipe 44, the refrigerant pipe 25, etc., and the use side heat exchanger 32. And is evaporated by the use side heat exchanger 32 to cool the room. The gas refrigerant evaporated in the use side heat exchanger 32 passes through the connection pipe 41 and the third on-off valve 40 into the coil 34 of the ice heat storage tank 35 and becomes liquid refrigerant by the cold heat of ice, and becomes the inflow side. It is stored in the surge tank 43B via the on-off valve 67B.
[0048]
When the liquid refrigerant in the surge tank 43A falls below a predetermined value, the four-way valve 62 is switched to bring the first pipe 63 and the fourth pipe 66 into communication, and the second pipe 64 and third pipe 65 are put into communication. Further, when the inflow side on / off valve 67A and the outflow side on / off valve 68B are opened and the inflow side on / off valve 67B and the outflow side on / off valve 68A are closed, the high-pressure gas refrigerant discharged from the small capacity compressor 61 is opened. Flows into the surge tank 43B through the first pipe 63, the four-way valve 62, and the fourth pipe 66. Thereby, the liquid refrigerant stored in the surge tank 43B is pumped to the use side heat exchanger 32 via the outflow side opening / closing valve 68B, the junction pipe 44, the refrigerant pipe 25, etc., and in this use side heat exchanger 32 It evaporates and the room is allowed to cool and cool. The gas refrigerant evaporated in the use side heat exchanger 32 passes through the coil 34 of the ice heat storage tank 35 and is condensed by the cold heat of the ice, and is stored in the surge tank 43A via the inflow side opening / closing valve 67A.
[0049]
When the liquid refrigerant in the surge tank 43B drops below a predetermined value, the four-way valve 62 is switched, and the above operation is repeated to continue the cooling and cooling operation.
[0050]
Therefore, the air conditioner 60 of the second embodiment also exhibits the following effect (3) in addition to the same effect as the effect (1) of the above embodiment.
[0051]
(3) The high pressure gas refrigerant supplied from the small capacity compressor 61 having a smaller capacity than the compressor 28 of the heat source side unit 21 is alternately supplied into the surge tanks 43A and 43B by the switching operation of the four-way valve 62. The small-capacity compressor 61 may be a general-purpose compressor, and it is not necessary to change the specifications according to the type of the refrigerant. Therefore, the parts can be shared and the cost can be reduced.
[0052]
As mentioned above, although this invention was demonstrated based on one Embodiment, this invention is not limited to this.
[0053]
For example, in the air conditioner 20 of the first embodiment, the inflow side check valves 45A and 45B and the outflow side check valves 46A and 46B are respectively the inflow side in the air conditioner 60 of the second embodiment. The on-off valves 67A and 67B and the outflow-side on-off valves 68A and 68B may be used. Further, the inflow-side on-off valves 67A and 67B and the outflow-side on-off valves 68A and 68B of the air conditioner 60 are respectively The inflow check valves 45A and 45B and the outflow check valves 46A and 46B may be used. Further, there may be three or more surge tanks 43A and 43B.
[0054]
【The invention's effect】
As described above, according to the air conditioner including the ice heat storage tank according to the present invention, a plurality of tanks capable of storing refrigerant are arranged in parallel between the coil in the ice heat storage tank and the use side heat exchanger. The liquid refrigerant in the coil is stored in the tank and can be pumped to the use-side heat exchanger by the high-pressure gas refrigerant that is alternately supplied into the tank. The liquid pump that pumps the liquid refrigerant in the coil of the heat storage unit to the use-side heat exchanger is not required, and cavitation that may occur in the liquid pump can be reliably avoided, so that reliability can be improved.
[Brief description of the drawings]
FIG. 1 is a pipe line diagram showing a first embodiment of an air conditioner equipped with an ice heat storage tank according to the present invention.
FIG. 2 is a pipe line diagram showing a second embodiment of an air conditioner equipped with an ice heat storage tank according to the present invention.
FIG. 3 is a pipe diagram showing an air conditioner equipped with a conventional ice heat storage tank.
[Explanation of symbols]
20 air conditioner 21 heat source side unit 22 ice heat storage unit 23 use side unit 28 compressor 29 four-way valve 32 use side heat exchanger 34 coil 35 ice heat storage tank 43A, 43B surge tank 49 first tank opening / closing valve 50 second tank opening / closing Valve 60 Air conditioner 61 Small capacity compressor 62 Four-way valve

Claims (3)

圧縮機及び熱源側熱交換器を備えた熱源側ユニットと、氷蓄熱槽内にコイルが水没状態で配設されてこのコイル外周に氷が形成可能な氷蓄熱ユニットと、利用側熱交換器を備えた利用側ユニットとを有し、製氷運転、冷房運転を実施可能とする氷蓄熱槽を備えた空気調和装置において、
上記氷蓄熱槽内の上記コイルと上記利用側熱交換器との間に、冷媒を貯溜可能な複数のタンクが並列状態で配設され、上記コイル内で凝縮した液冷媒が上記タンク内に貯溜されて、これらのタンク内へ交互に供給される高圧ガス冷媒により上記利用側熱交換器へ圧送可能に構成されたことを特徴とする氷蓄熱槽を備えた空気調和装置。
A heat source side unit having a compressor and a heat source side heat exchanger, an ice heat storage unit in which a coil is placed in a submerged state in an ice heat storage tank and ice can be formed on the outer periphery of the coil, and a use side heat exchanger. In an air conditioner having an ice heat storage tank that can be used for ice making operation and cooling operation,
A plurality of tanks capable of storing refrigerant are arranged in parallel between the coil in the ice storage tank and the use side heat exchanger, and the liquid refrigerant condensed in the coil is stored in the tank. An air conditioner equipped with an ice heat storage tank that is configured to be capable of being pumped to the use side heat exchanger by high-pressure gas refrigerant that is alternately supplied into these tanks.
上記複数のタンクへ交互に供給される高圧ガス冷媒は、熱源側ユニットの圧縮機の停止時における当該圧縮機と熱源側熱交換器との間の高圧ガス冷媒であることを特徴とする請求項1に記載の氷蓄熱槽を備えた空気調和装置。The high pressure gas refrigerant supplied alternately to the plurality of tanks is a high pressure gas refrigerant between the compressor and the heat source side heat exchanger when the compressor of the heat source side unit is stopped. An air conditioner comprising the ice heat storage tank according to 1. 上記複数のタンクへ交互に供給される高圧ガス冷媒は、熱源側ユニットの圧縮機よりも容量の小さな小容量圧縮機から供給される高圧ガス冷媒であることを特徴とする請求項1に記載の氷蓄熱槽を備えた空気調和装置。The high-pressure gas refrigerant that is alternately supplied to the plurality of tanks is a high-pressure gas refrigerant that is supplied from a small-capacity compressor having a capacity smaller than that of the compressor of the heat source side unit. Air conditioner with ice storage tank.
JP21620898A 1998-07-30 1998-07-30 Air conditioner with ice storage tank Expired - Fee Related JP3802237B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21620898A JP3802237B2 (en) 1998-07-30 1998-07-30 Air conditioner with ice storage tank

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21620898A JP3802237B2 (en) 1998-07-30 1998-07-30 Air conditioner with ice storage tank

Publications (2)

Publication Number Publication Date
JP2000046433A JP2000046433A (en) 2000-02-18
JP3802237B2 true JP3802237B2 (en) 2006-07-26

Family

ID=16684978

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21620898A Expired - Fee Related JP3802237B2 (en) 1998-07-30 1998-07-30 Air conditioner with ice storage tank

Country Status (1)

Country Link
JP (1) JP3802237B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104279657B (en) * 2013-07-11 2017-05-17 东莞市微电环保科技有限公司 An ice storage air conditioning system
CN107120764B (en) * 2017-06-20 2022-11-01 天津城建大学 Ice storage air conditioning system and optimization method of control method thereof

Also Published As

Publication number Publication date
JP2000046433A (en) 2000-02-18

Similar Documents

Publication Publication Date Title
US5575159A (en) Heat energy transfer system
KR101864636B1 (en) Waste heat recovery type hybrid heat pump system
JPH06300381A (en) Heat storage type air conditioning apparatus and defrosting method
CN105102902B (en) Hot-water supply
JP2004003801A (en) Refrigeration equipment using carbon dioxide as refrigerant
JP2004259615A (en) Cooling device for fuel cell
JPH0634169A (en) Air conditioning device
JP2003279079A (en) Ice thermal accumulating system and heating method of ice thermal accumulating system
JPH116665A (en) Heat-storing-type air-conditioner
JP2003185287A (en) Supercooled water and hot water production system
JP3802237B2 (en) Air conditioner with ice storage tank
JP2000205774A (en) Capsulated heat storage apparatus
JP2004251557A (en) Refrigeration device using carbon dioxide as refrigerant
JP5333557B2 (en) Hot water supply air conditioning system
JP3695584B2 (en) Ice thermal storage air conditioning system
JP3802238B2 (en) Air conditioner with ice storage tank
JP2000257921A (en) Air conditioner equipped with ice storage tank
JP2007102680A (en) Automatic vending machine
JP3863670B2 (en) Air conditioner with ice storage tank
JP3790206B2 (en) Air conditioner
JP3806520B2 (en) Air conditioner with ice storage tank
JP2002061897A (en) Heat storage type air conditioner
JPH05118696A (en) Heat pump device
JP3920540B2 (en) Air conditioner
JPH09159210A (en) Cooling system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050106

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20051226

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060411

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060418

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060427

LAPS Cancellation because of no payment of annual fees