JP3800275B2 - Aluminum alloy door beam manufacturing method - Google Patents
Aluminum alloy door beam manufacturing method Download PDFInfo
- Publication number
- JP3800275B2 JP3800275B2 JP08951298A JP8951298A JP3800275B2 JP 3800275 B2 JP3800275 B2 JP 3800275B2 JP 08951298 A JP08951298 A JP 08951298A JP 8951298 A JP8951298 A JP 8951298A JP 3800275 B2 JP3800275 B2 JP 3800275B2
- Authority
- JP
- Japan
- Prior art keywords
- aluminum alloy
- door beam
- strength
- treatment
- displacement
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Landscapes
- Body Structure For Vehicles (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、自動車のドア補強用部材として使用されるアルミニウム合金製ドアビームの製造方法に関する。
【0002】
【従来の技術】
図2に示すように、アルミニウム合金製ドアビームの両端部を支持した状態で、中央部に圧縮側から荷重(P)を付加していく(3点曲げ試験という)と、ドアビームの中央部は押し込まれて曲げ変形を起こし、引張側(乗員側)フランジに引張力が作用する。さらに変位量(δ)が増大し、この引張力が材料の破断限界値を超えると引張側フランジに破断(亀裂)が生じる。
破断までの変位(破断変位)を増大させるため、特開平5−246242号公報では、曲げの中立軸の位置を引張側に必要量だけ偏らせることが開示されており、また特開平6−171362号公報では、中立軸を偏らせるのに加え、最大曲げ強度を達成した後に圧縮側に局部座屈を誘発し、引張側フランジにかかる応力を急激に下げることが開示されている。
【0003】
【発明が解決しようとする課題】
しかし、近年の安全対策の高まりの中で、破断変位を一層高める必要がでてきた。
例えば、上記特開平6−171362号公報ではドアビーム材の高さ(H)が30〜35mmとされ、特開平5−246242号公報でも同程度の高さのドアビームが記載されているが、重量を増やすことなしに初期剛性を稼ぐためには、曲げを受ける軸回りの高さを大きくして断面二次モーメントを大きくすることが有効であるため、35mmより大きいビーム高さで設計されるドアビームもでてきた。しかし、その場合は従来のものに比べ、小さい変位量で引張側フランジの破断が生じてしまう。
また、ドアビームの適用車種は小型車へも広がる傾向にあり、その場合、ビーム長が短くなってくる。例えばこれを小型4ドア車のリアドアへ適用する場合は、ビーム長が700mm以下となることもあり(上記特開平6−171362号公報では、700mm以上を対象としている)、その分、従来のビーム長の長いドアビームに比べ小さい変位量で破断が生じてしまう。
【0004】
安全対策のため、単に曲げ変形時の引張側フランジの破断を防止するだけであるなら、強度を向上させる元素すなわち、Zn、Mg、Cu等を多めに添加したうえで、伸びを大きくするため焼鈍を行うということも考えられるが、それでは素材が発揮し得る強度、耐力及びエネルギー吸収量を大幅に犠牲にすることになり、軽量化の要求にも応えることができない。
【0005】
本発明は、このような一層の安全対策及び軽量化が求められている現状に鑑み、アルミニウム合金製ドアビームが曲げ荷重を受けたとき、これまで以上に大きい破断変位を得ることができ、しかも最大強度やエネルギー吸収量において素材自体のもつポテンシャルを過度に犠牲にすることのない、アルミニウム合金製ドアビームを得ることを目的とする。
【0006】
【課題を解決するための手段】
本発明に係るアルミニウム合金製ドアビームは、過時効処理した熱処理型アルミニウム合金押出材からなり、この熱処理型アルミニウム合金は、強度、最大荷重、破断変位、破断までのエネルギー吸収量等の観点から、Al−Zn−Mg系アルミニウム合金が特に好適であり、その具体的組成は、Zn:4〜7%、Mg:0.8〜1.5%、Ti:0.005〜0.3%と、Cu:0.05〜0.6%、Mn:0.2〜0.7%、Cr:0.05〜0.3%、Zr:0.05〜0.25%から選択された1種又は2種以上を含有し、残部がAl及び不可避不純物からなる。そして、本発明に係るアルミニウム合金製ドアビームの製造方法は、上記熱処理型アルミニウム合金押出材からなるドアビーム材を最高強度を得るように時効処理した後、塗装焼付け工程を利用して過時効処理を行うことを特徴とする。
【0007】
【発明の実施の形態】
熱処理型アルミニウム合金製押出材に対し過時効処理を行うことにより、曲げ変形における最大荷重は多少低下するが、破断変位が大幅に向上する。なお、後述する実施例をみると過時効処理による伸びの向上はなく、従って、この破断変位の向上は、焼鈍の場合と違って、強度の低下と伸びの向上によるものではなく、全く別のメカニズムによるものではないかと推測している。
ここで、過時効処理とは、最高強度が得られる時効処理条件より高い温度又は長い時間時効処理を行うことである。具体的には、例えば処理温度T1℃で時効処理した場合にH1minでT1℃での最高強度が得られるとすれば、T1℃×(H1+α)minの処理条件を施すと過時効処理となり、また、処理時間H 2 minで時効処理した場合にT2℃でH2minでの最高強度が得られたとすれば、(T2+β)℃×H2minの処理条件を施すと過時効処理となる。α、βは正の値である。
【0008】
また、ここでいう最高強度とは、溶体化焼入れ又はプレス焼入れ(押出直後の焼入れ)された押出材を時効処理して得られる耐力の最高値であり、同じ条件で溶体化焼入れ又はプレス焼入れされた押出材であれば、その値は特定できる。その処理条件は、処理温度によって処理時間も変わり、一義的には決められないが、Al−Zn−Mg系合金であれば、例えば117〜123℃×18〜24hrや127〜133℃×11〜14hrである。
【0009】
また、例えば最高強度を得たところでいったん時効処理を停止し、再度加熱して時効処理を行った場合も、本発明でいう過時効処理が行われたことになる。
この場合の過時効処理の条件は、合金系や要求される破断変位等によって異なり、一義的に決められないが、Al−Zn−Mg系合金では、前工程の時効処理(最高強度を得た時効処理)の時効温度より40〜60℃高い温度で15分〜1時間保持することが、目安として挙げられる。また、強度(耐力又は引張強度)は、最高値から5〜10%低下した辺りを目安とすればよい。
Al−Zn−Mg系合金では、この過時効処理を自動車の塗装焼付け(ベーキング)工程を利用して行うことができる。(なお、自動車用Al−Mg−Si系合金などでは、塗装焼付け工程を利用して時効硬化させ強度向上を図る、いわゆるベークハードを利用することは、例えば特開平5−44000号公報等により周知であるが、この工程を過時効処理に利用した例はない。)
【0010】
本発明に適するAl−Zn−Mg系アルミニウム合金は、Zn、Mgを主成分とする析出硬化型合金であり、概ね次のような組成をもつ。Zn:4〜7%、Mg:0.8〜1.5%、Ti:0.005〜0.3%と、Cu:0.05〜0.6%、Mn:0.2〜0.7%、Cr:0.05〜0.3%、Zr:0.05〜0.25%から選択された1種又は2種以上を含有し、残部がAl及び不可避不純物。各成分の限定理由は次のとおりである。
【0011】
Zn、Mg
Zn、Mgはアルミニウム合金の強度を維持するために必要な元素である。Znが4%未満、Mgが0.8%未満では所望の強度が得られない。また、Znが7%、Mgが1.5%を超えるとアルミニウム合金の押出性が低下するとともに伸びも低下し、所要の特性値が得られなくなる。従って、Zn:4〜7%、Mg:0.8〜1.5%とする。
【0012】
Ti
Tiは、鋳塊組織の微細化のために添加される。Tiが0.005%より少ないと、微細化の効果が十分でなく、0.3%より多いと飽和して巨大化合物が発生してしまう。従って、Tiの含有量は0.005〜0.3%とする。
Cu、Mn、Cr、Zr
これらの元素はアルミニウム合金の強度を高める作用があり、これらの中から1種又は2種以上が適宜添加される。そのほか、Cuはアルミニウム合金の耐応力腐食割れ性を改善する。好適な範囲は、Cu:0.05〜0.6%、Mn:0.2〜0.7%、Cr:0.05〜0.3%、Zr:0.05〜0.25%である。それぞれ下限未満では上記の作用が不十分であり、また、上限を超えると、押出性が悪くなり、Cuの場合は一般耐食性が悪くなる。
【0013】
不可避不純物
不可避不純物のうちFeはアルミニウム地金に最も多く含まれる不純物であり、0.35%を超えて合金中に存在すると鋳造時に粗大な金属間化合物を晶出し、合金の機械的性質を損なう。従って、Feの含有量は0.35%以下に規制する。
また、アルミニウム合金を鋳造する際には地金、添加元素の中間合金等様々な経路より不純物が混入する。混入する元素は様々であるが、Fe以外の不純物は単体で0.05%以下、総量で0.15%以下であれば合金の特性にほとんど影響を及ぼさない。従って、これらの不純物は単体で0.05%以下、総量で0.15%以下とする。
【0014】
なお、過時効処理した熱処理型アルミニウム合金押出材を利用することで、ドアビームだけでなく、バンパー等を含めて、曲げ変形時の耐破断性に優れたエネルギー吸収部材を得ることができる。また、過時効処理した熱処理型アルミニウム合金押出材は曲げ変形時の耐破断性に優れているため、曲げ加工部材(曲げ加工を受ける素材)として種々の用途に広く利用できる。
【0015】
【実施例】
表1に示す成分のアルミニウム合金を、常法により溶解し、直径200mmの鋳塊に鋳造した。この鋳塊を470℃×8hrソーキングし、押出温度470℃、押出速度4m/分にて押し出し、押出直後位置において冷却した窒素ガスを押出材表面に吹き付けて冷却した。押出材の断面形状は図1に示すとおりである。この押出材に対し130℃×12hrの時効処理を行い、比較例についてはそのまま、実施例についてはさらにベーキング相当の熱処理(170℃×60min)を行い、供試材とした。なお、図1において、上方のフランジが圧縮側、下方のフランジが引張側(乗員側)である。
【0016】
【表1】
【0017】
この供試材からJIS13号B引張試験片を採取し、機械的性質を調査した。さらに、この供試材から試験材を切り出し、スパンLを600mmとして3点曲げ試験を行い、変位量(δ)が12インチ(305mm)になるまで押し込み、引張側(乗員側)フランジに破断が生じた(亀裂が生じて分離した状態となった)変位量を測定した。試験結果を表2に示す。
【0018】
【表2】
【0019】
この試験に用いた押出材はビーム高さが大きく(40mm)、ビーム長、すなわちスパンLが短い(600mm)にも関わらず、表2にみられるように、過時効処理(ベーキング相当の熱処理)された実施例の試験材は、比較例に比べ最大荷重は少し低下するが、12インチの変位量でも破断が生じなかった。またエネルギー吸収量でも優っている。
なお、実施例の試験材の伸びは比較例よりやや小さかった。すなわち、過時効処理された実施例では伸びが比較例より小さいにも関わらず、大きい変位量で破断が生じなかったことになる。
【0020】
【発明の効果】
本発明によれば、破断変位を大幅に改善することができ、短いビーム長あるいは大きいビーム高さでも大きい破断変位を得ることができる。
【図面の簡単な説明】
【図1】 実施例1に用いたドアビームの断面形状である。
【図2】 ドアビームの断面形状例(a)、それを用いた3点曲げ試験(b)、3点曲げ試験による破断の状態(c)を示す説明図である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for manufacturing an aluminum alloy door beam used as a member for reinforcing a door of an automobile.
[0002]
[Prior art]
As shown in FIG. 2, when a load (P) is applied from the compression side to the central portion while supporting both ends of the aluminum alloy door beam (referred to as a three-point bending test), the central portion of the door beam is pushed in. This causes bending deformation, and tensile force acts on the tension side (occupant side) flange. Further, when the displacement amount (δ) increases and the tensile force exceeds the fracture limit value of the material, a fracture (crack) occurs in the tension side flange.
In order to increase the displacement until fracture (breaking displacement), Japanese Patent Application Laid-Open No. 5-246242 discloses that the position of the neutral axis of bending is biased to the tension side by a necessary amount, and Japanese Patent Application Laid-Open No. 6-171362. In the publication, in addition to biasing the neutral axis, local buckling is induced on the compression side after achieving the maximum bending strength, and the stress applied to the tension side flange is rapidly reduced.
[0003]
[Problems to be solved by the invention]
However, with the recent increase in safety measures, it has become necessary to further increase the breaking displacement.
For example, in JP-A-6-171362, the height (H) of the door beam material is 30 to 35 mm, and in JP-A-5-246242, a door beam having the same height is described. In order to increase the initial rigidity without increasing it, it is effective to increase the section moment by increasing the height around the axis subjected to bending. Therefore, door beams designed with a beam height larger than 35 mm are also available. It came out. However, in that case, the tension side flange breaks with a small displacement compared to the conventional one.
In addition, the application types of door beams tend to spread to small cars, and in this case, the beam length becomes shorter. For example, when this is applied to the rear door of a small four-door vehicle, the beam length may be 700 mm or less (the above JP-A-6-171362 targets 700 mm or more). Breakage occurs with a small displacement compared to a long door beam.
[0004]
For safety measures, if it is only necessary to prevent breakage of the tension side flange during bending deformation, an element that improves the strength, that is, Zn, Mg, Cu, etc., is added in addition, and annealing is performed to increase the elongation. However, in this case, the strength, proof stress, and energy absorption amount that the material can exhibit are greatly sacrificed, and the demand for weight reduction cannot be met.
[0005]
In view of the present situation in which further safety measures and weight reduction are required, the present invention can obtain a larger breaking displacement than ever when an aluminum alloy door beam is subjected to a bending load, and maximum. The object is to obtain an aluminum alloy door beam that does not excessively sacrifice the potential of the material itself in terms of strength and energy absorption.
[0006]
[Means for Solving the Problems]
The aluminum alloy door beam according to the present invention is made of an over-aged heat treated aluminum alloy extruded material , and this heat treated aluminum alloy is made of Al in view of strength, maximum load, breaking displacement, energy absorption amount until breaking, and the like. -zn-Mg series aluminum alloys Ri particularly preferred der, the specific composition, Zn: 4~7%, Mg: 0.8~1.5%, Ti: and 0.005 to 0.3 percent, One selected from Cu: 0.05-0.6%, Mn: 0.2-0.7%, Cr: 0.05-0.3%, Zr: 0.05-0.25% or It contains 2 or more types, and the balance consists of Al and inevitable impurities. And the manufacturing method of the aluminum alloy door beam which concerns on this invention performs the overaging process using a paint baking process, after aging-treating the door beam material which consists of the said heat processing type aluminum alloy extrusion material so that the highest intensity | strength may be obtained. It is characterized by that.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
By performing an overaging treatment on the heat-treated aluminum alloy extruded material, the maximum load in bending deformation is somewhat reduced, but the fracture displacement is greatly improved. In addition, looking at the examples to be described later, there is no improvement in elongation due to overaging treatment, and therefore, the improvement in fracture displacement is not due to a decrease in strength and an improvement in elongation, unlike in the case of annealing, and is completely different. I guess it is due to the mechanism.
Here, the overaging treatment is to perform an aging treatment at a higher temperature or longer time than the aging treatment conditions for obtaining the maximum strength. Specifically, for example, if the maximum strength at T 1 ° C. is obtained at H 1 min when aging treatment is performed at a processing temperature T 1 ° C., the processing condition of T 1 ° C. × (H 1 + α) min is applied. If the maximum strength at H 2 min is obtained at T 2 ° C. when the aging treatment is performed at a treatment time of H 2 min , the processing condition of (T 2 + β) ° C. × H 2 min is obtained. When applied, it becomes an overaging treatment. α and β are positive values.
[0008]
The maximum strength here is the maximum value of yield strength obtained by aging treatment of extruded material that has been solution-quenched or press-quenched (quenched immediately after extrusion), and is solution-quenched or press-quenched under the same conditions. If it is an extruded material, its value can be specified. The treatment conditions vary depending on the treatment temperature, and the treatment time is not uniquely determined. However, in the case of an Al—Zn—Mg alloy, for example, 117 to 123 ° C. × 18 to 24 hours or 127 to 133 ° C. × 11 to 11 14 hours.
[0009]
In addition, for example, when the aging treatment is stopped once the maximum strength is obtained, and the aging treatment is performed by heating again, the overaging treatment referred to in the present invention is performed.
In this case, the conditions of the overaging treatment differ depending on the alloy system and the required fracture displacement and cannot be uniquely determined. However, in the case of Al-Zn-Mg alloy, the aging treatment in the previous step (the highest strength was obtained). Holding for 15 minutes to 1 hour at a
In an Al—Zn—Mg alloy, this overaging treatment can be performed by using an automobile paint baking process. (In the case of Al-Mg-Si alloys for automobiles and the like, it is well known, for example, in Japanese Patent Application Laid-Open No. 5-44000, to use so-called bake hardware that is age-hardened using a paint baking process to improve strength. However, there is no example of using this process for overaging treatment.)
[0010]
The Al—Zn—Mg based aluminum alloy suitable for the present invention is a precipitation hardening type alloy mainly composed of Zn and Mg, and has the following composition. Zn: 4-7%, Mg: 0.8-1.5%, Ti: 0.005-0.3%, Cu: 0.05-0.6%, Mn: 0.2-0.7 %, Cr: 0.05-0.3%, Zr: One or more selected from 0.05-0.25%, the balance being Al and inevitable impurities. The reasons for limiting each component are as follows.
[0011]
Zn, Mg
Zn and Mg are elements necessary for maintaining the strength of the aluminum alloy. If Zn is less than 4% and Mg is less than 0.8%, the desired strength cannot be obtained. On the other hand, if Zn exceeds 7% and Mg exceeds 1.5%, the extrudability of the aluminum alloy is lowered and the elongation is also lowered, making it impossible to obtain the required characteristic values. Therefore, Zn: 4-7%, Mg: 0.8-1.5%.
[0012]
Ti
Ti is added to refine the ingot structure. When Ti is less than 0.005%, the effect of miniaturization is not sufficient, and when it is more than 0.3%, saturation occurs and a huge compound is generated. Therefore, the Ti content is set to 0.005 to 0.3%.
Cu, Mn, Cr, Zr
These elements have the effect | action which raises the intensity | strength of an aluminum alloy, and 1 type (s) or 2 or more types are added suitably from these. In addition, Cu improves the stress corrosion cracking resistance of the aluminum alloy. Preferred ranges are: Cu: 0.05-0.6%, Mn: 0.2-0.7%, Cr: 0.05-0.3%, Zr: 0.05-0.25% . If the amount is less than the lower limit, the above action is insufficient, and if the upper limit is exceeded, the extrudability deteriorates, and in the case of Cu, the general corrosion resistance deteriorates.
[0013]
Inevitable Impurities Among the inevitable impurities, Fe is the most abundant impurity in aluminum ingots. If it exceeds 0.35% in the alloy, coarse intermetallic compounds are crystallized during casting, which impairs the mechanical properties of the alloy. . Therefore, the Fe content is restricted to 0.35% or less.
Further, when casting an aluminum alloy, impurities are mixed from various paths such as a metal base and an intermediate alloy of an additive element. The elements to be mixed are various, but impurities other than Fe alone are 0.05% or less, and if the total amount is 0.15% or less, the characteristics of the alloy are hardly affected. Accordingly, these impurities are 0.05% or less as a single substance, and the total amount is 0.15% or less.
[0014]
In addition, by using the heat-treated aluminum alloy extruded material that has been over-aged, it is possible to obtain an energy-absorbing member that is excellent in fracture resistance during bending deformation, including not only the door beam but also a bumper and the like. Moreover, since the heat-treated aluminum alloy extruded material that has been over-aged is excellent in fracture resistance at the time of bending deformation, it can be widely used as a bending member (a material subjected to bending) for various applications.
[0015]
【Example】
Aluminum alloys having the components shown in Table 1 were melted by a conventional method and cast into an ingot having a diameter of 200 mm. The ingot was soaked at 470 ° C. for 8 hours, extruded at an extrusion temperature of 470 ° C. and an extrusion speed of 4 m / min, and cooled by blowing nitrogen gas at the position immediately after extrusion onto the surface of the extruded material. The cross-sectional shape of the extruded material is as shown in FIG. The extruded material was subjected to an aging treatment of 130 ° C. × 12 hr, and the heat treatment equivalent to baking (170 ° C. × 60 min) was further performed for the comparative example as it was to obtain a sample material. In FIG. 1, the upper flange is the compression side, and the lower flange is the tension side (occupant side).
[0016]
[Table 1]
[0017]
JIS No. 13 B tensile test specimens were collected from the specimens and examined for mechanical properties. Further, a test material is cut out from this test material, a span L is set to 600 mm, a three-point bending test is conducted, and the displacement (δ) is pushed in until 12 inches (305 mm), and the tensile side (occupant side) flange is broken. The amount of displacement that occurred (becomes separated by cracks) was measured. The test results are shown in Table 2.
[0018]
[Table 2]
[0019]
The extruded material used in this test has a large beam height (40 mm) and a beam length, ie, a short span L (600 mm), but as shown in Table 2, an overaging treatment (heat treatment equivalent to baking). In the test materials of the examples, the maximum load was slightly reduced as compared with the comparative example, but no fracture occurred even with a displacement of 12 inches. It also excels in energy absorption.
In addition, the elongation of the test material of an Example was a little smaller than the comparative example. That is, in the over-aged example, although the elongation was smaller than that of the comparative example, the fracture did not occur with a large displacement.
[0020]
【The invention's effect】
According to the present invention, the breaking displacement can be greatly improved, and a large breaking displacement can be obtained even with a short beam length or a large beam height.
[Brief description of the drawings]
1 is a cross-sectional shape of a door beam used in Example 1. FIG.
FIG. 2 is an explanatory view showing a sectional shape example (a) of a door beam, a three-point bending test using the door beam (b), and a fracture state (c) by a three-point bending test.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP08951298A JP3800275B2 (en) | 1998-03-17 | 1998-03-17 | Aluminum alloy door beam manufacturing method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP08951298A JP3800275B2 (en) | 1998-03-17 | 1998-03-17 | Aluminum alloy door beam manufacturing method |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006078666A Division JP4311679B2 (en) | 2006-03-22 | 2006-03-22 | Manufacturing method of energy absorbing member for automobile |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH11264044A JPH11264044A (en) | 1999-09-28 |
JP3800275B2 true JP3800275B2 (en) | 2006-07-26 |
Family
ID=13972846
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP08951298A Expired - Lifetime JP3800275B2 (en) | 1998-03-17 | 1998-03-17 | Aluminum alloy door beam manufacturing method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3800275B2 (en) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5588170B2 (en) * | 2007-03-26 | 2014-09-10 | アイシン軽金属株式会社 | 7000 series aluminum alloy extruded material and method for producing the same |
WO2008126616A1 (en) | 2007-03-30 | 2008-10-23 | Kabushiki Kaisha Kobe Seiko Sho | Automobile door with strengthened side collision performance |
JP5179396B2 (en) * | 2009-02-09 | 2013-04-10 | 株式会社神戸製鋼所 | Shock absorbing member |
JP5204793B2 (en) * | 2010-01-12 | 2013-06-05 | 株式会社神戸製鋼所 | High strength aluminum alloy extruded material with excellent stress corrosion cracking resistance |
US10697047B2 (en) | 2011-12-12 | 2020-06-30 | Kobe Steel, Ltd. | High strength aluminum alloy extruded material excellent in stress corrosion cracking resistance |
JP5631379B2 (en) * | 2012-12-27 | 2014-11-26 | 株式会社神戸製鋼所 | High strength aluminum alloy extruded material for bumper reinforcement with excellent stress corrosion cracking resistance |
JP6195448B2 (en) * | 2013-01-30 | 2017-09-13 | 株式会社神戸製鋼所 | Method for producing 7000 series aluminum alloy member excellent in stress corrosion cracking resistance |
JP6795460B2 (en) * | 2017-06-08 | 2020-12-02 | 株式会社神戸製鋼所 | Manufacturing method of 7000 series aluminum alloy member with excellent stress corrosion cracking resistance |
-
1998
- 1998-03-17 JP JP08951298A patent/JP3800275B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH11264044A (en) | 1999-09-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4311679B2 (en) | Manufacturing method of energy absorbing member for automobile | |
US8105449B2 (en) | High-strength aluminum alloy extruded product with excellent impact absorption and stress corrosion cracking resistance and method of manufacturing the same | |
JP5421613B2 (en) | High strength aluminum alloy wire rod excellent in softening resistance and manufacturing method thereof | |
JP2697400B2 (en) | Aluminum alloy for forging | |
JPH0860285A (en) | Bumper reinforcement made of aluminum alloy and its production | |
KR20230043868A (en) | New 6XXX aluminum alloy and its manufacturing method | |
JP3800275B2 (en) | Aluminum alloy door beam manufacturing method | |
KR100390225B1 (en) | Energy-absorbing member | |
JP3772962B2 (en) | Automotive bumper reinforcement | |
JP2003221636A (en) | Al-Mg-Si ALUMINUM ALLOY EXTRUSION MOLDED MATERIAL SHOWING EXCELLENT RESISTANCE TO IMPACT FRACTURE | |
JP2928445B2 (en) | High-strength aluminum alloy extruded material and method for producing the same | |
JPH09268342A (en) | High strength aluminum alloy | |
JPH116044A (en) | High strength/high toughness aluminum alloy | |
KR20010087232A (en) | Aℓ-Mg-Si BASED ALUMINUM ALLOY EXTRUSION FOR DOOR BEAM AND DOOR BEAM | |
JP2910920B2 (en) | Aluminum alloy door beam material | |
JP5288671B2 (en) | Al-Mg-Si-based aluminum alloy extruded material with excellent press workability | |
JP3539980B2 (en) | Aluminum alloy automobile side door impact beam | |
JP4086404B2 (en) | Aluminum alloy door beam | |
JP3077974B2 (en) | Al-Mg-Si based aluminum alloy extruded material with excellent axial crushing properties | |
JP2003155535A (en) | Aluminum alloy extruded material for automotive bracket and method of manufacturing the same | |
JPH0941064A (en) | Production of aluminum alloy for casting and aluminum alloy casting material | |
JP4183396B2 (en) | Aluminum alloy extruded material with excellent crushing properties | |
JP2022156481A (en) | Aluminum alloy extruded material and manufacturing method thereof | |
JP2001355032A (en) | Aluminum alloy extruded material having excellent impact absorptivity | |
JP2004068076A (en) | Structural aluminum alloy forging excellent in corrosion resistance and method for producing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060207 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060322 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20060418 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20060418 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100512 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100512 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110512 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110512 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120512 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120512 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130512 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140512 Year of fee payment: 8 |
|
EXPY | Cancellation because of completion of term |