[go: up one dir, main page]

JP3796214B2 - Method for regenerating degraded catalyst - Google Patents

Method for regenerating degraded catalyst Download PDF

Info

Publication number
JP3796214B2
JP3796214B2 JP2002368687A JP2002368687A JP3796214B2 JP 3796214 B2 JP3796214 B2 JP 3796214B2 JP 2002368687 A JP2002368687 A JP 2002368687A JP 2002368687 A JP2002368687 A JP 2002368687A JP 3796214 B2 JP3796214 B2 JP 3796214B2
Authority
JP
Japan
Prior art keywords
catalyst
vanadium
tungsten
denitration
aqueous solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002368687A
Other languages
Japanese (ja)
Other versions
JP2004195401A (en
Inventor
竹徳 平野
敏雄 林田
幸男 今泉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyushu Electric Power Co Inc
Original Assignee
Kyushu Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyushu Electric Power Co Inc filed Critical Kyushu Electric Power Co Inc
Priority to JP2002368687A priority Critical patent/JP3796214B2/en
Publication of JP2004195401A publication Critical patent/JP2004195401A/en
Application granted granted Critical
Publication of JP3796214B2 publication Critical patent/JP3796214B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、活性が低下して劣化した触媒の細孔中に活性金属イオンを含む水溶液を吸収させて新たに触媒活性成分を担持させて再生する劣化した触媒の再生処理方法に関する。
【0002】
【従来の技術】
火力発電所、各種工場などの燃焼排ガス中に含まれる窒素酸化物は、環境汚染物質であることから、排ガス煙道中に触媒を設置してアンモニアを還元剤として用いる選択接触還元方法により除去する方法が広く用いられている。触媒としては酸化チタンを主成分として、これにバナジウム、タングステンやモリブデンなどを活性成分として添加した触媒材料をハニカム形状、板状または粒状に成型して使用されている。
【0003】
これらの触媒は、10年前後使用されることが多く、使用中にSOが酸性硫安となったり、ハロゲン化合物がアンモニア塩となり細孔を閉塞したり、ダストによる閉塞やアルカリ分による被毒、さらには活性成分の変質により劣化してしまうため、使用済み廃触媒として廃棄されている。
【0004】
廃触媒量が膨大であることから、再生利用することが古くより試みられており、水や無機ないし有機酸で洗浄した後、溶出したバナジウムやタングステン化合物を補うために再度含浸担持させることによる再生方法が行われている(例えば、特許文献1〜4参照)。
【0005】
【特許文献1】
特開昭54−10294号公報
【0006】
【特許文献2】
特開昭59−49849号公報
【0007】
【特許文献3】
特開昭60−209251号公報
【0008】
【特許文献4】
特開昭60−209252号公報
【0009】
【発明が解決しようとする課題】
前記特許文献に記載の方法は、水ないし酸で強制的に数時間もの洗浄を行うためバナジウムさらにはタングステンといった活性成分が溶出してしまい、そのため再度、溶出分の各活性成分を担持させることから工程が長くなり、再生コストが高くなることや処理液量が多くなり、溶出した活性成分を含有する処理液の再利用などの問題がある。
【0010】
そこで、本発明は、前記従来技術の問題点を解決し、性能が低下し劣化した触媒を簡便で低コストな再生処理による劣化した触媒の再生処理方法を提供することにある。
【0011】
【課題を解決するための手段】
本発明の劣化した触媒の再生処理方法は、性能が低下し劣化した触媒の再生処理方法において、バナジウム化合物及びタングステン化合物を溶解させた水溶液を、吸収させる時間を0.5〜5分にて前記触媒の細孔内に吸収させ、吸収された前記水溶液中の水分を蒸発除去することにより酸化バナジウム及び酸化タングステンをそれぞれ0.1〜1質量%及び0.1〜5質量%の担持率で前記触媒の細孔内に担持させることを特徴とする。
【0012】
【発明の実施の形態】
本発明者らは、劣化した触媒成形体の細孔内に活性成分であるバナジウムとタングステンを同時に短時間で吸収させることにより、前記課題を達成できることを見出し、さらに、再生処理後の触媒活性を高めるとともに副反応として問題のあるSOの酸化率を抑制することができたことにより、本発明に至ったものである。
【0013】
本発明による再生方法は、例えば、排ガス中の窒素酸化物を浄化する脱硝触媒の再生に対して用いることができるが、この再生処理の対象とする触媒の使用される分野はこれだけに限定されるものではなく、排ガス中のダイオキシン浄化触媒や、さらには各種反応プロセスに用いられている触媒の再生処理方法として用いることができる。
【0014】
本発明で再生処理の対象とする触媒として、例えば、脱硝触媒は0.1〜2質量%の酸化バナジウムないし0.2〜20質量%の酸化タングステンを含有する酸化チタン系触媒であるが、酸化チタンは耐硫黄酸化物用の担体として使用されていることから、耐硫黄酸化物性を要求されない排ガス処理で用いられるアルミナ担体系触媒でも構わない。脱硝触媒は、通常はハニカム構造を有するモノリス体が用いられるが、これ以外の球状や円柱状のペレットなどでも構わない。
これらの脱硝触媒成形体はミクロないしマクロ細孔を有し、約2l/Kgの細孔容積を有する。
【0015】
本発明の方法では、劣化した触媒の細孔内にバナジウム及びタングステン化合物を溶解させた水溶液を吸収させ、水分を蒸発させることによりバナジウム及びタングステン化合物を使用済み触媒上に担持させることにより再生するものである。
【0016】
吸収させる水溶液中のバナジウム化合物は水溶性のものであれば、塩化バナジウム、硫酸バナジル、シュウ酸バナジルなどいずれでもよいが、好ましくはシュウ酸バナジルが用いられる。タングステン化合物についても水溶性であれば何でもよく、塩化タングステン、タングステン酸、タングステン酸アンモニウム、タングストリン酸などいずれでもよいが、好ましくはメタタングステン酸アンモニウムが用いられる。
【0017】
細孔に前記水溶液を吸収させるには担持成分の溶出を防ぐ意味から必要最少量の液を吸収させることが好ましく、前記水溶液を吸収させるために必要な液量は、含浸法、スプレー法や、液循環吸収などの操作方法により異なってくるが、処理時間は0.5〜5分で終了させることができる。これ以上、短いと細孔内への液の吸収が不十分となり、これ以上長いと活性成分の溶出の問題が生ずる。
【0018】
水溶液吸収後は触媒を乾燥させるだけでもよく、さらに200〜400℃で焼成しても構わない。再生処理後に担持される酸化バナジウムと酸化タングステンの担持率は吸収させる水溶液中に含まれるバナジウム化合物とタングステン化合物の濃度で決まるが、各酸化物としての担持率は酸化バナジウムとして0.1〜1質量%、酸化タングステンとして0.1〜5質量%が好ましく、これよりも低い担持率とすると再生後の脱硝活性の改善が充分でなく、これよりも高い担持率とすると副反応のSO酸化率が高くなる問題が生ずる。また、酸化バナジウムのみを担持させると脱硝活性は改善されるもののSO酸化活性も著しく上昇する問題があり、酸化タングステンのみを担持させるとSOの酸化活性は低いものの脱硝活性の改善が充分でない問題がある。
【0019】
【実施例】
以下、実施例と比較例を用いて具体的に説明する。
【0020】
図1は本発明の方法を実施するための装置の一例を示す概略図である。
【0021】
薬液タンク1でバナジウムとタングステンの含有水溶液を調整する。性能が低下した脱硝触媒2の上部からポンプ3により薬液タンク1から水溶液をスプレー部4に送って噴霧する。噴霧された水溶液は脱硝触媒2の細孔に吸収され、残りは集液部5に集められ薬液タンク1へ戻して循環させる。
【0022】
[実施例1]
シュウ酸バナジル(70.9%VOCキシダ化学)4gを水に加熱溶解させ20ml水溶液を調整した(以下「V液」という。)。これとは別に、市販のメタタングステン酸アンモニウム水溶液(50%WO日本無機化学工業)を水と混合し45mlとした(以下「W液」という。)。
【0023】
V液20mlに水を加え80mlとした液から、25ml分取したものと、W液に水を加え30mlとした液から25ml分取したものを混合した液50mlを調製した。
【0024】
上記の液50mlに0.75V、15%WO、69%TiOを0.75V、15%WO、69%TiOを含有する使用済みの単セルハニカム(8mm□×210mm、12g)1本を2分間浸漬し、細孔内へバナジウムとタングステンを含む水溶液を吸収させた後、液切り、乾燥することにより、0.25%Vと1%WOを新たに担持させた再生処理触媒を得た。
処理した触媒ハニカムを下記の条件で脱硝性能試験を行い脱硝率とSO酸化率を測定した。
【0025】
空間速度 :12000h−1
反応ガス組成:200ppmNO−NH−4%−O−500ppmSO−10%HO−Nバランス、NH/NOモル比1.0、0.74
温度 :370℃
[実施例2]
実施例1のW液中のタングステン濃度を1/2倍にした以外は同様な方法により、0.25%V−0.5%WOを新たに再生処理担持し、性能測定を行った。
【0026】
[実施例3]
実施例1のW液中のタングステン濃度を2.5倍にした以外は同様な方法により、0.25%V−2.5%WOを新たに再生処理担持し、性能測定を行った。
【0027】
[実施例4]
実施例1のV液中のバナジウム濃度を2倍にした以外は同様な方法により、0.5%V−1%WOを新たに再生処理担持し、性能測定を行った。
【0028】
[比較例1]
実施例1で用いた再生処理前の使用済み触媒をそのまま用いて性能測定を行った。
【0029】
[比較例2]
実施例1で用いた再生処理前の使用済み触媒について、V液中のバナジウム濃度を1/8にした溶液50mlを浸漬液とした以外は同様な方法により0.25%Vを新たに再生担持し、性能測定を行った。
【0030】
[比較例3]
実施例1で用いた再生処理前の使用済み触媒について、V液中のバナジウム濃度を1/4にした溶液50mlを浸漬液とした以外は同様な方法により、0.5%Vを新たに再生担持氏、性能測定を行った。
【0031】
[比較例4]
実施例1で用いた再生処理前の使用済み触媒について、V液中のバナジウム濃度を3/4にした溶液50mlを浸漬液とした以外は同様な方法により、1.5%Vを新たに再生担持氏、性能測定を行った。
【0032】
実施例1〜4及び比較例1〜4の性能試験結果についてNH/NOモル比1.0と0.74での脱硝率の平均値とSO酸化率をまとめて表1に示す。
【0033】
【表1】

Figure 0003796214
表中、平均脱硝率とはNH3/NOモル比1.0と0.74の各脱硝率の平均値であり、SO酸化率とはSOからSOへの転化率のことである。
【0034】
比較例1の使用済み触媒の脱硝率、SO酸化率と比べて、これにVとWOをポアフィリング法で新たに担持させた触媒は実施例1〜4に示すように平均脱硝率は10%以上、上昇していると同時に、実施例1〜3ではSO酸化率も低く抑えられている。実施例4では脱硝率は上昇しているものの、SO酸化率は比較例1と比べて若干、高くなっている。しかしながら、Vのみをポアフィリング法で担持させた比較例3に示す触媒は、比較例1よりも高い脱硝率とともに、SO酸化率も高くなっているのに対して、比較例3と比べて、実施例4は脱硝率は高くなって、SO酸化率は低くなっている。
【0035】
上記の結果から、活性低下した使用済み脱硝触媒にポアフィリング法で新たにVとWOを担持させることで、脱硝率が高くなると同時にSO酸化率が抑制されることが分かり、本発明による再生処理方法は劣化触媒の性能改善に対して非常に有効な方法である。
【0036】
【発明の効果】
本発明により劣化した触媒にVとWOを同時担持させることにより、脱硝率が向上することから還元用に供給するアンモニア量を低減できることや、SO酸化率を低く抑えることができることから反応器出口で生成する酸性硫安の量を低減し、閉塞等の問題を回避できるなどの脱硝反応効率の点で大きな利点が生ずる上、本発明による再生処理方法は最少の処理液量で短時間で行うことができる結果、再生処理コストを非常に低くすることができる長所がある。
【図面の簡単な説明】
【図1】 本発明の方法を実施するための装置の一例を示す概略図である。
【符号の説明】
1:薬液タンク
2:脱硝触媒
3:ポンプ
4:スプレー部
5:集液部[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for regenerating a deteriorated catalyst in which an aqueous solution containing active metal ions is absorbed in the pores of a catalyst that has deteriorated due to a decrease in activity, and a catalyst active component is newly supported and regenerated.
[0002]
[Prior art]
Nitrogen oxides contained in combustion exhaust gas from thermal power plants, various factories, etc. are environmental pollutants. Therefore, a catalyst is installed in the exhaust gas flue and removed by a selective catalytic reduction method using ammonia as a reducing agent. Is widely used. As a catalyst, a catalyst material in which titanium oxide is a main component and vanadium, tungsten, molybdenum, or the like is added as an active ingredient is molded into a honeycomb shape, a plate shape, or a granular shape.
[0003]
These catalysts are often used for about 10 years. During use, SO X becomes acidic ammonium sulfate, halogen compounds become ammonia salts and block pores, blockage by dust and poisoning by alkali, Furthermore, since it deteriorates due to the alteration of the active component, it is discarded as a used waste catalyst.
[0004]
Since the amount of the waste catalyst is enormous, it has been tried to recycle for a long time, and after washing with water, inorganic or organic acid, it is regenerated by impregnating and supporting it again to supplement the eluted vanadium and tungsten compounds. The method is performed (for example, refer patent documents 1-4).
[0005]
[Patent Document 1]
Japanese Patent Laid-Open No. 54-10294 [0006]
[Patent Document 2]
Japanese Patent Laid-Open No. 59-49849
[Patent Document 3]
JP-A-60-209251 [0008]
[Patent Document 4]
JP-A-60-209252
[Problems to be solved by the invention]
Since the method described in the above-mentioned patent document forcibly cleans with water or acid for several hours, active components such as vanadium and tungsten are eluted, so that each active component of the eluted component is supported again. There are problems such as a long process, a high regeneration cost, a large amount of treatment liquid, and a reuse of the treatment liquid containing the eluted active ingredient.
[0010]
Accordingly, the present invention is to solve the above-mentioned problems of the prior art, and to provide a method for regenerating a deteriorated catalyst by a simple and low-cost regeneration process for a deteriorated catalyst whose performance has deteriorated.
[0011]
[Means for Solving the Problems]
The method for regenerating a deteriorated catalyst according to the present invention is the method for regenerating a deteriorated catalyst due to a decrease in performance, wherein the time for absorbing the aqueous solution in which the vanadium compound and the tungsten compound are dissolved is 0.5 to 5 minutes. The vanadium oxide and the tungsten oxide are absorbed in the pores of the catalyst by evaporating and removing the water in the aqueous solution, thereby supporting the vanadium oxide and the tungsten oxide at a loading ratio of 0.1 to 1% by mass and 0.1 to 5% by mass, respectively. The catalyst is supported in the pores of the catalyst.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
The present inventors have found that the above problems can be achieved by simultaneously absorbing the active components vanadium and tungsten in the pores of the deteriorated catalyst molded body in a short time, and further, the catalytic activity after the regeneration treatment is improved. The present invention has been achieved because the oxidation rate of SO 2 , which is a problem as a side reaction, can be suppressed while being increased.
[0013]
The regeneration method according to the present invention can be used for, for example, regeneration of a denitration catalyst that purifies nitrogen oxides in exhaust gas, but the field in which the catalyst to be subjected to regeneration treatment is used is limited to this. Instead, it can be used as a method for regenerating a dioxin purification catalyst in exhaust gas or a catalyst used in various reaction processes.
[0014]
As a catalyst to be regenerated in the present invention, for example, a denitration catalyst is a titanium oxide catalyst containing 0.1 to 2% by mass of vanadium oxide or 0.2 to 20% by mass of tungsten oxide. Since titanium is used as a support for sulfur oxides, it may be an alumina support catalyst used in exhaust gas treatment that does not require sulfur oxide resistance. As the denitration catalyst, a monolith body having a honeycomb structure is usually used, but other spherical or cylindrical pellets may be used.
These denitration catalyst compacts have micro to macro pores and a pore volume of about 2 l / Kg.
[0015]
In the method of the present invention, an aqueous solution in which vanadium and a tungsten compound are dissolved is absorbed in the pores of a deteriorated catalyst, and the vanadium and the tungsten compound are supported on the used catalyst by evaporating water, thereby regenerating. It is.
[0016]
As long as the vanadium compound in the aqueous solution to be absorbed is water-soluble, vanadium chloride, vanadyl sulfate, vanadyl oxalate and the like may be used, but vanadyl oxalate is preferably used. The tungsten compound may be anything as long as it is water-soluble and may be any of tungsten chloride, tungstic acid, ammonium tungstate, tungstophosphoric acid, etc., but preferably ammonium metatungstate is used.
[0017]
In order to absorb the aqueous solution in the pores, it is preferable to absorb a minimum amount of liquid from the viewpoint of preventing elution of the supported component, and the amount of liquid necessary to absorb the aqueous solution is impregnation method, spray method, The treatment time can be completed in 0.5 to 5 minutes, depending on the operation method such as liquid circulation absorption. If it is shorter than this, the absorption of the liquid into the pores is insufficient, and if it is longer than this, the problem of elution of the active ingredient occurs.
[0018]
After absorption of the aqueous solution, the catalyst may be simply dried, and may be calcined at 200 to 400 ° C. The supporting rate of vanadium oxide and tungsten oxide supported after the regeneration treatment is determined by the concentration of vanadium compound and tungsten compound contained in the aqueous solution to be absorbed, but the supporting rate as each oxide is 0.1 to 1 mass as vanadium oxide. %, Preferably 0.1 to 5% by mass as tungsten oxide. If the loading rate is lower than this, the denitration activity after regeneration is not sufficiently improved, and if the loading rate is higher than this, the side reaction SO 2 oxidation rate This raises the problem of increasing Further, there is a problem of markedly elevated even SO 2 oxidation activity but when supporting the only vanadium oxide denitration activity is improved, oxidation activity when supporting the only tungsten oxide SO 2 is not sufficient improvement in low denitration activity There's a problem.
[0019]
【Example】
Hereinafter, specific description will be given using Examples and Comparative Examples.
[0020]
FIG. 1 is a schematic view showing an example of an apparatus for carrying out the method of the present invention.
[0021]
An aqueous solution containing vanadium and tungsten is prepared in the chemical tank 1. An aqueous solution is sent from the chemical solution tank 1 to the spray unit 4 by the pump 3 from the upper part of the denitration catalyst 2 whose performance has been lowered. The sprayed aqueous solution is absorbed by the pores of the denitration catalyst 2, and the remainder is collected in the liquid collecting part 5 and returned to the chemical liquid tank 1 for circulation.
[0022]
[Example 1]
4 g of vanadyl oxalate (70.9% VOC 2 O 4 Kishida Chemical) was dissolved in water by heating to prepare a 20 ml aqueous solution (hereinafter referred to as “V solution”). Separately, a commercially available aqueous solution of ammonium metatungstate (50% WO 3 Nippon Inorganic Chemical Industry) was mixed with water to make 45 ml (hereinafter referred to as “W solution”).
[0023]
50 ml of a solution prepared by mixing 25 ml of a solution obtained by adding water to 20 ml of solution V and preparing a solution of 25 ml from a solution prepared by adding water to solution W and 30 ml was prepared.
[0024]
A used single cell honeycomb (8 mm □) containing 0.75V 2 O 5 , 15% WO 3 , 69% TiO 2 in 0.75V 2 O 5 , 15% WO 3 , 69% TiO 2 in 50 ml of the above solution. × 210mm, 12g) One piece was immersed for 2 minutes to absorb an aqueous solution containing vanadium and tungsten into the pores, then drained and dried to obtain 0.25% V 2 O 3 and 1% WO 3 A regenerated catalyst in which was newly supported was obtained.
The treated catalyst honeycomb was subjected to a denitration performance test under the following conditions to measure the denitration rate and the SO 2 oxidation rate.
[0025]
Space velocity: 12000h -1
Reaction gas composition: 200 ppm NO—NH 3 -4% -O 2 -500 ppm SO 2 -10% H 2 O—N 2 balance, NH 3 / NO molar ratio 1.0, 0.74
Temperature: 370 ° C
[Example 2]
0.25% V 2 O 3 -0.5% WO 3 was newly reclaimed and supported by the same method except that the tungsten concentration in the W liquid of Example 1 was halved. went.
[0026]
[Example 3]
0.25% V 2 O 3 -2.5% WO 3 was newly reclaimed and supported by the same method except that the tungsten concentration in the W liquid of Example 1 was increased by 2.5 times. went.
[0027]
[Example 4]
By the same method except that the vanadium concentration in the V liquid of Example 1 was doubled, 0.5% V 2 O 3 -1% WO 3 was newly reclaimed and supported, and the performance was measured.
[0028]
[Comparative Example 1]
The performance measurement was performed using the used catalyst before the regeneration treatment used in Example 1 as it was.
[0029]
[Comparative Example 2]
0.25% V 2 O 3 was renewed in the same manner as in Example 1 except that 50 ml of the solution having a vanadium concentration of 1/8 was used as the immersion liquid before the regeneration treatment. The performance was measured.
[0030]
[Comparative Example 3]
About the used catalyst before the regeneration treatment used in Example 1, 0.5% V 2 O 3 was obtained in the same manner except that 50 ml of the solution in which the vanadium concentration in the V liquid was ¼ was used as the immersion liquid. Mr. Rejuvenation carried out a new performance measurement.
[0031]
[Comparative Example 4]
With respect to the used catalyst before the regeneration treatment used in Example 1, 1.5% V 2 O 3 was obtained in the same manner except that 50 ml of the solution in which the vanadium concentration in the V liquid was 3/4 was used as the immersion liquid. Mr. Rejuvenation carried out a new performance measurement.
[0032]
Table 1 summarizes the average value of the denitration rate and the SO 2 oxidation rate at the NH 3 / NO molar ratio of 1.0 and 0.74 for the performance test results of Examples 1 to 4 and Comparative Examples 1 to 4.
[0033]
[Table 1]
Figure 0003796214
In the table, the average denitrification rate is an average value of each NOx removal efficiency of NH 3 / NO molar ratio of 1.0 and 0.74, the SO 2 oxidation rate is that of the conversion of SO 2 to SO 2 .
[0034]
Compared with the denitration rate and SO 2 oxidation rate of the used catalyst of Comparative Example 1, the catalyst in which V 2 O 3 and WO 3 were newly supported by the pore filling method was averaged as shown in Examples 1 to 4 While the denitration rate has increased by 10% or more, in Examples 1 to 3, the SO 2 oxidation rate is also kept low. In Example 4, although the denitration rate is increasing, the SO 2 oxidation rate is slightly higher than that of Comparative Example 1. However, the catalyst shown in Comparative Example 3 in which only V 2 O 3 is supported by the pore filling method has a higher NO 2 removal rate and a higher SO 2 oxidation rate than Comparative Example 1, whereas Comparative Example 3 In comparison with Example 4, the denitration rate is high and the SO 2 oxidation rate is low.
[0035]
From the above results, by newly carrying V 2 O 3 and WO 3 in pore filling method used denitration catalyst activity decreased, found that the denitration rate increases simultaneously SO 2 oxidation rate is prevented, The regeneration treatment method according to the present invention is a very effective method for improving the performance of a deteriorated catalyst.
[0036]
【The invention's effect】
By simultaneously supporting V 2 O 3 and WO 3 on the catalyst deteriorated according to the present invention, the denitration rate is improved, so that the amount of ammonia supplied for reduction can be reduced, and the SO 2 oxidation rate can be kept low. In addition to reducing the amount of acidic ammonium sulfate produced at the reactor outlet and avoiding problems such as clogging, there are great advantages in terms of denitration reaction efficiency, and the regeneration treatment method according to the present invention is short with a minimum amount of treatment liquid. As a result of being able to perform in time, there is an advantage that the cost of the regeneration processing can be made very low.
[Brief description of the drawings]
FIG. 1 is a schematic diagram showing an example of an apparatus for carrying out the method of the present invention.
[Explanation of symbols]
1: Chemical tank 2: Denitration catalyst 3: Pump 4: Spray unit 5: Liquid collection unit

Claims (1)

性能が低下し劣化した触媒の再生処理方法において、バナジウム化合物及びタングステン化合物を溶解させた水溶液を、吸収させる時間を0.5〜5分にて前記触媒の細孔内に吸収させ、吸収された前記水溶液中の水分を蒸発除去することにより酸化バナジウム及び酸化タングステンをそれぞれ0.1〜1質量%及び0.1〜5質量%の担持率で前記触媒の細孔内に担持させることを特徴とする劣化した触媒の再生処理方法。In the regeneration treatment method of the catalyst whose performance deteriorated and deteriorated , the aqueous solution in which the vanadium compound and the tungsten compound were dissolved was absorbed into the pores of the catalyst in 0.5 to 5 minutes and absorbed. Vanadium oxide and tungsten oxide are supported in the pores of the catalyst at a loading rate of 0.1 to 1% by mass and 0.1 to 5% by mass, respectively, by evaporating and removing water in the aqueous solution. A method for regenerating a deteriorated catalyst.
JP2002368687A 2002-12-19 2002-12-19 Method for regenerating degraded catalyst Expired - Fee Related JP3796214B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002368687A JP3796214B2 (en) 2002-12-19 2002-12-19 Method for regenerating degraded catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002368687A JP3796214B2 (en) 2002-12-19 2002-12-19 Method for regenerating degraded catalyst

Publications (2)

Publication Number Publication Date
JP2004195401A JP2004195401A (en) 2004-07-15
JP3796214B2 true JP3796214B2 (en) 2006-07-12

Family

ID=32765192

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002368687A Expired - Fee Related JP3796214B2 (en) 2002-12-19 2002-12-19 Method for regenerating degraded catalyst

Country Status (1)

Country Link
JP (1) JP3796214B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5313842B2 (en) * 2009-11-06 2013-10-09 バブコック日立株式会社 Denitration catalyst regeneration method

Also Published As

Publication number Publication date
JP2004195401A (en) 2004-07-15

Similar Documents

Publication Publication Date Title
KR101271105B1 (en) Methods of recycling a catalyst
JP5108879B2 (en) High temperature ammonia SCR catalyst and its use
KR100668936B1 (en) Regeneration Method of Honeycomb Type SCR Catalyst Using Bubble Flow System
US6596661B2 (en) Process for regenerating a deactivated catalyst
CN102814201A (en) Cleaning and regeneration method for SCR denitration catalyst poisoned by arsenic component in flue
KR20080114051A (en) Regeneration method of flue gas denitrification waste catalyst and method for determining cleaning time of flue gas denitrification waste catalyst
WO2016167280A1 (en) Method of regenerating used denitration catalyst
JP4113090B2 (en) Exhaust gas treatment method
CN110354915B (en) A kind of recovery and reuse method of alkali metal poisoned SCR denitration catalyst
JP2012024669A (en) Method for regenerating denitration catalyst
JP3059137B2 (en) Reprocessing method for denitration catalyst
CN107185593A (en) A kind of SCR denitration of resistant to potassium poisoning and preparation method thereof
JP5386096B2 (en) Exhaust gas treatment catalyst
JP3796214B2 (en) Method for regenerating degraded catalyst
KR102378405B1 (en) Selective reduction catalyst for removing nitrogen oxide using ammonia, manufacturing method thereof and method for removing nitrogen oxide using the same
JP3495591B2 (en) Method for reduction treatment of nitrogen oxides and SO3 in exhaust gas
JP3474514B2 (en) Low temperature denitration catalyst and low temperature denitration method
KR100382051B1 (en) Catalyst for Selective Catalytic Reduction of Nitrogen Oxides Including Sulfur Dioxide at Low Temperature
JP3150519B2 (en) Regeneration method of denitration catalyst
CN114345317A (en) A kind of V/Fe bimetallic desulfurization and denitration catalyst and its preparation method and application
JPH09155190A (en) Catalyst for removing nitrogen oxides in exhaust gas, production thereof and method for removing nitrogen oxides in exhaust gas using the catalyst
JP3872656B2 (en) Method and apparatus for improving activity of denitration catalyst
JP2001219078A (en) Method for catalyst regeneration
KR102579933B1 (en) Selective catalytic reduction comprising functional group layer through heat treatment of silane and method of preparing the same
JP2004267897A (en) Method for regenerating denitration catalyst

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050920

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050930

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051124

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060317

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060414

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100421

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110421

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120421

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130421

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140421

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees