[go: up one dir, main page]

JP3795114B2 - Waste incinerator exhaust gas treatment method and apparatus - Google Patents

Waste incinerator exhaust gas treatment method and apparatus Download PDF

Info

Publication number
JP3795114B2
JP3795114B2 JP31554795A JP31554795A JP3795114B2 JP 3795114 B2 JP3795114 B2 JP 3795114B2 JP 31554795 A JP31554795 A JP 31554795A JP 31554795 A JP31554795 A JP 31554795A JP 3795114 B2 JP3795114 B2 JP 3795114B2
Authority
JP
Japan
Prior art keywords
exhaust gas
denitration
waste incinerator
treatment apparatus
flue
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP31554795A
Other languages
Japanese (ja)
Other versions
JPH09159140A (en
Inventor
郷紀 佐々木
一紀 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP31554795A priority Critical patent/JP3795114B2/en
Publication of JPH09159140A publication Critical patent/JPH09159140A/en
Application granted granted Critical
Publication of JP3795114B2 publication Critical patent/JP3795114B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Chimneys And Flues (AREA)

Description

【0001】
【発明の属する技術分野】
本発明はごみ焼却炉から排出される排ガス中のNOX 量を低減するごみ焼却炉の排ガス処理方法に関する。
【0002】
【従来の技術】
ごみを焼却するごみ焼却炉では、排出される排ガス中のNOX の濃度が急変し易く、そのため、NOX を効果的に低減することが困難である。図3に、従来採用されている排ガス処理方法を示す。
【0003】
図3は従来のごみ焼却炉の排ガス処理の系統図である。図3では、(a)、(b)、(c)の3種の系統図が示されている。図3の(a)は、例えば、特開昭58−45723号公報等で提案されている手段を示すものであり、ごみ焼却炉1、バグハウス(脱塵装置)2、および煙突3を備えた装置において、尿素又はアンモニア等の還元剤をごみ焼却炉1内に吹き込む無触媒脱硝法、即ち炉内脱硝方式であり、簡便な処理方法として用いられている。
【0004】
図3の(b)は、例えば、「第3回環境工学シンポジウム講演論文集(1993.7.2)」、「廃棄物学会第4回研究発表会講演論文集(1993.10.13)」に示される手段であり、ごみ焼却炉1、バグハウス2、および煙突3を備えた装置において、バグハウス2の後流に脱硝塔4を設け、この脱硝塔4によって脱硝を行なうことにより、温度165 〜260 ℃で50〜75%の初期脱硝率が得られる。
【0005】
図3の(c)は、例えば、特開平4−219124号公報等で提案されている手段を示すものであり、ごみ焼却炉1、バグフィルタ型反応装置5、および煙突3を備えた装置において、脱硝触媒をフィルタ部に含浸させた脱硝バグフィルタを用いる方式であり、この触媒を用いる方式では、煙道上流でアンモニアガス、又はアンモニア水を吹き込み、
4NO+4NH3 +O2 →4N2 +6H2O …………(1)
の反応によりNOX を還元除去している。
【0006】
NH3 を還元剤とする選択的接触還元法において、NOX のNH3 による還元反応は上記反応式による反応の外に次の2つの反応式による還元反応が知られている。
NO+NO2 +2NH3 →2N2 +3H2O …………(2)
6NO2 +8NH3 →7N2 +12H2O …………(3)
上記2つの反応式のうち、反応式(2)によって得られるNOX の除去効果は、NO/NO2 モル比が1以上のとき、反応式(1)の2倍の反応速度をもつ。このことから、例えば、特開平6−53211号公報に示されるように、廃ガス中のNO2 を還元してNOとして触媒に接触させ、窒素酸化物を除去する手段が提案されている。
【0007】
【発明が解決しようとする課題】
上記図3の(a)に示す方法は、NOX 濃度の低減に限界があり、NOX の規制値が強化されつつある現状には対応できない。又、都市ごみ焼却炉の場合、炉内温度・ガス濃度分布が非常に大きく変動するため、還元剤の注入ポイントの選定が難しい。900 〜1050℃の高温領域に還元剤を一様に噴霧するようにすれば脱硝率は向上するという実験結果が得られているが、温度が高過ぎると還元剤のアンモニア化合物の燃焼によりNOX が発生し、又、温度が低過ぎると脱硝率は減少し、アンモニアリーク濃度が上昇するため、実際には脱硝剤/NOX 比率を大きくとれない。
【0008】
上記図3の(b)に示す方法は、現状の触媒の低温での活性が低く、脱硝率の向上のためには触媒使用量や温度を高くする必要がある。このため、反応塔4の圧損が増加し、誘引送風機の大型化が必要となる。これは、既設の装置に触媒脱硝装置を追加するために誘引送風機を交換する必要を生じさせる。
【0009】
上記図3の(c)に示す方法においても、脱硝率の向上には、触媒使用量や温度を高くする必要がある。しかし、バグフィルタとして使用されるガラス繊維織布やポリフェニレンスルフィド、ポリイミド等のフェルトの耐熱温度はおよそ200 〜250 ℃程度であり、高温化には限界がある。又、フィルタ圧損の増加に伴う諸問題は上記図3の(b)の方法の場合と同様に存在する。さらに、排ガス中の硫酸塩等により触媒が汚染され、触媒の活性面が閉塞して脱硝率が低下するという問題もある。
【0010】
本発明の目的は、上記従来技術における課題を解決し、NOX を低温で効率よく低減することができ、既設装置にも容易に適用することができるごみ焼却炉の排ガス処理方法を提供することにある。
【0011】
【課題を解決するための手段】
上記の目的を達成するため、本発明は、ごみ焼却炉から排出される排ガスを脱硝処理装置に導入して排ガス中のNOxの量を低減するごみ焼却炉の排ガス処理方法において、前記脱硝処理装置の上流煙道又は当該脱硝処理装置内に硝酸アンモニューム水溶液を気化、分解させて生成されたNOを導入添加し、アンモニアなどの還元剤とともに排ガス中の窒素化合物と混合接触させ、低温で脱硝率を向上させることを特徴とする。
【0012】
【発明の実施の形態】
以下、本発明を図示の実施の形態に基づいて説明する。
図1は本発明の実施の形態に係るごみ焼却炉の排ガス処理方法を説明する系統図である。この図で、10はごみ焼却炉、11は脱硝装置、12は排ガスを誘引する吸引ブロワー、13はごみ焼却炉10と脱硝装置11との間の煙道、14は脱硝装置11と吸引ブロワー12との間の煙道、15は脱硝装置11からの排ガスを冷却するガス冷却器である。16は硝酸アンモニューム水溶液を貯蔵する給液タンク、17は給液タンク16の液を送り出す送液ポンプ、18は送液ポンプ17からの液を加熱する給液加熱ヒータ、19は脱硝装置11の入口と出口のNOX 濃度を分析するNOX 分析計である。
【0013】
ごみ焼却炉10の作動中、給液タンク16中の硝酸アンモニューム水溶液は送液ポンプ17で吸い上げられ、給液加熱ヒータ18で加熱されて気化、分解され、脱硝装置11の上流の煙道13に導入される。導入された硝酸アンモニューム水溶液は180 〜250 ℃の低温条件でも触媒脱硝装置11内で接触還元脱硝反応を促進させる。
【0014】
上記の反応をさらに詳細に説明する。ごみ焼却設備の燃焼排ガス中のNOX は、そのほとんどがNOである。したがって、実際に前述の各反応式に従う脱硝を行ない、例えば反応式(2)による脱硝の脱硝率を向上させるためには排ガス中にNO2 を導入して触媒脱硝反応を生じさせる必要がある。本実施の形態では、この方法を参考にして、硝酸アンモニュームのようなNO、NO2 とは酸化数の異なるN2Oを生成する化合物に着目し、これらの水溶液を気化させながら触媒脱硝装置11の上流の煙道13中に導入し、前述の反応式(2)と類似する以下の反応によって、低温で脱硝率を向上させるものである。
【0015】
まず、NH4NO3(硝酸アンモニューム)は次に示す分解反応を生じ、N2O を生成する。
NH4NO3=N2O+2H2O+10kcal mol-1(at250 ℃)…(4)
この場合、硝酸アンモニュームの0.1 〜10%程度の水溶液を調整しておき、180 〜300 ℃の間、特に250 ℃付近で水溶液を加熱して気化、分解させ、脱硝装置11の上流の煙道13に導入するのが望ましい。
【0016】
発生したN2O は下記の反応式(5)又は(6)により触媒の存在下で脱硝反応を生じる。この反応は、反応熱(−ΔH)、活性化自由エネルギー(ΔG)から、ともに発熱反応であり、反応式(2)、(3)と同様の反応速度をもつ。
2NO+N2O+2NH3→3N2 +3H2O…………(5)
−Δ=214 kcal mol-1(発熱)、ΔG=−222 kcal mol-1
3N2O+2NH3→4N2 +3H2O…………(6)
−Δ=254 kcal mol-1(発熱)、ΔG=−246 kcal mol-1
特に、反応式(5)の反応により脱硝率の向上効果を得ることができる。
【0017】
なお、上記実施の形態の説明では、反応活性剤として硝酸アンモニュームを使用する例を挙げたが、このような硝酸アンモニュームを用いたN2O の生成の他に、例えば、次のような物質の使用も可能である。
(i)硝酸塩・亜硝酸塩の塩化スズ(II)・ナトリウムアマルガムでの還元
(ii)アンモニアの酸化、亜硝酸カリウムの飽和溶液+一酸化窒素の濃水酸化カリウム溶液より生じる硫酸カリウム・酸化二窒素(K2SO42O)を希酸処理する。
(iii)亜硝酸ヒドラジウムの分解(〔N25〕NO2→N2O+NH3+H2
(iv)アジ化水素酸と亜硝酸の反応(HN3+HNO2→N2+N2O+H2
(v)窒素と酸素の混合気体中での放電
又、上記実施の形態では、脱硝処理装置として脱硝装置11を例示して説明したが、これに限ることはなく、脱硝塔方式(ハニカム・板状・粒状脱硝触媒)、脱硝バグフィルタ方式(表面・内部基布担持法、触媒繊維製フィルタ方式、煙道投入法)の使用も可能であり、触媒の成分や形状、使用方法も適宜選択することができる。さらに、硝酸アンモニューム等の反応活性剤は煙道でなく脱硝処理装置内に導入してもよい。
【0018】
【実施例】
図1に示す実施の形態において、硝酸アンモニューム水溶液は、1.6 重量%に希釈されたものを用い、煙道には、煙道NOX 濃度と当量比0 〜1 で導入した。又、給液加熱ヒータ18の温度を300 〜400 ℃に設定して硝酸アンモニューム水溶液を加熱して気化・熱分解させた。排ガス中のNOX 濃度は平均200 ppmで、脱硝装置11内の温度は230 ℃であった。NH4NO3(硝酸アンモニューム)濃度を0 から200 ppmまで変化させながら NH3/(NO+NH4NO3)濃度比が1.2 となるようにNH3 を添加し、脱硝率の測定を行なった。この結果を図2に示す。
【0019】
図2で、横軸には硝酸アンモニューム/NO のモル比、縦軸には脱硝率がとってある。硝酸アンモニュームを添加していないとき(モル比=0 )、入口のNOX 濃度200 ppmに対して、出口のNOX 濃度は86ppmとなり、脱硝率は57%であった。硝酸アンモニュームを NH4NO3/NOモル比0.2 で導入したとき、入口のNOX 濃度は235 ppmに対して出口のNOX 濃度は79ppmとなり、脱硝率は66%となった。この時の脱硝効率が最も大きいことが判った。
【0020】
【発明の効果】
以上述べたように、本発明では、脱硝処理装置の上流煙道又は当該脱硝処理装置内に流体の反応活性剤を導入添加し、排ガス中の窒素化合物と混合接触させるようにしたので、低温条件で効率よく脱硝を行なうことができ、又、複雑な付帯設備は不要で、既設炉への適用も容易である。
【図面の簡単な説明】
【図1】本発明の実施の形態に係るごみ焼却炉の排ガス処理方法を説明する系統図である。
【図2】排ガス中のNOに対するNH4NO3のモル比と脱硝率との関係を示す図である。
【図3】従来のごみ焼却炉の排ガス処理の系統図である。
【符号の説明】
10 ごみ焼却炉
11 脱硝装置
12 吸引ブロワー
13、14 煙道
15 ガス冷却器
16 給液ポンプ
17 送液ポンプ
18 給仕液加熱ヒータ
19 NOX 分析計
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a waste incinerator exhaust gas treatment method for reducing the amount of NO x in exhaust gas discharged from a waste incinerator.
[0002]
[Prior art]
In a waste incinerator that incinerates waste, the concentration of NO x in the exhaust gas discharged tends to change suddenly, and therefore it is difficult to effectively reduce NO x . FIG. 3 shows a conventionally used exhaust gas treatment method.
[0003]
FIG. 3 is a system diagram of exhaust gas treatment of a conventional waste incinerator. In FIG. 3, three types of system diagrams (a), (b), and (c) are shown. FIG. 3A shows, for example, means proposed in Japanese Patent Laid-Open No. 58-45723, and includes a waste incinerator 1, a baghouse (dust removal device) 2, and a chimney 3. Is a non-catalytic denitration method in which a reducing agent such as urea or ammonia is blown into the waste incinerator 1, that is, an in-furnace denitration method, which is used as a simple treatment method.
[0004]
FIG. 3B shows, for example, “3rd Environmental Engineering Symposium Lecture Collection (1993.7.2)”, “Waste Society 4th Research Presentation Lecture Collection (1993.10.13)”. In the apparatus including the waste incinerator 1, the baghouse 2, and the chimney 3, a denitration tower 4 is provided in the downstream of the baghouse 2, and denitration is performed by the denitration tower 4. An initial denitration rate of 50-75% is obtained at 165-260 ° C.
[0005]
FIG. 3C shows, for example, the means proposed in Japanese Patent Application Laid-Open No. 4-219124. In the apparatus provided with the waste incinerator 1, the bag filter type reactor 5, and the chimney 3 , A system using a denitration bag filter in which a filter part is impregnated with a denitration catalyst. In the system using this catalyst, ammonia gas or ammonia water is blown upstream of the flue,
4NO + 4NH 3 + O 2 → 4N 2 + 6H 2 O (1)
NO x is reduced and removed by this reaction.
[0006]
In the selective catalytic reduction method using NH 3 as a reducing agent, the reduction reaction of NO x by NH 3 is known to be a reduction reaction by the following two reaction formulas in addition to the reaction by the above reaction formula.
NO + NO 2 + 2NH 3 → 2N 2 + 3H 2 O (2)
6NO 2 + 8NH 3 → 7N 2 + 12H 2 O (3)
Of the above two reaction equations, the NO x removal effect obtained by the reaction equation (2) has a reaction rate twice that of the reaction equation (1) when the NO / NO 2 molar ratio is 1 or more. From this, for example, as disclosed in JP-A-6-53211, means for reducing nitrogen oxides by reducing NO 2 in waste gas as NO and contacting the catalyst has been proposed.
[0007]
[Problems to be solved by the invention]
The method shown in (a) of FIG. 3 has a limit in reducing the NO x concentration, and cannot cope with the current situation where the regulation value of NO x is being strengthened. In the case of municipal waste incinerators, it is difficult to select the reducing agent injection point because the furnace temperature and gas concentration distribution vary greatly. Experimental results have been obtained that the NOx removal rate is improved by spraying the reducing agent uniformly in a high temperature range of 900 to 1050 ° C. However, if the temperature is too high, NO x is burned by the combustion of the ammonia compound of the reducing agent. In addition, if the temperature is too low, the denitration rate decreases and the ammonia leak concentration increases, so in practice, the denitration agent / NO x ratio cannot be increased.
[0008]
The method shown in FIG. 3 (b) shows that the current catalyst has low activity at low temperatures, and it is necessary to increase the amount of catalyst used and the temperature in order to improve the denitration rate. For this reason, the pressure loss of the reaction tower 4 increases, and the attraction fan needs to be enlarged. This creates a need to replace the induction fan to add a catalyst denitration device to the existing equipment.
[0009]
Also in the method shown in FIG. 3C, it is necessary to increase the amount of catalyst used and the temperature in order to improve the denitration rate. However, the heat-resistant temperature of felts such as glass fiber woven fabric, polyphenylene sulfide, and polyimide used as bag filters is about 200 to 250 ° C., and there is a limit to increasing the temperature. Further, various problems associated with an increase in filter pressure loss exist as in the case of the method shown in FIG. Further, there is a problem that the catalyst is contaminated by sulfate in the exhaust gas, the active surface of the catalyst is blocked, and the denitration rate is lowered.
[0010]
An object of the present invention is to solve the above-mentioned problems in the prior art, and to provide a waste incinerator exhaust gas treatment method that can efficiently reduce NO x at low temperatures and can be easily applied to existing equipment. It is in.
[0011]
[Means for Solving the Problems]
In order to achieve the above object, the present invention provides an exhaust gas treatment method for a waste incinerator that reduces the amount of NOx in the exhaust gas by introducing the exhaust gas discharged from the waste incinerator to the denitration treatment device. Introducing and adding N 2 O produced by vaporizing and decomposing an ammonium nitrate aqueous solution into the upstream flue or the denitration treatment apparatus, bringing it into contact with nitrogen compounds in the exhaust gas together with a reducing agent such as ammonia, at low temperature It is characterized by improving the denitration rate.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described based on the illustrated embodiments.
FIG. 1 is a system diagram illustrating an exhaust gas treatment method for a waste incinerator according to an embodiment of the present invention. In this figure, 10 is a waste incinerator, 11 is a denitration device, 12 is a suction blower for attracting exhaust gas, 13 is a flue between the waste incinerator 10 and the denitration device 11, and 14 is a denitration device 11 and a suction blower 12. Reference numeral 15 denotes a gas cooler for cooling the exhaust gas from the denitration device 11. 16 is a liquid supply tank for storing ammonium nitrate aqueous solution, 17 is a liquid feed pump for sending out the liquid in the liquid feed tank 16, 18 is a liquid feed heater for heating the liquid from the liquid feed pump 17, and 19 is a denitration device 11. This is an NO x analyzer for analyzing the NO x concentration at the inlet and outlet.
[0013]
During operation of the garbage incinerator 10, the ammonium nitrate aqueous solution in the feed tank 16 is sucked up by the feed pump 17, heated and vaporized and decomposed by the feed heater 18, and the flue 13 upstream of the denitration device 11. To be introduced. The introduced ammonium nitrate aqueous solution promotes catalytic reduction denitration reaction in the catalyst denitration apparatus 11 even under a low temperature condition of 180 to 250 ° C.
[0014]
The above reaction will be described in more detail. Most of the NO x in the combustion exhaust gas from the waste incineration facility is NO. Therefore, denitration is actually performed according to each of the above-described reaction formulas. For example, in order to improve the denitration rate of denitration by the reaction formula (2), it is necessary to introduce NO 2 into the exhaust gas to cause a catalytic denitration reaction. In the present embodiment, with reference to this method, attention is paid to a compound that generates N 2 O having a different oxidation number from NO and NO 2 , such as ammonium nitrate, and a catalytic denitration apparatus while vaporizing these aqueous solutions. 11 is introduced into the flue 13 upstream, and the denitration rate is improved at a low temperature by the following reaction similar to the above reaction formula (2).
[0015]
First, NH 4 NO 3 (ammonium nitrate) undergoes the following decomposition reaction to generate N 2 O.
NH 4 NO 3 = N 2 O + 2H 2 O + 10 kcal mol −1 (at 250 ° C.) (4)
In this case, an aqueous solution of about 0.1 to 10% of ammonium nitrate ammonium is prepared, and the aqueous solution is heated and vaporized and decomposed at 180 to 300 ° C., particularly in the vicinity of 250 ° C., and the flue upstream of the denitration device 11 13 is desirable.
[0016]
The generated N 2 O causes a denitration reaction in the presence of a catalyst according to the following reaction formula (5) or (6). This reaction is an exothermic reaction from the heat of reaction (−ΔH) and the activation free energy (ΔG), and has the same reaction rate as the reaction formulas (2) and (3).
2NO + N 2 O + 2NH 3 → 3N 2 + 3H 2 O (5)
-Δ = 214 kcal mol -1 (exotherm), ΔG = -222 kcal mol -1
3N 2 O + 2NH 3 → 4N 2 + 3H 2 O (6)
-Δ = 254 kcal mol -1 (exotherm), ΔG = -246 kcal mol -1
In particular, the effect of improving the denitration rate can be obtained by the reaction of reaction formula (5).
[0017]
In the description of the above embodiment, an example in which ammonium nitrate is used as a reaction activator has been given. In addition to the production of N 2 O using such ammonium nitrate, for example, The use of substances is also possible.
(I) Reduction of nitrate / nitrite with tin (II) chloride / sodium amalgam (ii) Oxidation of ammonia, potassium sulfate / dinitrogen oxide generated from saturated potassium hydroxide solution of potassium nitrite + nitric oxide K 2 SO 4 N 2 O) is treated with a dilute acid.
(Iii) Decomposition of hydradium nitrite ([N 2 H 5 ] NO 2 → N 2 O + NH 3 + H 2 O
(Iv) Reaction of hydrazoic acid and nitrous acid (HN 3 + HNO 2 → N 2 + N 2 O + H 2 O
(V) Discharge in a mixed gas of nitrogen and oxygen In the above embodiment, the denitration apparatus 11 has been described as an example of the denitration treatment apparatus. However, the present invention is not limited to this, and a denitration tower system (honeycomb / plate) Shape / particulate denitration catalyst), denitration bag filter method (surface / inner base fabric support method, catalyst fiber filter method, flue injection method) can also be used, and the catalyst component, shape and method of use are also selected appropriately be able to. Further, a reaction activator such as ammonium nitrate may be introduced into the denitration apparatus instead of the flue.
[0018]
【Example】
In the embodiment shown in FIG. 1, the ammonium nitrate aqueous solution diluted to 1.6% by weight was used and introduced into the flue at a flue NO x concentration and an equivalent ratio of 0 to 1. Further, the temperature of the liquid supply heater 18 was set to 300 to 400 ° C., and the ammonium nitrate aqueous solution was heated to be vaporized and thermally decomposed. The NO x concentration in the exhaust gas was 200 ppm on average, and the temperature in the denitration apparatus 11 was 230 ° C. NH 4 NO 3 while changing the (nitrate ammonium pneumo) concentration from 0 to 200 ppm NH 3 / (NO + NH 4 NO 3) was added NH 3 so that the concentration ratio is 1.2, was measured for NOx removal efficiency. The result is shown in FIG.
[0019]
In FIG. 2, the horizontal axis represents the ammonium nitrate / NO 3 molar ratio, and the vertical axis represents the denitration rate. When not adding nitric acid ammonium pneumo (molar ratio = 0), relative to the inlet of the NO X concentration 200 ppm, NO X concentration at the outlet is next 86 ppm, the denitration rate was 57%. Upon introduction nitrate ammonium pneumo with NH 4 NO 3 / NO molar ratio 0.2, NO X concentration at the outlet the inlet of the NO X concentration with respect to 235 ppm is next 79 ppm, the denitration ratio was 66%. It was found that the denitration efficiency at this time was the largest.
[0020]
【The invention's effect】
As described above, in the present invention, a fluid reaction activator is introduced and added to the upstream flue of the denitration treatment apparatus or into the denitration treatment apparatus, and mixed with the nitrogen compound in the exhaust gas. Therefore, denitration can be performed efficiently, and complicated incidental equipment is not required, and application to an existing furnace is easy.
[Brief description of the drawings]
FIG. 1 is a system diagram illustrating an exhaust gas treatment method for a waste incinerator according to an embodiment of the present invention.
FIG. 2 is a graph showing the relationship between the molar ratio of NH 4 NO 3 to NO in exhaust gas and the denitration rate.
FIG. 3 is a system diagram of exhaust gas treatment of a conventional waste incinerator.
[Explanation of symbols]
10 incinerator 11 denitrator 12 suction blower 13 flue 15 gas cooler 16 feed pump 17 feeding pump 18 serving solution heater 19 NO X analyzer

Claims (2)

ごみ焼却炉から排出される排ガスを脱硝処理装置に導入して排ガス中のNOxの量を低減するごみ焼却炉の排ガス処理方法において、
前記脱硝処理装置の上流煙道又は当該脱硝処理装置内に硝酸アンモニューム水溶液を気化、分解させて生成されたN を導入添加し、アンモニアなどの還元剤とともに排ガス中の窒素化合物と混合接触させ、低温で脱硝率を向上させる
ことを特徴とするごみ焼却炉の排ガス処理方法。
In a waste incinerator exhaust gas treatment method in which exhaust gas discharged from a waste incinerator is introduced into a denitration treatment apparatus to reduce the amount of NOx in the exhaust gas,
Introducing and adding N 2 O produced by vaporizing and decomposing ammonium nitrate aqueous solution into the upstream flue of the denitration treatment apparatus or in the denitration treatment apparatus, and mixing contact with nitrogen compounds in the exhaust gas together with a reducing agent such as ammonia An exhaust gas treatment method for a waste incinerator characterized in that the denitration rate is improved at low temperatures .
ごみ焼却炉から排出される排ガスが流れる煙道と前記煙道からの排ガスが導入される脱硝処理装置とが設けられたごみ焼却炉の排ガスの処理装置において、
前記煙道又は当該脱硝処理装置内に硝酸アンモニューム水溶液を気化、分解して得られたN Oを供給する装置を設け、
アンモニアなどの還元剤とともに排ガス中の窒素化合物と混合接触させ、低温で脱硝率を向上させる
ことを特徴とするごみ焼却炉の排ガスの処理装置。
In a waste incinerator exhaust gas treatment apparatus provided with a flue through which exhaust gas discharged from a waste incinerator flows and a denitration treatment apparatus into which exhaust gas from the flue is introduced,
An apparatus for supplying N 2 O obtained by vaporizing and decomposing an aqueous ammonium nitrate solution in the flue or the denitration treatment apparatus is provided,
A waste incinerator exhaust gas treatment apparatus characterized by mixing and contacting a nitrogen compound in exhaust gas together with a reducing agent such as ammonia to improve the denitration rate at a low temperature .
JP31554795A 1995-12-04 1995-12-04 Waste incinerator exhaust gas treatment method and apparatus Expired - Fee Related JP3795114B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31554795A JP3795114B2 (en) 1995-12-04 1995-12-04 Waste incinerator exhaust gas treatment method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31554795A JP3795114B2 (en) 1995-12-04 1995-12-04 Waste incinerator exhaust gas treatment method and apparatus

Publications (2)

Publication Number Publication Date
JPH09159140A JPH09159140A (en) 1997-06-20
JP3795114B2 true JP3795114B2 (en) 2006-07-12

Family

ID=18066663

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31554795A Expired - Fee Related JP3795114B2 (en) 1995-12-04 1995-12-04 Waste incinerator exhaust gas treatment method and apparatus

Country Status (1)

Country Link
JP (1) JP3795114B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111636934B (en) * 2020-05-24 2021-03-16 西安交通大学 Efficient and clean coal-fired power generation system with high variable load rate and operation method

Also Published As

Publication number Publication date
JPH09159140A (en) 1997-06-20

Similar Documents

Publication Publication Date Title
KR101002888B1 (en) Hybrid system to remove nitrogen oxides in boiler exhaust
CN109806764A (en) An industrial flue gas storage reduction denitrification system and method
CN112955243A (en) Integrated waste gas treatment device using metal filter
JP2017006813A (en) Denitration apparatus and treatment method of nitrogen oxide
JPH0871372A (en) Denitration apparatus and method using urea
RU2760254C2 (en) Method and system for removing solid particles and nitrogenous compounds from flue gas using ceramic filter and scr catalyst
JPH08103636A (en) Low-temperature denitrator
KR100268029B1 (en) Method and device for removal of nitrogen oxide using oxidants
JP3795114B2 (en) Waste incinerator exhaust gas treatment method and apparatus
KR100550603B1 (en) Apparatus and method for removing nitrogen oxides dry
CN111318148A (en) Device and method for removing nitrate from dimethylamine or trimethylamine tail gas in heat-accumulating-type high-temperature oxidation furnace
Gan et al. New approach into NOx removal from flue gas by carbohydrazide
KR100623723B1 (en) Low Temperature Plasma-Catalyst Denitrification System and Denitrification Method
JP3986628B2 (en) Smoke exhaust denitration method and apparatus
KR102153836B1 (en) Denitrification apparatus that improves denitrification efficiency using pellet catalyst
JP7061622B2 (en) Methods and systems for removing harmful compounds from flue gas using fabric filter bags with SCR catalysts
JP3713634B2 (en) Nitrogen oxide removal method and flue gas denitration equipment in exhaust gas
KR100406510B1 (en) Method and system for removing nitrogen oxide using oxidation catalyst
KR102655403B1 (en) Apparatus for processing nitrogen oxide using ozone
US6168770B1 (en) Method of removing nitrogen oxides from a gas flow by using a combustion engine
JPS581616B2 (en) Denitrification reaction tower
JP3942673B2 (en) Exhaust gas denitration method
KR102094112B1 (en) Denitrification apparatus that improves denitrification efficiency using pellet catalyst
JPH07136465A (en) Usage of denitration apparatus for exhaust gas containing nitrogen dioxide and nitrogen monoxide
KR20250091572A (en) Nitrogen oxide reduction system

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050510

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050823

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051017

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060404

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060412

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090421

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100421

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees