[go: up one dir, main page]

JP3794736B2 - Treatment method of wastewater containing high concentration phosphorus and ammonia nitrogen - Google Patents

Treatment method of wastewater containing high concentration phosphorus and ammonia nitrogen Download PDF

Info

Publication number
JP3794736B2
JP3794736B2 JP24136595A JP24136595A JP3794736B2 JP 3794736 B2 JP3794736 B2 JP 3794736B2 JP 24136595 A JP24136595 A JP 24136595A JP 24136595 A JP24136595 A JP 24136595A JP 3794736 B2 JP3794736 B2 JP 3794736B2
Authority
JP
Japan
Prior art keywords
ammonia nitrogen
phosphorus
nitrification
nitrogen
carrier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP24136595A
Other languages
Japanese (ja)
Other versions
JPH0975992A (en
Inventor
正博 藤井
裕士 加納
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Unitika Ltd
Original Assignee
Unitika Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unitika Ltd filed Critical Unitika Ltd
Priority to JP24136595A priority Critical patent/JP3794736B2/en
Publication of JPH0975992A publication Critical patent/JPH0975992A/en
Application granted granted Critical
Publication of JP3794736B2 publication Critical patent/JP3794736B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Biological Treatment Of Waste Water (AREA)
  • Removal Of Specific Substances (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、リン及びアンモニア性窒素を多量に含有する排水の処理方法に関するものである。
【0002】
【従来の技術】
リンとアンモニア性窒素を多量に含んだ排水、例えば、リンが50mg/リットル以上、アンモニア性窒素が100mg/リットル以上含有するような排水の処理において、リンの除去には凝集剤添加法が代表的に用いられているが、発生汚泥の処分や薬品代に問題があった。
また、閉鎖性水域では排水中の窒素を除去せずに放流すると、赤潮やアオコの原因となるため、窒素除去する必要性があり、生物学的硝化・脱窒法やアンモニアストリッピング法が代表的な窒素除去法である。しかし、前者では維持管理と大規模な装置が要求されること、後者では大気に放散するアンモニアによる二次公害や薬品代に問題があった。
また、高濃度のリンとアンモニア性窒素が共存すると、リン酸マグネシウムアンモニウム(以下、MAPという)のスケールで配管が目詰まりを起こすこともあった。
【0003】
そこで、ランニングコストの低減とリン資源の回収を目的に、高濃度のリンを対象としたリン除去技術として開発されたのが、特公平7−12477号公報に開示されている技術である。
また、特公平7−53279号公報には、リン除去とともに生物学的硝化・脱窒法を組み込んだ技術が開示されている。
【0004】
【発明が解決しようとする課題】
特公平7−12477号公報には、アンモニウムイオンを含有するリン酸塩排水にマグネシウムイオンを添加し、次いでpHを8以上に調整し、しかる後にMAP含有粒状物の充填層に通液することにより、排水中のリンをMAP粒子として上記粒状物の表面層に形成させて回収するリンの除去方法が開示されている。しかし、上記公報に開示されているリン除去技術(以下、造粒脱リン技術という)では、リン濃度に見合ったアンモニア性窒素量しか除去できず、高濃度のアンモニア性窒素が残留するため、この残留したアンモニア性窒素を除去する必要がある。そこで、MAP粒子を除去した後、残留したアンモニア性窒素を通常の活性汚泥によって硝化する方法が考えられるが、原水の濃度が高いために、非常に大きな反応槽が必要となるという問題があった。
また、残留したアンモニア性窒素をMAP粒子以外の担体を用いて硝化する方法も考えられるが、これは担体を購入するのに費用がかかるという問題があった。
【0005】
また、特公平7−53279号公報に開示されているリン除去を伴った生物学的硝化・脱窒法は、原水供給ラインに、マグネシウムイオンとアルカリを注入し、循環式硝化脱窒装置内でMAP粒子を生成させるものであるが、MAPの結晶が成長せず微粒であるため、微生物フロック内に取り込まれたMAP粒子だけを単離することが困難であり、したがって、MAP粒子を肥料として利用することが難しいという問題があった。さらに、この方法では、反応槽内でMAP粒子を作るため、配管や水槽、循環・返送ポンプにMAP粒子のスケールができ、運転管理が困難になるという問題もあった。
本発明は、排水中のリン及びアンモニア性窒素をMAP粒子として回収し肥料として利用することができるとともに、残留するアンモニア性窒素も効率良く除去でき、しかも人工的な担体を投入する手間も省けて経済的な高濃度のリン及びアンモニア性窒素含有排水の処理方法を提供することを目的とするものである。
【0006】
【課題を解決するための手段】
本発明者らは、このような課題を解決するために鋭意検討の結果、造粒脱リン技術により形成されたMAP粒子を生物付着担体として生物学的硝化・脱窒法を行うことにより、残留するアンモニア性窒素も効率良く除去でき、しかも人工的な担体を投入する手間も省けて経済的であるという事実を見出し、本発明に到達した。
すなわち、本発明は、高濃度のリン及びアンモニア性窒素含有排水を造粒脱リン装置に通液し、マグネシウムイオンを添加しアルカリ性条件下で、前記排水中のリン及びアンモニア性窒素をリン酸マグネシウムアンモニウム粒子とし、沈降したリン酸マグネシウムアンモニウム粒子を前記造粒脱リン装置から抜き出して回収するとともに沈降しきれない微細なリン酸マグネシウムアンモニウム粒子を脱リン装置処理水とともに脱窒装置に送り、前記の微細なリン酸マグネシウムアンモニウム粒子を生物付着担体に用いて、脱リン装置処理水に残留するアンモニア性窒素を除去することを特徴とする高濃度のリン及びアンモニア性窒素含有排水の処理方法を要旨とするものである。
【0007】
【発明の実施の形態】
以下、図面を参照しつつ、本発明を詳細に説明する。
本発明における高濃度のリン及びアンモニア性窒素含有排水とは、リンが50mg/リットル以上、アンモニア性窒素が100mg/リットル以上含有する排水のことをいう。
図1及び図2は、本発明の高濃度のリン及びアンモニア性窒素の処理方法の一例を示す処理フロー図である。図1において、リン酸塩の除去は造粒脱リン技術によるものとし、造粒脱リン装置1の上方より、苛性ソーダ6とマグネシウムイオンとして水酸化マグネシウム7とを添加し、苛性ソーダ6と水酸化マグネシウム7によりアルカリ性にした後、造粒脱リン装置1の底部より原水5を流入させて、MAP含有粒状物の充填層に通液し、排水中のリン及びアンモニア性窒素をMAP粒子12として上記粒状物の表面層に形成させ、肥料として回収される。
【0008】
次に、残留するアンモニア性窒素を除去するために、脱リン装置処理水8を、脱窒槽2、硝化槽3及び沈殿槽4からなる脱窒装置の原水として、脱窒槽2、硝化槽3、沈殿槽4の順に流し、硝化槽流出水及び沈殿汚泥の一部を、循環硝化液9及び返送汚泥10として脱窒槽2に循環させる循環式硝化脱窒法にて窒素の除去を行うが、本発明においては、この窒素除去の際に、生物付着担体として脱リン装置1で生成された微細なMAP粒子12を用いることが必要である。
微細なMAP粒子12は、造粒脱リン装置1で沈降しきれず、脱リン装置処理水8に混入して脱窒装置内に混入する。
【0009】
MAP粒子12を生物付着担体に用いることにより、BOD源が希薄な場合に生じる硝化菌のウオッシュアウトを防ぎ、浮遊汚泥において脱窒速度よりも遅い硝化速度を高めることができる。
MAP粒子12を生物付着担体として用いず、仮に200mg/リットルのアンモニア性窒素を浮遊汚泥のみで硝化する場合には、30〜40時間の滞留時間を要する。しかし、MAP粒子12を生物付着担体として利用することで、滞留時間を10時間程度に短縮することができる。
【0010】
また、造粒脱リン装置1で生成された微細なMAP粒子12は、比重が1.72と比較的大きいため、脱窒装置の沈殿槽4にて沈降分離され、返送汚泥10と一緒に脱窒槽2に返送される。これによって、脱窒装置内にMAP粒子12が蓄積され、それに微生物が自然に付着して、生物付着担体として機能し始める。このため、従来のように、人為的に人工の担体を投入する必要もなく、硝化槽3と沈殿槽4があれば、硝化菌の付着する担体が、連続処理を行う中で自然に作られていく。
なお、原水5のBODが希薄な場合には、図2に示すように、脱リン装置処理水8を硝化のみを行う硝化槽3に送り、後段の沈殿槽4から流出する硝化処理水11を最初沈殿池等のBODが多く含まれる無酸素状態の工程に移送して脱窒を行ってもよい。
【0011】
【作用】
本発明においては、MAP粒子12を生物付着担体に用いて,生物学的硝化・脱窒処理を行うことにより、硝化速度が繊維担体を用いた場合より速くなり、アンモニア性窒素を高速に処理することが可能となる。その理由については必ずしも明確ではないが、本発明者らは次のように推測している。すなわち、この原因の1つに、担体の粒子径が考えられる。繊維担体の粒子径が3〜5mm、平均粒子径が4.8mmであるのに対し、MAP担体の粒子径は、0.5mmのオーダーであり、繊維担体に比べて非常に細かい。このため、MAP担体の比表面積が大きく、基質も境膜拡散のみで拡散するため、流動状態を確保すれば、大きな律速条件はないものと考えられる。
【0012】
一方、繊維担体は、内部まで汚泥を保持でき、高濃度処理では担体内部での処理が期待できるというものであるが、高濃度処理では汚泥中の溶存酸素(MLDO)が律速となるため、内部に確保した汚泥量に見合う処理速度が得られないと考えられる。実際、アンモニア性窒素濃度が100mg/リットルに対し、MLDO濃度が5〜7mg/リットルと低いため、アンモニア性窒素が内部拡散律速となるのに対して、MLDOは境膜拡散律速となる可能性が高く、内部の汚泥が有効に利用されていないと考えられる。
【0013】
【実施例】
次に、本発明を実施例及び比較例によって具体的に説明する。
実施例1、比較例1
汚泥の嫌気性消化脱水ろ液(pH6.8、BOD17.5mg/リットル、SS120mg/リットル、NH4 −N400mg/リットル、PO4 −P90mg/リットル)100m3 /日のリン及びアンモニア性窒素の除去を行うために、造粒脱リン装置に苛性ソーダ及び水酸化マグネシウムを添加することで、pHを8.5に調整するとともにマグネシウムイオンの供給を行い、上記の嫌気性消化脱水ろ液をMAP含有粒状物の充填層に通液して、脱水ろ液中のリン及びアンモニア性窒素を粒径2〜3mmのMAP粒子として0.06m3 /日で回収した。回収されたMAP粒子の組成であるP、Mg、Nの含有率を表1に示す。
回収されたMAP粒子は、肥料として再利用が可能となった。
【0014】
【表1】

Figure 0003794736
【0015】
その後、造粒脱リン装置で生成された微細なMAP粒子を生物付着担体に用いて、生物学的硝化・脱窒処理により残留するアンモニア性窒素の除去を行った。その結果、硝化処理時の汚泥当たりの硝化速度は、30mgN/gSS・hrと高速に処理することができた(実施例1)。
【0016】
比較のため、特公平7−53279号公報に記載のリン除去と生物学的硝化・脱窒処理を同時に行う方法で、上記の嫌気性消化脱水ろ液の処理を行った。この方法では、MAP粒子は活性汚泥と混じり合い、洗浄分別できずMAP粒子だけを回収することができなかった。
また、硝化処理時の汚泥当たりの硝化速度は、17mgN/gSS・hrと本発明の方法における硝化速度に比べて低いものであった(比較例1)。
【0017】
実施例2、比較例2、3
実施例1と同様の汚泥の嫌気性消化脱水ろ液2.9m3 /日のリン及びアンモニア性窒素の除去を行うために、造粒脱リン装置に苛性ソーダ及び水酸化マグネシウムを添加することで、pHを8.5に調整するとともにマグネシウムイオンの供給を行い、上記の嫌気性消化脱水ろ液をMAP含有粒状物の充填層に通液してMAP粒子を回収した。
その結果、脱水ろ液のPO4 −P濃度は8mg/リットル、NH4 −N濃度は250mg/リットルにまで減少した。
【0018】
その後、脱リン装置処理水中に残留するアンモニア性窒素を除去するために、造粒脱リン装置で生成された微細なMAP粒子の担体と活性汚泥とによって、生物学的硝化装置で処理を行った。実施例2では原水のBODが少ないため、硝化された処理水をBODが多く含まれる最初沈殿池に返送して脱窒させることとし、ここでは硝化のみの実験を行った(実施例2)。
そのときの実験条件を表2に示す。
また、比較のため、ポリエステル繊維担体(20%充填)と活性汚泥による硝化及びポリエステル繊維担体(20%充填)のみによる硝化も行った(比較例2、3)。
そのときの実験条件も表2に併せて示す。
【0019】
【表2】
Figure 0003794736
【0020】
その結果、処理水のアンモニア性窒素は、いずれの場合においても20mg/リットル以下になったが、原水のアンモニア性窒素が250mg/リットルから300mg/リットルに変動すると、比較例2、3においては処理水のアンモニア性窒素が60mg/リットルに増加したのに対し、実施例2では30mg/リットルに増加したにすぎず、MAP粒子を生物付着担体に用いた方が安定した処理が可能であった。
さらに、繊維担体(比較例3)により硝化を行ったときの硝化速度と、MAP担体混合汚泥(実施例2)により硝化を行ったときの硝化速度を表3に示す。
【0021】
【表3】
Figure 0003794736
【0022】
表3より明らかなように、MAP担体混合汚泥を用いた方が、繊維担体を用いたときより硝化速度が2割ほど高速に硝化されていることが分かる。
【0023】
【発明の効果】
本発明によれば,高濃度のリン及びアンモニア性窒素を含有する排水から、リン及びアンモニア性窒素をMAP粒子として回収し肥料として利用することができるとともに、残留するアンモニア性窒素も効率良く除去することが可能となり、しかも人工的な担体を投入する手間が省けて経済的である。
【図面の簡単な説明】
【図1】本発明の高濃度のリン及びアンモニア性窒素の処理方法の一例を示す処理フロー図である。
【図2】本発明の高濃度のリン及びアンモニア性窒素の処理方法の他の例を示す処理フロー図である。
【符号の説明】
1 造粒脱リン装置
2 脱窒槽
3 硝化槽
4 沈殿槽
5 原水(高濃度のリン及びアンモニア性窒素含有排水)
6 苛性ソーダ
7 水酸化マグネシウム
8 脱リン装置処理水
9 循環硝化液
10 返送汚泥
11 硝化処理水
12 MAP粒子[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for treating wastewater containing a large amount of phosphorus and ammonia nitrogen.
[0002]
[Prior art]
In the treatment of waste water containing a large amount of phosphorus and ammonia nitrogen, for example, waste water containing 50 mg / liter or more of phosphorus and 100 mg / liter or more of ammonia nitrogen, a method of adding a flocculant is typical for removing phosphorus. However, there were problems with disposal of generated sludge and chemical costs.
In closed waters, if the nitrogen in the drainage is discharged without removing it, it may cause red tides and water-blooming. Therefore, it is necessary to remove nitrogen, and biological nitrification / denitrification and ammonia stripping methods are typical. Nitrogen removal method. However, the former required maintenance and large-scale equipment, and the latter had problems with secondary pollution and chemical costs due to ammonia released into the atmosphere.
In addition, when high concentrations of phosphorus and ammoniacal nitrogen coexist, piping may be clogged with a magnesium ammonium phosphate (hereinafter referred to as MAP) scale.
[0003]
Therefore, a technique disclosed in Japanese Patent Publication No. 7-12477 has been developed as a phosphorus removal technique for high concentration phosphorus for the purpose of reducing running costs and recovering phosphorus resources.
Japanese Patent Publication No. 7-53279 discloses a technique that incorporates biological nitrification / denitrification with phosphorus removal.
[0004]
[Problems to be solved by the invention]
In Japanese Patent Publication No. 7-12477, magnesium ions are added to phosphate drainage containing ammonium ions, and then the pH is adjusted to 8 or more, and then passed through a packed bed of MAP-containing granular materials. Further, a method for removing phosphorus is disclosed in which phosphorus in waste water is formed as MAP particles on the surface layer of the granular material and recovered. However, the phosphorus removal technique disclosed in the above publication (hereinafter referred to as granulation dephosphorization technique) can remove only the amount of ammonia nitrogen corresponding to the phosphorus concentration, and a high concentration of ammonia nitrogen remains. It is necessary to remove residual ammoniacal nitrogen. Then, after removing the MAP particles, a method of nitrifying residual ammonia nitrogen with normal activated sludge can be considered. However, since the concentration of raw water is high, there is a problem that a very large reaction tank is required. .
A method of nitrifying the remaining ammoniacal nitrogen using a carrier other than the MAP particles is also conceivable, but this has a problem that it is expensive to purchase the carrier.
[0005]
Moreover, the biological nitrification / denitrification method with phosphorus removal disclosed in Japanese Patent Publication No. 7-53279 is made by injecting magnesium ions and alkali into the raw water supply line, and in the circulation type nitrification / denitrification apparatus. Although it produces particles, it is difficult to isolate only the MAP particles taken up in the microbial flocs because the MAP crystals are not grown and are fine, and therefore, the MAP particles are used as fertilizer. There was a problem that it was difficult. Further, in this method, since MAP particles are produced in the reaction tank, there is a problem that the MAP particles can be scaled in the piping, water tank, circulation / return pump, and operation management becomes difficult.
In the present invention, phosphorus and ammonia nitrogen in waste water can be recovered as MAP particles and used as fertilizer, the remaining ammonia nitrogen can be efficiently removed, and the labor of introducing an artificial carrier can be saved. An object of the present invention is to provide an economical treatment method for wastewater containing high concentrations of phosphorus and ammonia nitrogen.
[0006]
[Means for Solving the Problems]
As a result of intensive studies to solve such problems, the present inventors remain by performing biological nitrification / denitrification using MAP particles formed by granulation dephosphorization technology as a bioadhesive carrier. The present inventors have found the fact that ammonia nitrogen can be efficiently removed, and that it is economical because it eliminates the trouble of introducing an artificial carrier, and has reached the present invention.
That is, the present invention passes high-concentration phosphorus and ammonia nitrogen-containing wastewater through a granulation dephosphorization apparatus, adds magnesium ions, and converts the phosphorus and ammonia nitrogen in the waste water into magnesium phosphate under alkaline conditions. and ammonium particles, is recovered by extracting the precipitated magnesium ammonium phosphate particles from the granulator dephosphorization device sends the fine magnesium ammonium phosphate particles that can not be settled at the denitrification device with dephosphorization device treated water, wherein A high-concentration phosphorous and ammonia-nitrogen-containing wastewater treatment method characterized by removing ammonia nitrogen remaining in the dephosphorization device treated water using the fine magnesium ammonium phosphate particles as a bioadhesive carrier It is what.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail with reference to the drawings.
The high concentration phosphorus and ammonia nitrogen containing waste water in the present invention refers to waste water containing phosphorus of 50 mg / liter or more and ammonia nitrogen of 100 mg / liter or more.
FIG. 1 and FIG. 2 are process flow diagrams showing an example of a method for processing high concentration phosphorus and ammonia nitrogen according to the present invention. In FIG. 1, phosphate removal is performed by a granulation dephosphorization technique. Caustic soda 6 and magnesium hydroxide 7 are added as magnesium ions from above the granulation dephosphorization apparatus 1, and the caustic soda 6 and magnesium hydroxide are added. 7, the raw water 5 is allowed to flow from the bottom of the granulation dephosphorization apparatus 1, and is passed through a packed bed of MAP-containing particulate matter. It is formed on the surface layer of the product and collected as fertilizer.
[0008]
Next, in order to remove the remaining ammoniacal nitrogen, the dephosphorization apparatus treated water 8 is used as raw water of the denitrification apparatus comprising the denitrification tank 2, the nitrification tank 3, and the precipitation tank 4, and the denitrification tank 2, the nitrification tank 3, Nitrogen is removed by a circulating nitrification denitrification method in which the nitrification tank effluent and a part of the precipitated sludge are circulated to the denitrification tank 2 as a circulating nitrification liquid 9 and a return sludge 10 in the order of the precipitation tank 4. In this case, it is necessary to use fine MAP particles 12 generated by the dephosphorization apparatus 1 as a bioadhesive carrier during the nitrogen removal.
The fine MAP particles 12 cannot be settled by the granulation dephosphorization apparatus 1 but are mixed in the dephosphorization treatment water 8 and mixed in the denitrification apparatus.
[0009]
By using the MAP particles 12 as a bioadhesive carrier, it is possible to prevent washout of nitrifying bacteria that occurs when the BOD source is dilute, and to increase the nitrification rate that is slower than the denitrification rate in the suspended sludge.
If MAP particles 12 are not used as a bioadhesive carrier and 200 mg / liter of ammonia nitrogen is nitrified with only floating sludge, a residence time of 30 to 40 hours is required. However, the residence time can be shortened to about 10 hours by using the MAP particles 12 as a bioadhesive carrier.
[0010]
Further, the fine MAP particles 12 produced by the granulation dephosphorization apparatus 1 have a relatively large specific gravity of 1.72, so they are settled and separated in the settling tank 4 of the denitrification apparatus, and are removed together with the return sludge 10. Returned to Nitrogen tank 2. As a result, the MAP particles 12 are accumulated in the denitrification apparatus, and microorganisms naturally adhere to the denitrification apparatus and start to function as a bioadhesive carrier. For this reason, unlike the conventional case, it is not necessary to artificially introduce an artificial carrier, and if there are a nitrification tank 3 and a precipitation tank 4, a carrier to which nitrifying bacteria adhere is naturally produced during continuous processing. To go.
When the BOD of the raw water 5 is dilute, as shown in FIG. 2, the dephosphorization apparatus treated water 8 is sent to the nitrification tank 3 that performs only nitrification, and the nitrification treated water 11 flowing out from the subsequent settling tank 4 is supplied. It may be transferred to an oxygen-free process containing a large amount of BOD such as a first sedimentation basin to perform denitrification.
[0011]
[Action]
In the present invention, by performing biological nitrification / denitrification treatment using the MAP particles 12 as a bioadhesive carrier, the nitrification rate becomes faster than when a fiber carrier is used, and ammonia nitrogen is treated at high speed. It becomes possible. Although the reason for this is not necessarily clear, the present inventors speculate as follows. That is, one possible cause is the particle size of the carrier. The particle diameter of the fiber carrier is 3 to 5 mm and the average particle diameter is 4.8 mm, whereas the particle diameter of the MAP carrier is on the order of 0.5 mm, which is very fine compared to the fiber carrier. For this reason, since the specific surface area of the MAP carrier is large and the substrate is diffused only by the diffusion of the membrane, it is considered that there is no large rate-determining condition if the flow state is secured.
[0012]
On the other hand, the fiber carrier can hold the sludge to the inside, and the treatment inside the carrier can be expected in the high concentration treatment, but the dissolved oxygen (MLDO) in the sludge becomes rate limiting in the high concentration treatment. Therefore, it is considered that the processing speed commensurate with the amount of sludge secured is not obtained. In fact, since the ammonia nitrogen concentration is 100 mg / liter and the MLDO concentration is as low as 5 to 7 mg / liter, the ammonia nitrogen becomes the internal diffusion rate control, whereas the MLDO may be the film diffusion rate control rate. It is considered that the internal sludge is not used effectively.
[0013]
【Example】
Next, the present invention will be specifically described with reference to examples and comparative examples.
Example 1 and Comparative Example 1
Removal of sludge anaerobic digestion dehydrated filtrate (pH 6.8, BOD 17.5 mg / liter, SS 120 mg / liter, NH 4 -N 400 mg / liter, PO 4 -P 90 mg / liter) 100 m 3 / day of phosphorus and ammonia nitrogen In order to carry out, the pH is adjusted to 8.5 by adding caustic soda and magnesium hydroxide to the granulation dephosphorization apparatus, and magnesium ions are supplied. Then, phosphorus and ammoniacal nitrogen in the dehydrated filtrate were collected as MAP particles having a particle diameter of 2 to 3 mm at 0.06 m 3 / day. Table 1 shows the contents of P, Mg, and N, which are the composition of the collected MAP particles.
The collected MAP particles can be reused as fertilizer.
[0014]
[Table 1]
Figure 0003794736
[0015]
Thereafter, the residual ammoniacal nitrogen was removed by biological nitrification / denitrification using the fine MAP particles produced by the granulation dephosphorization apparatus as a bioadhesive carrier. As a result, the nitrification rate per sludge at the time of nitrification was 30 mgN / gSS · hr, which could be treated at a high speed (Example 1).
[0016]
For comparison, the above anaerobic digestion dehydration filtrate was treated by the method of simultaneously performing phosphorus removal and biological nitrification / denitrification treatment described in JP-B-7-53279. In this method, the MAP particles were mixed with the activated sludge and could not be separated by washing, and only the MAP particles could not be recovered.
The nitrification rate per sludge during nitrification was 17 mg N / g SS · hr, which was lower than the nitrification rate in the method of the present invention (Comparative Example 1).
[0017]
Example 2, Comparative Examples 2, 3
In order to remove 2.9 m 3 / day of phosphorus and ammoniacal nitrogen from the sludge anaerobic digestion dehydration filtrate similar to Example 1, caustic soda and magnesium hydroxide were added to the granulation dephosphorization apparatus, The pH was adjusted to 8.5 and magnesium ions were supplied, and the anaerobic digestion dehydration filtrate was passed through a packed bed of MAP-containing granular material to recover MAP particles.
As a result, the PO 4 -P concentration of the dehydrated filtrate was reduced to 8 mg / liter, and the NH 4 -N concentration was reduced to 250 mg / liter.
[0018]
Thereafter, in order to remove ammonia nitrogen remaining in the dephosphorization apparatus, the biological nitrification apparatus was treated with the fine MAP particle carrier and activated sludge produced by the granulation dephosphorization apparatus. . In Example 2, since the BOD of the raw water is small, the nitrified treated water is returned to the first sedimentation basin containing a large amount of BOD and denitrified. Here, only the nitrification experiment was performed (Example 2).
Table 2 shows the experimental conditions at that time.
For comparison, nitrification with a polyester fiber carrier (20% filling) and activated sludge and nitrification with only a polyester fiber carrier (20% filling) were also performed (Comparative Examples 2 and 3).
The experimental conditions at that time are also shown in Table 2.
[0019]
[Table 2]
Figure 0003794736
[0020]
As a result, the ammoniacal nitrogen of the treated water was 20 mg / liter or less in each case, but when the ammoniacal nitrogen of the raw water fluctuated from 250 mg / liter to 300 mg / liter, the treated water was treated in Comparative Examples 2 and 3. Whereas ammoniacal nitrogen in water increased to 60 mg / liter, in Example 2, it increased only to 30 mg / liter, and stable treatment was possible when MAP particles were used as a bioadhesive carrier.
Further, Table 3 shows the nitrification rate when nitrification is performed with the fiber carrier (Comparative Example 3) and the nitrification rate when nitrification is performed with the MAP carrier mixed sludge (Example 2).
[0021]
[Table 3]
Figure 0003794736
[0022]
As is apparent from Table 3, it can be seen that the nitrification rate is about 20% higher when the MAP carrier mixed sludge is used than when the fiber carrier is used.
[0023]
【The invention's effect】
According to the present invention, phosphorus and ammonia nitrogen can be recovered as MAP particles from waste water containing high concentrations of phosphorus and ammonia nitrogen and used as fertilizer, and the remaining ammonia nitrogen can also be efficiently removed. In addition, it is economical because it saves the trouble of introducing an artificial carrier.
[Brief description of the drawings]
FIG. 1 is a processing flow diagram showing an example of a method for processing high concentration phosphorus and ammonia nitrogen according to the present invention.
FIG. 2 is a process flow diagram showing another example of a method for processing high concentration phosphorus and ammonia nitrogen according to the present invention.
[Explanation of symbols]
1 Granulation and dephosphorization equipment 2 Denitrification tank 3 Nitrification tank 4 Precipitation tank 5 Raw water (drainage containing high-concentration phosphorus and ammonia nitrogen)
6 Caustic soda 7 Magnesium hydroxide 8 Dephosphorization treatment water 9 Circulating nitrification solution
10 Return sludge
11 Nitrified water
12 MAP particles

Claims (1)

高濃度のリン及びアンモニア性窒素含有排水を造粒脱リン装置に通液し、マグネシウムイオンを添加しアルカリ性条件下で、前記排水中のリン及びアンモニア性窒素をリン酸マグネシウムアンモニウム粒子とし、沈降したリン酸マグネシウムアンモニウム粒子を前記造粒脱リン装置から抜き出して回収するとともに沈降しきれない微細なリン酸マグネシウムアンモニウム粒子を脱リン装置処理水とともに脱窒装置に送り、前記の微細なリン酸マグネシウムアンモニウム粒子を生物付着担体に用いて、脱リン装置処理水に残留するアンモニア性窒素を除去することを特徴とする高濃度のリン及びアンモニア性窒素含有排水の処理方法。High-concentration phosphorus and ammonia nitrogen-containing wastewater is passed through a granulation dephosphorization apparatus, and magnesium ions are added to the solution, so that phosphorus and ammonia nitrogen in the waste water become magnesium ammonium phosphate particles and settle under alkaline conditions . is recovered by extracting magnesium ammonium phosphate particles from the granulator dephosphorization device, fine magnesium ammonium phosphate particles which can not be precipitated with dephosphorization device treated water feed to the denitrification device, fine magnesium phosphate of the A method for treating wastewater containing high-concentration phosphorus and ammonia nitrogen, wherein ammonium nitrogen is used as a bioadhesive carrier to remove ammonia nitrogen remaining in treated water of a dephosphorization apparatus .
JP24136595A 1995-09-20 1995-09-20 Treatment method of wastewater containing high concentration phosphorus and ammonia nitrogen Expired - Fee Related JP3794736B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24136595A JP3794736B2 (en) 1995-09-20 1995-09-20 Treatment method of wastewater containing high concentration phosphorus and ammonia nitrogen

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24136595A JP3794736B2 (en) 1995-09-20 1995-09-20 Treatment method of wastewater containing high concentration phosphorus and ammonia nitrogen

Publications (2)

Publication Number Publication Date
JPH0975992A JPH0975992A (en) 1997-03-25
JP3794736B2 true JP3794736B2 (en) 2006-07-12

Family

ID=17073213

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24136595A Expired - Fee Related JP3794736B2 (en) 1995-09-20 1995-09-20 Treatment method of wastewater containing high concentration phosphorus and ammonia nitrogen

Country Status (1)

Country Link
JP (1) JP3794736B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102407813B1 (en) * 2021-11-24 2022-06-13 주식회사 푸름엔지니어링 Livestock manure treatment system based ion exchange and biological treatment

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3876489B2 (en) * 1997-06-23 2007-01-31 栗田工業株式会社 Waste water treatment equipment
JP2001058190A (en) * 1999-08-20 2001-03-06 Kurita Water Ind Ltd Phosphorus-containing water treatment equipment
JP2004025055A (en) * 2002-06-26 2004-01-29 Unitika Ltd Treatment method of returned water from sludge treatment
JP2007136367A (en) * 2005-11-18 2007-06-07 Sumitomo Heavy Ind Ltd Biological wastewater treatment apparatus and biological wastewater treatment method
WO2013010548A1 (en) * 2011-07-18 2013-01-24 Oht A/S A method for purifying a liquid containing ammonium as a pollutant, and an apparatus for purifying a liquid containing ammonium
JP6195796B2 (en) * 2014-01-22 2017-09-13 住友重機械工業株式会社 Method for removing ammonium ion and water treatment apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102407813B1 (en) * 2021-11-24 2022-06-13 주식회사 푸름엔지니어링 Livestock manure treatment system based ion exchange and biological treatment

Also Published As

Publication number Publication date
JPH0975992A (en) 1997-03-25

Similar Documents

Publication Publication Date Title
US4159945A (en) Method for denitrification of treated sewage
KR101721251B1 (en) SBR Process coupled with Membrane Process
JP2001276851A (en) Drain treatment equipment
JPH07171594A (en) Method and apparatus for denitrifying and dephosphorizing sewage
JP3794736B2 (en) Treatment method of wastewater containing high concentration phosphorus and ammonia nitrogen
KR101278475B1 (en) Sludge Treatment Facility Combining Swirl Flow Type Inorganic Sludge Selective Discharge Device and Bioreactor
JP2003033790A (en) Denitrification apparatus and denitrification method
JP2716348B2 (en) Sewage return water treatment method
JPH1157773A (en) Biological dephosphorization equipment
JPH07222994A (en) Organic waste water treatment method
JP2005185967A (en) Treatment method and treatment apparatus for organic waste water
JP4390959B2 (en) Wastewater treatment equipment
JP2002316192A (en) Method and apparatus for treating organic foul water
JP4085436B2 (en) Drainage treatment apparatus and method
JP2002102864A (en) Waste water treatment system
JPS6261700A (en) Apparatus for treating sewage of excretion system
JP2002316191A (en) Method and apparatus for treating organic foul water
JP2000070990A (en) Method for removing nitrogen and suspended matter in wastewater and removal system therefor
JPH0649197B2 (en) Organic wastewater treatment method
JP2004049941A (en) Treatment method and apparatus for combined sewage under rainy weather
JPS6274496A (en) Method for treating waste water
JPH091187A (en) Waste water treating device and its operating method
JPH08141591A (en) Organic wastewater treatment method
JPH0694040B2 (en) Water purification method and device
KR100614098B1 (en) Sludge Reduction and Phosphorus Nitrogen Removal Method in Advanced Wastewater and Wastewater Treatment Process

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040830

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051213

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060328

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060411

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100421

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110421

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110421

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120421

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120421

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120421

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130421

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees