[go: up one dir, main page]

JP3790824B2 - Rotor and method for manufacturing the same - Google Patents

Rotor and method for manufacturing the same Download PDF

Info

Publication number
JP3790824B2
JP3790824B2 JP2004021612A JP2004021612A JP3790824B2 JP 3790824 B2 JP3790824 B2 JP 3790824B2 JP 2004021612 A JP2004021612 A JP 2004021612A JP 2004021612 A JP2004021612 A JP 2004021612A JP 3790824 B2 JP3790824 B2 JP 3790824B2
Authority
JP
Japan
Prior art keywords
shaft
rotor
rotor core
core assembly
outer diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004021612A
Other languages
Japanese (ja)
Other versions
JP2004129500A (en
Inventor
正弘 ▲高▼木
鋼希 木枝
剛史 坪内
学 出口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2004021612A priority Critical patent/JP3790824B2/en
Publication of JP2004129500A publication Critical patent/JP2004129500A/en
Application granted granted Critical
Publication of JP3790824B2 publication Critical patent/JP3790824B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Iron Core Of Rotating Electric Machines (AREA)
  • Manufacture Of Motors, Generators (AREA)

Description

本発明は、ロータとその製造方法に関するものである。   The present invention relates to a rotor and a method for manufacturing the same.

従来、図7、図8に示すようにモータに使用するロータの製造方法及び構造がある。図7の工程は特開平8−237914号公報に示されたもので、ロータコア組立のシャフト挿入穴とシャフトの外径とが、同等又は僅少な公差になるように形成され、わずかな締め代を持たせてロータコア組立にシャフトを挿入後、ロータコア組立のシャフト挿入穴とシャフトとの接合位置にレーザ光によるスポット溶接接合をする方法である。また、図8の構造は実開昭59ー145248号公報に示されたもので、ロータコア組立2の内径4bを部分的に大きくした拡径部4b2を設けて、シャフトとの間に隙間を作って、シャフトを圧入する構造が示されている。   Conventionally, as shown in FIGS. 7 and 8, there is a manufacturing method and structure of a rotor used in a motor. The process of FIG. 7 is shown in Japanese Patent Application Laid-Open No. 8-237914, and is formed so that the shaft insertion hole of the rotor core assembly and the outer diameter of the shaft have the same or slight tolerance, and a slight tightening allowance is provided. In this method, after the shaft is inserted into the rotor core assembly, spot welding joining with a laser beam is performed at the joint position between the shaft insertion hole of the rotor core assembly and the shaft. The structure of FIG. 8 is shown in Japanese Utility Model Laid-Open No. 59-145248. The rotor core assembly 2 is provided with an enlarged diameter portion 4b2 in which the inner diameter 4b is partially enlarged to create a gap with the shaft. The structure for press-fitting the shaft is shown.

このように構成されたロータは、特開平8−237914号公報の方法ではロータコア組立の挿入穴にシャフトを挿入する時、シャフトの表面にほとんど傷を付けずにガタなく挿入することができるが、公差のバラつきによって締め代がありそれに応じた挿入圧力を必要とし、シャフトが細い場合シャフトが圧力によって変形をしたり、ロータのシャフト挿入穴の円筒度、真直度等の誤差の影響を受けて変形する。
また、シャフトに傷が付く場合がありシャフトの変形が0にはならず、このためロータコア組立の挿入穴やシャフトの外径寸法を高精度に加工し、維持管理することが必要となる。また、ロータの外径にはダイキャストのバリがありこのバリを除去する加工が必要である。
In the method of JP-A-8-237914, the rotor configured in this way can be inserted without play with little damage to the surface of the shaft when the shaft is inserted into the insertion hole of the rotor core assembly. Due to tolerance variations, there is a tightening allowance that requires an appropriate insertion pressure.If the shaft is thin, the shaft may be deformed by pressure, or may be affected by errors such as cylindricity or straightness of the rotor shaft insertion hole. To do.
In addition, the shaft may be damaged, and the deformation of the shaft does not become zero. Therefore, it is necessary to process and maintain the insertion hole of the rotor core assembly and the outer diameter of the shaft with high accuracy. Further, the outer diameter of the rotor has die-cast burrs, and it is necessary to remove the burrs.

また、シャフトをロータコア組立に挿入するとき締め代がないようにして挿入圧力を0にするには、ロータコア組立を加熱してシャフトの挿入穴の径を大きくすることが必要となり加工工程及び加工時間の増加と加熱装置が必要となる。
また、実開昭59ー145248号公報においては、シャフト圧入時シャフト挿入穴の内側の角でシャフトに傷が付きやすく、圧入力が高くなりシャフトが変形しやすいなどの課題があった。
Also, in order to reduce the insertion pressure to zero so that there is no interference when inserting the shaft into the rotor core assembly, it is necessary to heat the rotor core assembly to increase the diameter of the insertion hole of the shaft. Increase and heating equipment is required.
In Japanese Utility Model Laid-Open No. 59-145248, there is a problem that the shaft is easily damaged at the corner inside the shaft insertion hole when the shaft is press-fitted, the pressure input is increased, and the shaft is easily deformed.

本発明は、このような課題を解決するためになされてもので、ロータコア組立のシャフト挿入穴にシャフトを挿入するときシャフトに力をかけず、シャフトを変形させないようにするとともに、ロータコア組立のシャフト挿入穴及びシャフト外径の高い加工精度を必要とせず、また、シャフトとロータコア組立の接合強度を高め、ロータ外径の加工条件の向上を図るものである。   The present invention has been made to solve such a problem. Therefore, when inserting the shaft into the shaft insertion hole of the rotor core assembly, no force is applied to the shaft and the shaft is not deformed. It does not require high processing accuracy for the insertion hole and the outer diameter of the shaft, increases the joint strength between the shaft and the rotor core assembly, and improves the processing conditions for the outer diameter of the rotor.

本発明は、シャフトの外径よりも大きい貫通穴が設けられたロータコアを積層してロータコア組立を形成する工程と、前記ロータコア組立の貫通穴に前記シャフトを挿入する工程と、前記ロータコア組立の端面をコーキングして前記シャフトを固定する工程と、前記コーキングされた端面と前記シャフトをレーザビームで仮溶接し、その後溶接条件を変更して再度レーザビームを前記コーキングされた端面に照射する全周溶接を行って、前記シャフトとロータコア組立とを溶接する工程とを有することを特徴とする。 The present invention includes a step of forming a rotor core assembly by laminating a rotor core provided with a through hole larger than the outer diameter of the shaft, a step of inserting the shaft into the through hole of the rotor core assembly, and an end face of the rotor core assembly And fixing the shaft, and welding the entire circumference of the coked end surface and the shaft with a laser beam, and then irradiating the coked end surface again with the laser beam after changing the welding conditions. And a step of welding the shaft and the rotor core assembly.

以上説明したように請求項1の発明では、ロータの端面をコーキングしてシャフトを固定し、つぎに、コーキングされた端面と前記シャフトをレーザビームで仮溶接し、その後溶接条件を変更して再度レーザビームを前記コーキングされた端面に照射する全周溶接を行って、前記シャフトとロータコア組立とを溶接するので、レーザ照射による溶融部分がロータとシャフトの間の隙間に流れ込むことがなく、溶接ビード形状が崩れず安定した品質の良い溶接部となるとともに、シャフトを修正することなく、また高い溶接強度が得られる。 As described above, in the first aspect of the present invention, the end face of the rotor is caulked to fix the shaft, then the coked end face and the shaft are temporarily welded with a laser beam, and then the welding conditions are changed again. All-around welding is performed to irradiate the coked end surface with a laser beam, and the shaft and the rotor core assembly are welded. Therefore, the melted portion due to laser irradiation does not flow into the gap between the rotor and the shaft, and the weld bead The shape is stable and the welded portion is stable and of good quality, and high welding strength can be obtained without modifying the shaft.

実施の形態1.
本発明の実施の形態1として、図1から図4に基づいて説明する。図においてロータ1はロータコア組立2にシャフト3を所定の位置に固定したもので、ロータコア組立2は、ロータコア4と導体5からなり、ロータコア4を複数枚積層して円柱状にしたもので、外径4aとこの外径と同心にシャフト3を挿入する内径4bとを有している。内径4bは内径4b1と内径4b1より大きい径の拡径部4b2との2種類があり、ロータコア4は内径4b1と、内径4b2との2種類がある。内径4bは本実施の形態では2種類であるがシャフトの形状によっては3種類以上になる場合もある。ロータコア4は外径4aの近くに導体5が入るスロット4cを有している。スロット4cは外径4aに一部が開口して外径4a及び内径4b1、又は4b2と同心となるピッチ円径にて複数等間隔に設けられている。
Embodiment 1 FIG.
A first embodiment of the present invention will be described with reference to FIGS. In the figure, a rotor 1 is a rotor core assembly 2 in which a shaft 3 is fixed at a predetermined position. The rotor core assembly 2 is composed of a rotor core 4 and a conductor 5, and a plurality of rotor cores 4 are laminated into a cylindrical shape. It has a diameter 4a and an inner diameter 4b into which the shaft 3 is inserted concentrically with the outer diameter. There are two types of inner diameters 4b, an inner diameter 4b1 and an enlarged diameter portion 4b2 having a larger diameter than the inner diameter 4b1, and the rotor core 4 has two types of inner diameters 4b1 and 4b2. There are two types of inner diameter 4b in the present embodiment, but there may be three or more types depending on the shape of the shaft. The rotor core 4 has a slot 4c into which the conductor 5 enters near the outer diameter 4a. The slots 4c are provided at equal intervals with a pitch circle diameter that is partially open to the outer diameter 4a and concentric with the outer diameter 4a and the inner diameter 4b1 or 4b2.

ロータコア4はロータコア組立2に積層されたときスロット4cは外径4aの円周方向に一枚毎に少しづつづれてスロット1ピッチ分のスキュウが形成されている。ロータコア組立2の内径4bは端面4dより、この端面4dの肉厚が所定の厚さになる位置に、径で約0.15〜3mm程度拡大した拡径部4b2を有している。なお、端面4dの肉厚はシャフト3を溶接して保持するのに十分な厚みを有するようにロータコア4数毎で構成している。ロータコア4の外径4aは寸法精度を出すために後工程にて加工をする加工代が約径で0.4mm設けられ、また、内径4b1はシャフト3の外径3aより大きく、径で0.01〜0.1mmの隙間を維持できる寸法にしてある。このように構成されたロータ1は次に述べる工程にて製作される。   When the rotor core 4 is laminated on the rotor core assembly 2, the slots 4 c are slightly formed one by one in the circumferential direction of the outer diameter 4 a to form a skew for one pitch of the slot. The inner diameter 4b of the rotor core assembly 2 has a diameter-enlarged portion 4b2 that is enlarged by about 0.15 to 3 mm in diameter from the end surface 4d at a position where the thickness of the end surface 4d becomes a predetermined thickness. In addition, the thickness of the end face 4d is configured for each number of rotor cores 4 so as to have a thickness sufficient to weld and hold the shaft 3. The outer diameter 4a of the rotor core 4 is provided with a machining allowance of about 0.4 mm in the subsequent process in order to obtain dimensional accuracy. The size is such that a gap of 01 to 0.1 mm can be maintained. The rotor 1 configured as described above is manufactured by the following process.

ロータ1の製作行程を図3に示す。
第一行程として、ロータコア4を打抜き1台分の厚みになるように積層してスキュウをつける。ロータコア4の打抜き、積層は次のように行われる。シャフト3の入る内径4bは内径4b1と拡径部4b2との2種類を有するため、打抜きのとき金型を内径4b1用のパンチと拡径部4b2用のパンチの出し入れを制御して、最初に4b1の内径のものを必要枚数打抜き、次に4b2の内径のものを必要枚数打抜き、次に又、4b1の内径のものを必要枚数打抜いて1台分の厚みに順次かしめながら積層すると同時にスキュウを形成する。
The manufacturing process of the rotor 1 is shown in FIG.
As a first step, the rotor core 4 is punched and laminated so as to have a thickness equivalent to one, and a skewer is applied. The rotor core 4 is punched and laminated as follows. Since the inner diameter 4b into which the shaft 3 enters has two types of an inner diameter 4b1 and an enlarged diameter portion 4b2, the die is controlled by inserting and removing the punch for the inner diameter 4b1 and the punch for the enlarged diameter portion 4b2 at the beginning. The necessary number of punches having the inner diameter of 4b1 are punched, then the required number of punches having the inner diameter of 4b2 are punched, and then the required number of punches having the inner diameter of 4b1 are punched and laminated while sequentially caulking to the thickness of one unit. Form.

次に第二工程として、ダイキャスト型に積層されたロータコア4をセットしてアルミをダイキャストして導体5を形成しロータコア組立2の形状にする。   Next, as a second step, the rotor core 4 laminated in a die-cast mold is set, and aluminum is die-cast to form a conductor 5 to obtain the shape of the rotor core assembly 2.

次に第三工程として、ロータコア組立2をダイキャスト型より取りだし、外径4aや導体5の付近にできたダイキャストのバリ、付着物等を除去する清掃をした後、ロータコア組立2の内径4b1に回転式のローラをかけ内面の凸凹を潰しながら内径寸法を一定の範囲に揃える。   Next, as a third step, the rotor core assembly 2 is taken out from the die-casting mold and cleaned to remove burrs, deposits, etc. of the die-cast formed near the outer diameter 4a and the conductor 5, and then the inner diameter 4b1 of the rotor core assembly 2 The inner diameter is made uniform within a certain range while crushing the irregularities on the inner surface by applying a rotary roller to the top.

次に第四工程として、ロータコア組立2を治具にセットして別工程で制作されたシャフト3をロータコア組立2の内径4bに挿入し、シャフト3の端面3bとロータコア組立2の端面4dとの位置関係にてシャフト3を所定の位置に位置決めをする。この位置決め寸法はロータの種類によって各種変化する。   Next, as a fourth step, the rotor core assembly 2 is set in a jig and the shaft 3 produced in a separate step is inserted into the inner diameter 4b of the rotor core assembly 2, and the end surface 3b of the shaft 3 and the end surface 4d of the rotor core assembly 2 are connected. The shaft 3 is positioned at a predetermined position according to the positional relationship. The positioning dimension varies depending on the type of rotor.

次に第五工程として、ロータ1をレーザー溶接機にてロータコア組立2の端面4dとシャフト3の外径3aの溶接接合を行う。
レーザー溶接は図4に示すようにロータコア組立2の端面4dの内径4b1に近い部分のシャフトの外径3aから0.4〜0.5mmの位置をシャフト3の軸線に対して10度から45度の入射角にてレーザー光線を当てて、ロータの端面4d及びシャフトの外径を溶融して行なう。
Next, as a fifth step, the rotor 1 is welded to the end surface 4d of the rotor core assembly 2 and the outer diameter 3a of the shaft 3 by a laser welding machine.
In laser welding, as shown in FIG. 4, a position of 0.4 to 0.5 mm from the outer diameter 3 a of the shaft near the inner diameter 4 b 1 of the end face 4 d of the rotor core assembly 2 is 10 to 45 degrees with respect to the axis of the shaft 3. A laser beam is applied at an incident angle of 4 to melt the rotor end face 4d and the outer diameter of the shaft.

レーザ溶接の方法としては、まず始めにレーザ溶接ヘッドに対してロータコア組立2の端面4dを所定の位置に位置決めし固定する。次にこの状態で(ロータ1は回転しない)レーザ溶接ヘッド8よりレーザ光を0.5〜1秒間照射して仮溶接を行なう。この目的は次に全周溶接を行う時にロータ1を回転させるが、この時ロータコア組立2とシャフト3が空回りしないように固定するものである。レーザ光を照射する位置は、ロータコア組立2の端面4dのシャフト3の外径から0.2〜0.5mm離れた位置に照準を合わせる。   As a laser welding method, first, the end face 4d of the rotor core assembly 2 is positioned and fixed to a predetermined position with respect to the laser welding head. Next, in this state (the rotor 1 does not rotate), laser welding is performed from the laser welding head 8 for 0.5 to 1 second to perform temporary welding. The purpose of this is to rotate the rotor 1 during the next round welding and fix the rotor core assembly 2 and the shaft 3 so as not to idle. The position where the laser beam is irradiated is aimed at a position 0.2 to 0.5 mm away from the outer diameter of the shaft 3 of the end face 4d of the rotor core assembly 2.

次に溶接条件を変更して、再度レーザ光を照射しながらロータ1を回転させて全周溶接をして溶接部7を形成する。溶接部7はロータコア組立2の端面4dを完全に溶融しシャフトの外径3aの一部も溶融したビード幅で、深さはロータコア4の板厚方向に1.5〜2.0mmの大きさに形成されている。レーザ光の照射時間はロータコア組立2が1回転以上するまで行い、最終の溶接部が先に溶接された部分に重なるように再溶接されるまで行われる。このように、溶接部の始めの部分と終わりの部分を重ねるようにすることにより、溶接不十分な部分が残ることなく品質の良い溶接部となる。   Next, the welding conditions are changed, the rotor 1 is rotated while irradiating the laser beam again, and the entire circumference is welded to form the welded portion 7. The weld 7 has a bead width in which the end face 4d of the rotor core assembly 2 is completely melted and a part of the outer diameter 3a of the shaft is melted, and the depth is 1.5 to 2.0 mm in the plate thickness direction of the rotor core 4. Is formed. The irradiation time of the laser light is performed until the rotor core assembly 2 is rotated once or more, and is performed until the final welded portion is re-welded so as to overlap the previously welded portion. In this way, by superimposing the beginning portion and the end portion of the welded portion, a welded portion with good quality can be obtained without leaving an insufficiently welded portion.

また、レーザ光の入射角度はできるだけ小さいほうがロータの端面4dにレーザ光が入りやすいので、板厚方向に深い解けこみが得られるので溶接強度が高くなる。
また、全周溶接することにより溶接面積が大きいので溶接強度の高い接合が出来る。
Further, when the laser beam incident angle is as small as possible, the laser beam is likely to enter the rotor end face 4d, so that deep welding can be obtained in the plate thickness direction, thereby increasing the welding strength.
Further, since the weld area is large by welding all around, it is possible to join with high welding strength.

また、レーザ溶接することにより溶接部分が小さく出来、発熱量が少ないのでシャフト3やロータコア組立2に与える熱影響が少なく、シャフト3の熱による変形がないので後行程におけるシャフトの修正(振れとり等)作業をする必要がない。
レーザ溶接は図のように片面づつ行う方法と、両面同時に行う方法がある。どちらにするかは、作業条件、自動化の状況、製品の大きさ等により選択する。
Further, the welding portion can be made smaller by laser welding, and since the heat generation amount is small, there is little thermal influence on the shaft 3 and the rotor core assembly 2 and there is no deformation due to heat of the shaft 3 so ) No need to work.
There are two methods of laser welding: one method for each side as shown in the figure and the other method for performing both surfaces simultaneously. The choice is made according to work conditions, automation status, product size, and the like.

次に第六工程として、溶接後シャフト3を基準にしてロータ1の外径4aの加工を行う。この加工はロータ1の外径4aにでているダイキャストのバリを取り除く、と同時にシャフト3に対してロータコア組立2の外径4aの同心度及び同軸度の精度をだすためのもので切削または研削等により行われる。   Next, as a sixth step, the outer diameter 4a of the rotor 1 is processed on the basis of the shaft 3 after welding. This processing is performed to remove die-cast burrs from the outer diameter 4a of the rotor 1 and at the same time to produce concentricity and coaxiality accuracy of the outer diameter 4a of the rotor core assembly 2 with respect to the shaft 3. This is done by grinding or the like.

次に最終工程として、加工したロータコア組立2の表面に防錆処理をしてロータ1が完成する。   Next, as a final process, the rotor 1 is completed by subjecting the surface of the processed rotor core assembly 2 to rust prevention.

次に内径4bについて説明する。ロータコア組立2の内径4bが同一径でストレートの場合、積層状態では個々のロータコア4のわずかなズレにより、内径4bに円筒度、真直度等の誤差がありシャフト3を挿入したとき、シャフト3がその誤差により変形され真直度を悪くして振れを生じる。この誤差の影響をなくすためにロータコア組立2の内径4bの中央部を大きい径の拡径部4b2にしてシャフト3の外径3aとの間に隙間ができるようにする。これによりロータコア組立2の中央部がシャフト3に触れることなく、シャフト3がロータコア組立2の両端面4d部分の2点支持となり曲りなどの変形をおこすことがない。   Next, the inner diameter 4b will be described. When the inner diameter 4b of the rotor core assembly 2 has the same diameter and is straight, when the shaft 3 is inserted when there is an error such as cylindricity or straightness in the inner diameter 4b due to slight deviation of the individual rotor cores 4 in the stacked state, It is deformed by the error, and the straightness is deteriorated to cause shake. In order to eliminate the influence of this error, the central portion of the inner diameter 4b of the rotor core assembly 2 is made a large diameter enlarged portion 4b2 so that a gap is formed between the outer diameter 3a of the shaft 3. As a result, the central portion of the rotor core assembly 2 does not touch the shaft 3, and the shaft 3 is supported at two points on both end surfaces 4 d of the rotor core assembly 2, so that deformation such as bending is not caused.

また、ロータコア組立2の端面4d側の内径4b1の内径はシャフト3の外径に対して半径で5から50ミクロンの隙間を持たせているので、シャフト3を挿入するとき外径3aに傷を付けることがなく、また隙間が小さいのでロータの外径4aに対するシャフト3の外径3aの振れは小さくロータ外径4aに設けてある加工代で十分に加工できる範囲であるので、シャフトの振れ取りをしないでロータの外径4aの加工をすることが出来る。   Further, since the inner diameter 4b1 on the end face 4d side of the rotor core assembly 2 has a clearance of 5 to 50 microns in radius with respect to the outer diameter of the shaft 3, the outer diameter 3a is damaged when the shaft 3 is inserted. Since the gap is small and the runout of the outer diameter 3a of the shaft 3 with respect to the outer diameter 4a of the rotor is small and can be sufficiently processed by the machining allowance provided for the rotor outer diameter 4a, The outer diameter 4a of the rotor can be processed without performing the above.

実施の形態2.
実施の形態2は、ロータコア組立2にシャフト3を挿入後、レーザ溶接するまでにシャフト3の位置がズレ無いように仮固定するためにロータコア組立2の端面4dをコーキングしてからレーザー溶接するもので、図5及び図6により説明する。なお、図中コーキングに関する以外は実施の形態1と同じであるので説明を省略する。
Embodiment 2. FIG.
In the second embodiment, after the shaft 3 is inserted into the rotor core assembly 2, laser welding is performed after the end surface 4d of the rotor core assembly 2 is caulked so that the position of the shaft 3 is not displaced until laser welding is performed. This will be described with reference to FIGS. Note that, except for the caulking in the figure, it is the same as that of the first embodiment, so that the description is omitted.

図において、コーキング6はロータコア組立2の端面4dに図5に示すように内径4b1に近いシャフト外径3aから0.2〜0.5mm離れた位置にコーキング溝vのセンターが位置するように行う。コーキング6の溝の形状はv溝状にて円周状に全周又は一定の長さと間隔にて複数加工される。コーキング6の溝の深さはロータコア4の板厚の約1/2としている。
コーキングされたロータコア4の端面4dの内径4b1はシャフト3の外径3aに押し付けられて密着し隙間がなくなりシャフト3を固定する状態となる。
In the figure, the caulking 6 is performed so that the center of the caulking groove v is positioned on the end surface 4d of the rotor core assembly 2 at a position 0.2 to 0.5 mm away from the shaft outer diameter 3a close to the inner diameter 4b1 as shown in FIG. . The shape of the groove of the caulking 6 is a v-groove, and a plurality of holes are machined circumferentially or at a constant length and interval. The depth of the groove of the caulking 6 is about ½ of the plate thickness of the rotor core 4.
The inner diameter 4b1 of the end surface 4d of the caulked rotor core 4 is pressed against the outer diameter 3a of the shaft 3 so as to be in close contact with each other and the shaft 3 is fixed.

コーキング6の工程は図6に示すようにシャフト3を挿入した後レーザ溶接工程の前に専用治具にて加工される。
次の工程のレーザ溶接はロータコア組立2の端面4dに加工されたコーキング6部分の、シャフトの外径3aから0.4〜0.5mmの位置をシャフト3の軸線に対して10度から45度の入射角にてレーザ光線を当ててロータコア組立2の端面4d及びシャフトの外径3aを溶接する。
As shown in FIG. 6, the caulking 6 is processed by a dedicated jig after inserting the shaft 3 and before the laser welding process.
In the next step, laser welding is performed at a position of 0.4 to 0.5 mm from the outer diameter 3a of the shaft 6 of the coking 6 processed on the end face 4d of the rotor core assembly 2 from 10 degrees to 45 degrees with respect to the axis of the shaft 3. The end face 4d of the rotor core assembly 2 and the outer diameter 3a of the shaft are welded by applying a laser beam at an incident angle of.

溶接された溶接部7は先のコーキングにおいてシャフト3の外径3aとロータコア組立2の内径4b1が密着されているので、溶融部分が内径4b1とシャフトの外径3aとの間の隙間に流れ込むことがないので、溶接ビード形状が崩れず安定した品質の良い溶接部となる。   In the welded welded portion 7, the outer diameter 3a of the shaft 3 and the inner diameter 4b1 of the rotor core assembly 2 are in close contact with each other in the previous caulking, so that the melted portion flows into the gap between the inner diameter 4b1 and the outer diameter 3a of the shaft. Therefore, the weld bead shape does not collapse and the welded portion is stable and of good quality.

本発明の実施の形態1のロータの断面図。Sectional drawing of the rotor of Embodiment 1 of this invention. 本発明の実施の形態1のロータコア組立の断面図。Sectional drawing of the rotor core assembly of Embodiment 1 of this invention. 本発明の実施の形態1の製造工程図。The manufacturing process figure of Embodiment 1 of this invention. 本発明のレーザ溶接接合を示す図。The figure which shows the laser welding joining of this invention. 本発明の実施の形態2のロータのコーキング断面図。The coking sectional drawing of the rotor of Embodiment 2 of this invention. 本発明の実施の形態2の製造工程図。The manufacturing process figure of Embodiment 2 of this invention. 従来例の製造工程を示すフロー図。The flowchart which shows the manufacturing process of a prior art example. 従来例のロータの断面図。Sectional drawing of the rotor of a prior art example.

符号の説明Explanation of symbols

2 ロータコア組立、 3 シャフト、 4b1 内径、 4b2 拡径部、 6 コーキング。   2 rotor core assembly, 3 shaft, 4b1 inner diameter, 4b2 expanded diameter part, 6 caulking.

Claims (4)

シャフトの外径よりも大きい貫通穴が設けられたロータコアを積層してロータコア組立を形成する工程と、Forming a rotor core assembly by stacking rotor cores provided with through holes larger than the outer diameter of the shaft;
前記ロータコア組立の貫通穴に前記シャフトを挿入する工程と、Inserting the shaft into the through hole of the rotor core assembly;
前記ロータコア組立の端面をコーキングして前記シャフトを固定する工程と、Caulking the end face of the rotor core assembly to fix the shaft;
前記コーキングされた端面と前記シャフトをレーザビームで仮溶接し、その後溶接条件を変更して再度レーザビームを前記コーキングされた端面に照射する全周溶接を行って、前記シャフトとロータコア組立とを溶接する工程と、The caulked end face and the shaft are temporarily welded with a laser beam, and then the welding conditions are changed, and then the entire circumference welding is performed by irradiating the caulked end face with the laser beam, and the shaft and the rotor core assembly are welded. And a process of
を有することを特徴とするロータの製造方法。A method for manufacturing a rotor, comprising:
前記仮溶接のレーザ光の照射位置をシャフトの外径から、0.2〜0.5mm離れた位置とすることを特徴とする請求項1に記載のロータの製造方法。The rotor manufacturing method according to claim 1, wherein the irradiation position of the laser beam for the temporary welding is set to a position that is 0.2 to 0.5 mm away from the outer diameter of the shaft. 前記全周溶接は、最終の溶接部が先に溶接された部分に重なり再溶接されるまで行うことを特徴とする請求項1または2に記載のロータの製造方法。3. The method for manufacturing a rotor according to claim 1, wherein the all-around welding is performed until the final welded portion overlaps and re-welds the previously welded portion. 請求項1〜3の何れか一つに記載された製造方法によって製造されたロータ。The rotor manufactured by the manufacturing method as described in any one of Claims 1-3.
JP2004021612A 2004-01-29 2004-01-29 Rotor and method for manufacturing the same Expired - Lifetime JP3790824B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004021612A JP3790824B2 (en) 2004-01-29 2004-01-29 Rotor and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004021612A JP3790824B2 (en) 2004-01-29 2004-01-29 Rotor and method for manufacturing the same

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP05778297A Division JP3555377B2 (en) 1997-03-12 1997-03-12 Rotor and method of manufacturing rotor

Publications (2)

Publication Number Publication Date
JP2004129500A JP2004129500A (en) 2004-04-22
JP3790824B2 true JP3790824B2 (en) 2006-06-28

Family

ID=32291467

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004021612A Expired - Lifetime JP3790824B2 (en) 2004-01-29 2004-01-29 Rotor and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JP3790824B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2487777A4 (en) * 2009-10-09 2016-01-06 Toyota Motor Co Ltd ROTOR AND METHOD FOR MANUFACTURING THE SAME
DE102013009115A1 (en) * 2012-09-14 2014-03-20 Continental Automotive Gmbh Rotor for a permanent-magnet electric machine and its use
WO2014130707A1 (en) * 2013-02-22 2014-08-28 Ecomotors, Inc. Electric rotor fit onto a turbomachine shaft
JP6136912B2 (en) * 2013-12-18 2017-05-31 アイシン・エィ・ダブリュ株式会社 Rotor for rotating electrical machine and method for manufacturing the same
JP6409837B2 (en) 2016-09-08 2018-10-24 トヨタ自動車株式会社 Rotating electric machine rotor and method of manufacturing rotating electric machine rotor
JP2021177675A (en) * 2020-05-07 2021-11-11 本田技研工業株式会社 Rotor and rotary electric machine

Also Published As

Publication number Publication date
JP2004129500A (en) 2004-04-22

Similar Documents

Publication Publication Date Title
JP6510511B2 (en) Composite brake disc and method and apparatus for its manufacture
JP3555377B2 (en) Rotor and method of manufacturing rotor
CN104167879A (en) Rotor assembly with electron beam welded end caps
US20070292266A1 (en) Welded nozzle assembly for a steam turbine and related assembly fixtures
JP6385940B2 (en) Engine module assembly method
JP2020182339A (en) Alignment device and alignment coil manufacturing method
JP4674033B2 (en) Method for manufacturing camshaft cam
JP3790824B2 (en) Rotor and method for manufacturing the same
JP2008229677A (en) Hollow rack bar and method and apparatus for reducing diameter of end of hollow rack bar
JP2005153015A (en) Method of manufacturing container by laser welding
JP2020114062A (en) Rotary electric machine stator and production method therefor
EP0773375B1 (en) Processing method for connecting rod
JP2004066336A (en) Friction pressure welding method and joint
JPH07298522A (en) Stator for motor
US8756808B2 (en) Method for producing a cellular wheel
JP4686099B2 (en) Camshaft and manufacturing method thereof
JP2001205376A (en) Method and apparatus for manufacturing metal sheet bundle having annular shape
JPS5824203B2 (en) Manufacturing method for optical fiber connector plugs
JP2017040368A (en) Joining method of core ring of torque converter, manufacturing method of torque converter, and torque converter manufactured by using the same
CN109154226B (en) Method for producing a honeycomb structure
JPH11197518A (en) Production of metallic catalyst carrier
JPH0819816A (en) Production of cylindrical member
JP4648716B2 (en) Laminated iron core and manufacturing method thereof
JP6164337B2 (en) Friction stir welding method
JP2000348618A (en) Manufacturing method of vacuum vessel for ion beam application equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040312

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20040625

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050912

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051018

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20051102

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060307

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060309

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100414

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100414

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110414

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120414

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120414

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130414

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130414

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140414

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term