JP3790076B2 - アナログ同期回路 - Google Patents
アナログ同期回路 Download PDFInfo
- Publication number
- JP3790076B2 JP3790076B2 JP32420299A JP32420299A JP3790076B2 JP 3790076 B2 JP3790076 B2 JP 3790076B2 JP 32420299 A JP32420299 A JP 32420299A JP 32420299 A JP32420299 A JP 32420299A JP 3790076 B2 JP3790076 B2 JP 3790076B2
- Authority
- JP
- Japan
- Prior art keywords
- circuit
- capacitor
- voltage
- switch
- well region
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03L—AUTOMATIC CONTROL, STARTING, SYNCHRONISATION OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
- H03L7/00—Automatic control of frequency or phase; Synchronisation
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03K—PULSE TECHNIQUE
- H03K5/00—Manipulating of pulses not covered by one of the other main groups of this subclass
- H03K5/13—Arrangements having a single output and transforming input signals into pulses delivered at desired time intervals
- H03K5/135—Arrangements having a single output and transforming input signals into pulses delivered at desired time intervals by the use of time reference signals, e.g. clock signals
Landscapes
- Physics & Mathematics (AREA)
- Nonlinear Science (AREA)
- Dram (AREA)
- Manipulation Of Pulses (AREA)
- Stabilization Of Oscillater, Synchronisation, Frequency Synthesizers (AREA)
- Pulse Circuits (AREA)
Description
【発明の属する技術分野】
この発明は、例えばシンクロナスDRAM等の半導体記憶装置内に設けられ、外部クロック信号からこれに同期した内部クロック信号を発生するアナログ同期回路に関する。
【0002】
【従来の技術】
この種の半導体記憶装置においては、チップの外部から供給される外部クロック信号に対して、チップの内部で発生される内部クロック信号を同期させる必要がある。チップ内では、外部クロック信号を入力バッファで受け、この外部クロック信号をチップ内部で分配すると、バッファや配線による遅延のため、チップ内部と外部でクロック信号の位相が異なってしまう。これを避けるために、内部クロック信号を外部クロック信号に同期させる同期回路が種々開発されている。
【0003】
この同期回路としては、例えば「 T.Saeki.et al.“A 2.5ns Clock Access 250MHz 256Mb SDRAM with a Synchronous Mirror Delay”,ISSCC Digest of Technical Papers, pp.374-375, Feb. 1996」で用いられているSMD(Synchronous Mirror Delay)や、本出願人による特願平8−100976号の出願に記載されているSTBD(Synchronous Traced Backward Delay)等を含むミラータイプDLL(Delay Locked Loop)がある。ミラータイプDLLは同期速度が速く、外部クロック信号の3クロック目から外部クロック信号に同期した内部クロック信号を発生させることができる。
【0004】
図26は、従来のミラータイプDLLの一例を示している。このミラータイプDLLは、入力バッファ(IB)、出力バッファ(OB)、これらバッファのレプリカ回路により構成され、これらの遅延時間をモニタするディレイモニタ(DM)、及び遅延線(DL)とから構成されている。遅延線(DL)は、前進パルス用遅延線DL1と後退パルス用遅延線DL2の2個からなり、前進パルス用遅延線における遅延時間を後退パルス用遅延線に反映させるミラー動作により同期動作を行っている。このため、両遅延線での遅延時間を如何に正確に等しくできるかが同期精度を決める上で大きな要因となっている。
【0005】
【発明が解決しようとする課題】
ところで、従来の遅延線(DL)は、インバータ回路等の複数のロジックゲートが直列接続されて構成されている。遅延線における遅延時間は、前進パルスが前進パルス用遅延線DL1を構成するロジックゲートを何段進んだかという情報に基づいて、後退パルスが後退パルス用遅延線DL2を構成するロジックゲートを何段通過するかで決まる。このように、遅延時間はロジックゲートの段数という量子化された量となる。
【0006】
このため、図27に示すように、前進パルス用遅延線での遅延量と、後退パルス用遅延線での遅延量が等しくならず、量子誤差を発生してしまう。
【0007】
この発明は上記のような事情を考慮してなされたものであり、その目的は、量子誤差の発生を防止し、前進パルスと後退パルスの遅延量を実質的に等しくすることが可能なアナログ同期回路を提供することにある。
【0008】
【課題を解決するための手段】
この発明のアナログ同期回路は、第1のキャパシタと、第1のクロック信号に応じて上記第1のキャパシタを充電開始し、上記第1のクロック信号から遅れた第2のクロック信号に応じて上記充電を停止する第1の電流源回路と、第2のキャパシタと、上記第2のクロック信号に応じて上記第2のキャパシタを充電開始する第2の電流源回路と、上記第1、第2のキャパシタの充電電圧を比較し、これらが一致した際にタイミング信号を発生する比較回路とを具備し、上記比較回路は、一端に上記第1のキャパシタの充電電圧が与えられる第1のスイッチと、一端に上記第2のキャパシタの充電電圧が与えられ、他端が上記第1のスイッチの他端に共通に接続された第2のスイッチと、一端が上記第1及び第2のスイッチの他端の共通接続ノードに接続された第3のキャパシタと、上記第3のキャパシタの他端が入力ノードに接続され、出力ノードから上記タイミング信号を出力する第1の増幅回路と、上記第1の増幅回路の閾値電圧に相当する電圧を上記第3のキャパシタの他端に供給制御する第3のスイッチとを有して構成され、上記第1及び第3のスイッチが導通するとき上記第2スイッチは非導通状態に制御され、上記第2のスイッチが導通するとき上記第1及び第3のスイッチは非導通状態に制御されることを特徴とする。
【0009】
【発明の実施の形態】
以下、図面を参照してこの発明の実施の形態を説明する。
【0010】
(第1の実施の形態)
図1は、本出願人の一部が先に出願した特願平11−228710号に記載されているアナログ同期回路の全体の回路構成を示している。この回路は、基本的にはミラータイプDLLと同様な構成であり、外部クロック信号ECLKが供給される入力バッファ(IB)11、この入力バッファ11から出力されるクロック信号ICLKが供給されるディレイモニタ(DM)12、外部クロック信号ECLKと同期したクロック信号CKを出力する出力バッファ(OB)13を有している。
【0011】
さらに、図1に示すように、2個のチャージ・バランス・ディレイ(以下、CBDと略称する)14、15を有している。これらのCBD14、15は、従来のミラータイプDLLにおける遅延線に相当する。各CBD14、15は後述するように、外部クロック信号の連続する2サイクルでそれぞれ1回動作する。このため、2つのCBD14、15は交互に動作し、これら2つのCBD14、15の出力信号はOR回路16を介して先の出力バッファ13に供給される。
【0012】
また、図1中のAND回路17、18は、2つのCBD14、15は交互に動作させるために、信号T2、/T2(/は反転信号を示す)に応じてクロック信号ICLKを振り分けている。なお、信号T2はクロック信号ICLKを分周して生成される信号である。
【0013】
図2は、クロック信号ICLKと信号T2、/T2の位相関係を示している。
【0014】
また、上記のような交互動作を行うため、CBD14、15に入力されるクロック信号e−CL、o−CLは、クロック信号ICLKからそれぞれAND回路1段分だけ遅れる。これを補償するために、ディレイモニタ12の後段にAND回路19、20の直列回路及びAND回路21、22の直列回路が設けられている。AND回路20、22はダミーであり、それぞれ一方の入力ノードが“H”レベル例えば電源電圧Vccに接続されている。AND回路19、21の一方の入力ノードには信号T2′、/T2′が供給されている。これらの信号T2′、/T2′はタイミング調整用の信号であり、先の信号T2、/T2を適当に遅延して生成された信号である。
【0015】
CBD14、15は同一構成であるため、CBD14で代表してその内部構成を説明する。CBD14は、2個のキャパシタC1、C2と、これらキャパシタC1、C2を充電する定電流源回路S1、S2と、キャパシタC1、C2における充電電圧V1、V2を比較する比較器(CMP)23と、キャパシタC1、C2の充電電圧を放電してリセットするためのNチャネルMOSトランジスタN1、N2、及び遅延回路(DL)24とから構成されている。ここで、キャパシタC1は前進パルス用遅延線に、キャパシタC2は後退パルス用遅延線にそれぞれ相当している。
【0016】
キャパシタC1、C2の容量は実質的に互いに等しく、定電流源回路S1、S2の電流量も実質的に互いに等しく設定されている。定電流源回路S1はCBD14の入力ノードDinに供給されるパルス信号e−dmCLに応じて電流出力動作が開始され、パルス信号e−CLに応じて電流出力動作が停止される。また、定電流源回路S2はパルス信号e−CLに応じて電流出力動作が開始され、比較器23から出力されるパルス信号e−CKを遅延回路24により遅延した信号に応じて電流出力動作が停止される。
【0017】
リセット用のトランジスタN1はAND回路18から出力されるクロック信号o−CLに応じてリセットされ、トランジスタN2は遅延回路24から出力される信号に応じてリセットされる。定電流源回路S1、S2及び比較器23の詳細な構成については後述する。
【0018】
次に、図3を参照して、上記CBD14の動作を説明する。AND回路20から出力されるパルス信号e−dmCLが入力ノードDinに供給されると、定電流源回路S1によりキャパシタC1の充電が開始される。このキャパシタC1は定電流で充電されるため、定電流源回路S1との接続ノードの電圧V1は一定の割合で増加する。この後にAND回路17からパルス信号e−CLが供給されると、キャパシタC1の充電が停止されると同時にキャパシタC2の充電が開始される。比較器23は、定電流源回路S2とキャパシタC2との接続ノードの電圧V2が、充電停止後のキャパシタC21の充電電圧V1と等しくなるとパルス信号e−CKを出力ノードDoutに出力する。このパルス信号e−CKは、遅延回路24を介して定電流源回路S2に供給され、定電流源回路S2の動作が停止される。
【0019】
キャパシタC1、C2の容量は互いに等しく、定電流源回路S1、S2の供給電流量が同じであるために、キャパシタC1の充電電圧V1がV3に達するのに要する時間と、キャパシタC2の充電電圧V2がV3までに達するのに要する時間は等しくなる。これにより、図3に示すように、入力ノードDinにパルス信号e−dmCLが供給されてからパルス信号e−CLが供給されるまでの時間と同じ時間が、パルス信号e−CLが供給されてから出力ノードDoutにパルス信号e−CKが出力されるまでの時間にミラーされて出力される。図3に示す電圧V1、V2は共にアナログ量であるため、充電時間をミラーする際に量子化誤差は実質上発生しない。
【0020】
なお、リセット用のトランジスタN1は、CBD15にAND回路18から出力されるパルス信号0−CLが供給される際に導通し、これによりキャパシタC1がリセットされる。また、トランジスタN2は、遅延回路24により遅延された比較器23からのパルス信号e−CKにより導通し、これによりキャパシタC2がリセットされる。CBD15内の図示しないトランジスタN1はAND回路17から出力されるパルス信号e−CLにより導通し、CBD15内のキャパシタC1がリセットされる。
【0021】
図4(a)は、クロック信号ICLKから信号T2、/T2を生成する分周回路の一部の構成を示している。図4(b)は、図4(a)の回路で用いられている遅延回路(DL)の一例を示している。図4(b)に示す遅延回路において、クロックドインバータ回路の動作は、図4(a)の回路で発生される信号a、/aにより制御される。
【0022】
図5及び図6は、図1中の定電流源回路S1、S2の原理を示している。この場合、例えば図5に示すようなNチャネルMOSトランジスタは、ゲート電圧VGを適当に設定することにより、ドレイン(Drain)・ソース(Source)間の電圧VDSが変動しても電流量IDSが変化しない。このため、その特性は図6に示すようになり、定電流源として用いることができる。また、NチャネルMOSトランジスタのみではなく、PチャネルMOSトランジスタも同様にゲート電圧を適当に設定することにより、定電流源として用いることができる。キャパシタを接地電圧から充電する場合、ソース電圧の変動が少いため、PチャネルMOSトランジスタを定電流源として用いる方が、NチャネルMOSトランジスタを用いる場合よりも、定電流特性が優れている。
【0023】
ところで、上記のようなアナログ方式によるミラータイプDLLでは、外部クロック信号ECLKの周波数が変動すると、CBD14、15内のキャパシタC1、C2における充電時間が変化し、それに伴って比較器23で比較すべき電圧も変化する。図7(a)は外部クロック信号ECLKの周波数が比較的高く、周期が比較的短い場合のキャパシタC1、C2の充電電圧の変化状態を示しており、図7(b)は逆に外部クロック信号ECLKの周波数が比較的低く、周期が比較的長い場合のキャパシタC1、C2の充電電圧の変化状態を示している。
【0024】
図7から分かるように、外部クロック信号ECLKの周波数が比較的高い場合には、キャパシタC1、C2が充電されている期間が短くなるので、それぞれの充電電圧はそれ程高くはならない。しかし、外部クロック信号ECLKの周波数が比較的低い場合には、キャパシタC1、C2が充電されている期間が長くなるので、それぞれの充電電圧はある程度高くなる。
【0025】
このような状況において、図1中の比較器23として、例えば図8(a)のシンボル図、及び図8(b)の詳細な回路図に示す一般的な差動増幅回路を用いるとすると、この差動増幅回路で比較のための基準電圧として供給される充電電圧V1の値が周波数に応じて変化するために、この差動増幅回路自体で生じる遅延時間も変化することになる。従って、外部クロック信号に対する内部クロック信号のオフセットが変化し、広い周波数範囲での高精度な同期動作を妨げることになる。
【0026】
そこで、この実施の形態では、比較器23として図9に示すような構成のものを用いる。図9に示す比較器では、前記キャパシタC1における充電電圧V1がスイッチSW1の一端のノードに供給される。同様に、前記キャパシタC2における充電電圧V2がスイッチSW2の一端のノードに供給される。上記両スイッチSW1、S2の他端のノードは共通に接続されている。また、スイッチSW1、S2の他端ノードの共通接続ノードNaにはキャパシタCcの一端のノードが接続され、このキャパシタCcの他端のノードは正相入力ノード(+)及び逆相入力ノード(−)を有する差動増幅回路31の正相入力ノードに接続されている。上記差動増幅回路31の逆相入力ノードには、図示しない回路で生成される一定電圧が比較用の基準電圧Vrefとして供給される。
【0027】
また、上記キャパシタCcと差動増幅回路31の正相入力ノードとの共通接続ノードNbにはスイッチSW3の一端のノードが接続されており、このスイッチSW3の他端のノードは上記基準電圧Vrefの供給ノードに接続されている。
【0028】
次に、図9に示す比較器の動作を、図10を参照して説明する。なお、図10において、スイッチSW1、SW2、SW3は、それぞれ“H”レベルのときに導通し、“L”レベルのときは非導通状態になるとする。また、この比較器の動作はプリチャージ期間と比較期間とに別れており、プリチャージ期間中はスイッチSW1、SW3が共に導通し、スイッチSW2が非導通状態になり、比較期間ではスイッチSW1、SW3は共に非導通状態となり、スイッチSW2が導通する。
【0029】
プリチャージ期間に、先の図1の回路において、パルス信号e−dmCLがCBD14の入力ノードDinに供給されると、キャパシタC1の充電が開始され、電圧V1が一定の割合で増加する。このキャパシタC1の充電期間では、スイッチSW1が導通しているので、キャパシタCcの一端のノードであるノードNaの電圧は充電電圧V1と同様に増加していく。このとき、スイッチSW3も導通しているので、キャパシタCcの他端のノードであるノードNbの電圧は基準電圧Vrefに等しく、一定となる。
【0030】
次に比較期間に遷移し、図1の回路において、AND回路17からパルス信号e−CLが出力されると、キャパシタC1の充電が停止されると同時にキャパシタC2の充電が開始される。また、これに同期してスイッチSW1とスイッチSW3が共に非導通状態に変わり、スイッチSW2が導通する。スイッチSW1が非導通状態になり、スイッチSW2が導通すると、キャパシタCcの一端のノードであるノードNaの電圧はキャパシタC2の充電電圧V2に等しくなる。また、キャパシタC2の充電期間ではスイッチSW3は非導通状態なので、キャパシタCcの他端のノードであるノードNbの電圧は、このキャパシタCcのカップリング作用により、Vrefから(V1−V2)だけ電位が低下する。なお、スイッチSW1からSW2に切り替わった直後ではキャパシタC2の充電電圧V2は接地電圧Vssの0Vなので、ノードNbの電圧はVref−V1に低下する。
【0031】
差動増幅回路31の逆相入力ノードには基準電圧Vrefが供給されているので、その後、ノードNaの電圧がキャパシタC2の充電電圧V2と同様に増加していき、V2が基準電圧Vrefに達すると、差動増幅回路31の出力信号OUTが“L”レベルから“H”レベルに反転し、先のパルス信号e−CKがCBD14の出力ノードDoutから出力される。
【0032】
以上の動作において、外部クロック信号ECLKの周波数が変化して、キャパシタC1、C2の充電時間が変化しても、差動増幅回路31に入力される基準電圧Vrefの値は常に一定である。このため、差動増幅回路31自体に生じる信号遅延時間は、外部クロック信号ECLKの周波数によって変動しない。しかも、基準電圧Vrefは、キャパシタC1、C2の充電電圧V1、V2によらずに任意に設定することができるため、差動増幅回路31の最も感度のよい電圧を選ぶことができ、広い周波数範囲での高精度な同期動作が実現される。
【0033】
図11は、図10の比較器で用いられるスイッチSW1、SW2、SW3の具体的な回路例を示している。これらの各スイッチとして、ソース・ドレイン間が並列に接続されたNチャネルMOSトランジスタ32及びPチャネルMOSトランジスタ33と、NチャネルMOSトランジスタ32のゲート制御に用いる制御信号gateを反転してPチャネルMOSトランジスタ33のゲートに供給するインバータ34とから構成されているCMOSトランスファゲートを用いることができる。
【0034】
上記第1の実施の形態によれば、ミラータイプDLLにおける遅延回路を定電流源回路S1、S2により充電されるキャパシタC1、C2、及びこれらキャパシタの充電電圧を比較する比較器23により構成し、前進パルス、後退パルスの遅延時間をキャパシタに蓄積された電荷量に置き換えている。すなわち、前進パルスの遅延時間に相当する時間だけ定電流源回路S1によりキャパシタC1を充電し、キャパシタC1と同一の容量を有するキャパシタC2を、定電流源回路S1と同一の電流量の定電流源回路S2により充電し、これらキャパシタC1、C2の充電電圧V1、V2を比較器23で比較し、これら両電圧が一致した時点で信号を出力している。従って、パルス信号の遅延時間をアナログ値に置き換えて制御しているため、従来のような量子化誤差の発生を防止することができる。
【0035】
しかも、キャパシタC1、C2の容量は互いに等しく、定電流源回路S1、S2の電流量は互いに等しく設定されている。従って、キャパシタC1がある電圧まで充電されるのに要する時間と、キャパシタC2がこの電圧と同じ電圧まで充電されるのに要する時間とが等しくなるため、キャパシタC1の充電時間をキャパシタC2の充電時間に正確にミラーできる。
【0036】
また、従来のように、遅延回路を複数のロジックゲートによって構成した場合、遅延回路の動作に伴いノイズが発生するが、この実施の形態のようにキャパシタによって構成することにより、ノイズの発生を抑えることができる。
【0037】
さらに、定電流源回路は、電圧により制御されるPチャネルMOSトランジスタあるいはNチャネルMOSトランジスタによって構成できるため、回路構成を簡単化できる利点も有している。
【0038】
しかも、キャパシタC1、C2の充電電圧V1、V2を比較する比較器として、キャパシタC1、C2の充電電圧に左右されない一定の基準電圧Vrefと、キャパシタカップリングを用いて生成される充電電圧V1及びV2間の差電圧とを比較する差動増幅回路を用いるようにしているので、外部クロック信号の周波数によって比較器自体で生じる遅延時間を常に一定にすることができ、広い周波数範囲での高精度な同期動作を実現することができる。
【0039】
また、キャパシタC1の容量を定電流源回路S1の電流量で割った値が、キャパシタC2の容量を定電流源回路S2の電流量で割った値と等しければ、すなわち、キャパシタC1の容量と定電流源回路S1の電流量との比と、キャパシタC2の容量と定電流源回路S2の電流量との比とが所定の比率になっていれば、必ずしもキャパシタの容量と定電流源回路の電流量のどちらかを等しくする必要はない。
【0040】
さらに、キャパシタC1、C2を充電する回路は、必ずしも定電流源回路に限定されるものではなく、電流源回路であってもよい。
【0041】
(第2の実施の形態)
図12は、この発明の第2の実施の形態における比較器23の構成を示している。この比較器では、図9に示す比較器の差動増幅回路31の代わりに、増幅回路としてインバータ35を用いている。インバータ35は入力ノードが1つしかないので、前記基準電圧Vrefの代わりにこのインバータ35の回路閾値電圧を利用する。インバータの回路閾値電圧は、入力ノードと出力ノードとを短絡した際に自動的に発生する。図13はインバータの入出力特性を示している。入力ノードと出力ノードとを短絡することによって、インバータの入力電圧Vinと出力電圧Voutとが一致するので、プロセス変動によってインバータの入出力特性が変化しても(図中の破線で示した特性)、図中の実線で示すような特性に揃えられ、インバータの回路閾値電圧はVin=Voutの直線と入出力特性曲線との交点である論理閾値電圧に設定される。
【0042】
従って、この実施の形態の場合、前記スイッチSW3はインバータ35の入力ノードと出力ノードとの間に接続される。
【0043】
図12に示す比較器の各ノードの信号波形を図14に示す。図12の比較器では、図9中の前記差動増幅回路31の代わりにインバータ35を用いているので、差動増幅回路31の出力信号OUTに対して、インバータ35の出力信号OUTは論理レベルが反転している。しかし、図9の場合と同様の論理レベル持つ出力信号OUTを得るには、インバータ35の後段にインバータを設けて、信号OUTを反転させればよい。
【0044】
この実施の形態の場合にも、外部クロック信号ECLKの周波数が変化して、キャパシタC1、C2の充電時間が変化しても、インバータ35の回路閾値電圧の値は常に一定である。このため、比較器自体に生じる信号遅延時間は、外部クロック信号ECLKの周波数によって変動しない。しかも、インバータ35の回路閾値電圧は、キャパシタC1、C2の充電電圧V1、V2によらずに、電源電圧と接地電圧とのほぼ中間の値に自動的に設定されるので、インバータ35の最も感度のよい電圧となり、広い周波数範囲での高精度な同期動作が実現される。
【0045】
(第3の実施の形態)
次に、前記キャパシタC1を充電している期間と、キャパシタC2を充電している期間とにおける前記比較器23の入力容量の変化を低減するための実施の形態について説明する。
【0046】
すなわち、キャパシタC1、C2の充電期間では比較器23の入力容量が異なる。ここで、前記図9中の差動増幅回路31や図12中のインバータ35からなる増幅回路の入力容量をCinvlとする。キャパシタC1に対して充電が行われ、スイッチSW1とSW3とが導通し、スイッチSW2が非導通状態となる、比較器23のプリチャージ期間では、図15の等価回路に示すように、スイッチSW3が導通しているので、増幅回路の入力容量Cinvlは見えなくなり、比較器23の入力容量は、キャパシタCcのみとなる。他方、キャパシタC2に対して充電が行われ、スイッチSW2のみが導通する、比較器23の比較期間では、図16の等価回路に示すように、スイッチSW3が非導通状態になっているので、増幅回路の入力容量CinvlがキャパシタCcに対して直列接続された状態となり、比較器23の入力容量はCinvl//Ccとなる。ただし、Cinvl//CcはCinvlとCcの直列容量値を表し、Cinvl・Cc/(Cinvl+Cc)である。プリチャージ期間と比較期間とで、比較器23の入力容量の値が異なると、キャパシタC1、C2の充電速度が異なり、これが同期誤差として出力に現れる。
【0047】
そこで、この実施の形態では、図17(a)、(b)の等価回路に示すように、2個のスイッSW1、SW2を除いたその他の構成が比較器23と等価な回路構成を有するダミー回路23′を追加するようにしている。ダミー回路23′内のキャパシタCc′は比較器23内のキャパシタCcと同じ容量を持つキャパシタであり、一方のノードはキャパシタCcのノードNaに接続されている。Cinvl′は比較器23内の増幅回路の入力容量Cinvlと同じ容量であり、この入力容量CinvlにはキャパシタCc′の他方のノードNb′が接続されている。スイッチSW3′は比較器23内のスイッチSW3と同じ構成のものである。ただし、スイッチSW3′はスイッチSW3とは逆相で動作するように制御される。
【0048】
ここで、図17(a)の等価回路は、比較器23内のスイッチSW3が導通している状態であり、ダミー回路23′内のスイッチSW3′は非導通になっている。この等価回路を簡略化して示したのが図17(b)の等価回路図である。
【0049】
上記とは逆に、比較器23内のスイッチSW3が非導通状態となり、ダミー回路23′内のスイッチSW3′が導通する際にも、図17(b)の等価回路図示すものと同じ等価回路になる。
【0050】
図18は、このような考え方を、図9に示すように増幅回路として差動増幅回路31を用いた比較器に適用したものであり、図9の回路に対して、キャパシタCc′と、差動増幅回路31′とスイッチSW3′とからなるダミー回路23′が追加されている。
【0051】
図19は、このような考え方を、図12に示すように増幅回路としてインバータ35を用いた比較器に適用したものであり、図12の回路に対して、キャパシタCc′と、インバータ35′とスイッチSW3′とからなるダミー回路23′が追加されている。
【0052】
このように、この実施の形態によれば、ダミー回路23′を追加することによって、キャパシタC1、C2の充電時は共に比較器23の入力容量を等しくすることができ、キャパシタC1、C2の充電速度が等しくなるので、比較器23の入力容量が異なることによる同期誤差を低減させることができるという効果をさらに得ることができる。
【0053】
(第4の実施の形態)
上記した第1ないし第3の実施の形態では、比較器23の比較基準電圧の値が外部クロック信号の周波数によらずに常に一定となり、比較器23の遅延時間の変動が小さく抑えることができるが、この実施の形態では、この変動をさらに抑えるための技術について説明する。
【0054】
比較器では、比較電圧の値が一定であっても、この比較電圧に到達するまでの入力電圧の変化速度が変動すると、遅延時間が変化する。このため、キャパシタC1、C2の充電速度が外部クロック信号の周期によらずに一定であることが望ましい。キャパシタC1、C2の充電速度はそれぞれ、dV/dt=Ic/(Ccap +Ccom )で表される。ただし、Icは前記定電流源回路S1及びS2の電流量であり、Ccap はキャパシタC1及びC2の容量であり、Ccom は比較器23の入力容量である。dV/dtを一定にするためにはIcが一定でかつ(Ccao +Ccom )の容量が一定である必要がある。
【0055】
一般に、キャパシタC1及びC2は、LSI中では、図20(a)のシンボルで示すようなMOSトランジスタを用いて構成されることが多い。図20(b)は、図20(a)に示すMOSトランジスタの素子構造を示している。すなわち、p型半導体領域(p-sub)41上にはn+型拡散領域からなるソース(source)42及びドレイン(drain)43と、p+型拡散領域からなるバックゲートコンタクト(back-gate)44とが設けられており、さらにソース、ドレイン間のチャネル領域上にはゲート絶縁膜(gate oxide)45を介して、ゲート電極(gate)46が設けられている。
【0056】
そして、図21に示すように、MOSトランジスタのソース、ドレイン間を短絡し、バックゲートを接地電圧のノードに接続して、ゲート電極とバックゲートとの間に生じているゲート容量を前記キャパシタとして利用するMOS型キャパシタを使用する。
【0057】
しかるに、MOSトランジスタのバックゲートに対するゲート電圧V(gate)と容量C(gate)との関係は、例えば図20に示したNチャネルのMOSトランジスタでは図22(a)に示すようになる。これによれば、バックゲート電圧が接地電圧(Vss)のときに、ゲート電圧V(gate)を接地電圧の0Vから充電していくと、閾値電圧Vthに達するまでのデプレッション(depletion)期間では、充電電圧に応じて容量が変動してしまう。
【0058】
そこで、この実施の形態では、前記キャパシタC1、C2として、通常のMOSトランジスタよりも閾値電圧Vthが低いMOSトランジスタを用いることにより、ゲート容量が変動する領域をゲート電圧が低い領域に抑え、ある程度ゲート電圧が上昇するとゲート容量が一定になるようにする。さらに、デプレッション型のMOSトランジスタを用いるようにすると、図22(b)に示すように、ゲート電圧が接地電圧に等しいときでもインバージョン(inversion)領域で動作し、ゲート容量が一定となる。
【0059】
(第5の実施の形態)
上記第4の実施の形態では、容量が一定のキャパシタとして、インバージョン領域で動作するMOS型キャパシタを用いる場合を説明した。しかるに、前記ゲート電極の導電材料としてポリシリコンを用いるポリシリコンゲートMOSトランジスタでは、インバージョン領域において、ゲートの空乏層化により、図22(c)に示すように、ゲート容量の低下が起きてしまう。この影響を避けるためには、アキュムレーション(accumulation)領域で動作させるようにすればよい。NチャネルMOSトランジスタをアキュムレーション領域で動作させるための方法は、例えばバックゲートを電源電圧Vccに設定すればよい。さらに、バックゲートを電源電圧Vccに設定するためには、NチャネルMOSトランジスタのバックゲートを基板から電気的に分離する必要がある。
【0060】
このためには、図23に示すような素子構造のNチャネルMOSトランジスタを使用する。図23において、p型半導体領域(p-sub)51上にはn型ウエル領域(n-well)52が設けられ、このn型ウエル領域上52にはp型ウエル領域(p-well)53が設けられ、さらにこのp型ウエル領域53上にn+型拡散領域からなるソース(source)54及びドレイン(drain)55と、p+型拡散領域からなるバックゲートコンタクト(back-gate)56とが設けられており、さらにソース、ドレイン間のチャネル領域上にはゲート絶縁膜(gate oxide)57を介して、ゲート電極(gate)58が設けられている。また、上記n型ウエル領域52上には、このn型ウエル領域52に対して所定のバイアス電圧(n-well bias)を供給するためのn+型拡散領域からなるウエルコンタクト59が設けられている。
【0061】
このようにトリプル・ウエル(triple well)構造を採用して、ウエルコンタクト59と共にバックゲートコンタクト56を電源電圧Vccに接続すれば、図24の等価回路に示すように、MOS型キャパシタのバックゲートを電源電圧Vccに設定することが可能になり、このMOS型キャパシタをアキュムレーション領域で動作させることが可能になる。これによって、ゲート電圧V(gate)と容量C(gate)との関係は図22(d)に示すようになり、ゲート電圧に対してゲート容量は常に一定となる。
【0062】
なお、n型ウエル領域によってp型半導体領域から電気的に分離されたp型ウエル領域を形成することは、例えばDRAMではセル領域を基板から分離するために通常行われていることであり、この工程と共通してp型ウエル領域の分離工程を行えば、工程の増加は起こらない。
【0063】
(第6の実施の形態)
上記第5の実施の形態では、トリプル・ウエル構造を採用することによって、MOS型キャパシタのバックゲートであるウエルコンタクトを電源電圧Vccに接続する場合を説明したが、トリプルウエル構造が採用できないLSIにおいては、n型半導体領域(n-sub)を用い、このn型半導体領域上にp型ウエル領域(p-well)を形成し、さらにこのp型ウエル領域に形成されたNチャネルMOSトランジスタのバックゲートであるp型ウエル領域に対して電源電圧Vccを接続すればよい。
【0064】
また、n型半導体領域(n-sub)を用いることができない場合には、p型半導体領域(p-sub)上のn型ウエル領域(n-well)に形成されたPチャネルMOSトランジスタを用いることができる。通常、n型半導体領域(n-sub)は電源電圧Vccにバイアスされるが、MOS型キャパシタ(C1、C2)が形成されているn型ウエル領域(n-well)のみ接地電圧にバイアスすればよい。この場合、さらにMOS型キャパシタ(C1、C2)の充放電を、図1の場合のように接地電圧から電源電圧Vccに充電し、接地電圧にリセットするのではなく、予め電源電圧Vccにリセットしておき、そこから接地電圧に放電するようにすることが望ましい。
【0065】
(第7の実施の形態)
上記第1ないし第6の実施の形態では、キャパシタC1、C2のリセット電圧として、接地電圧または電源電圧Vccを用いる場合について説明したが、MOS型キャパシタとして使用するMOSトランジスタを意図するインバージョン領域やアキュムレーション領域で動作させることができるならば、別の電圧を用いるようにしてもよく、この実施の形態では接地電圧及び電源電圧Vcc以外のリセット電圧を用いるようにする。
【0066】
(第8の実施の形態)
上記した各実施の形態では、比較器23内の増幅回路として差動増幅回路やインバータを用いる場合について説明したが、この実施の形態では、図25に示すように、差動増幅回路及びインバータ以外の増幅回路36を用いるようにしたものである。この場合、前記スイッチSW3には、前記基準電圧Vrefの代わりに増幅回路36の回路閾値電圧に相当する電圧が供給される。
【0067】
【発明の効果】
以上、説明したようにこの発明によれば、遅延時間を電荷量というアナログ量で検出できるため、ロジックゲートを遅延線に用いた従来のミラータイプDLLにおいて問題となっていた量子化誤差の発生を防止することができる。従って、前進パルスと後退パルスの遅延量を等しくすることが可能なアナログ同期回路を提供することができる。
【0068】
しかも、2個のキャパシタの充電電圧を比較して出力信号を得るための比較器として、キャパシタの充電電圧に左右されない一定の電圧を比較のための基準電圧として用いるようにしているので、外部クロック信号の周波数によって比較器自体で生じる遅延時間を常に一定にすることができ、広い周波数範囲での高精度な同期動作を実現することができる。
【図面の簡単な説明】
【図1】第1の実施の形態に係るアナログ同期回路の全体の回路図。
【図2】図1の回路で使用される一部の信号の波形図。
【図3】図1の回路の動作を説明するための信号の波形図。
【図4】図1の回路で使用される一部の信号を生成する回路の回路図。
【図5】図1の回路で使用される定電流源回路の原理を説明するためのシンボル図。
【図6】図1の回路で使用される定電流源回路の原理を説明するための特性図。
【図7】図1の回路の動作を説明するための信号の波形図。
【図8】図1の回路で比較器として使用することが変えられる差動増幅回路のシンボル図及び詳細な回路図。
【図9】図1の回路で使用される比較器の詳細な構成を示す回路図。
【図10】図9の比較器の動作を説明するための一部の信号の波形図。
【図11】図9の比較器で使用されるスイッチの詳細な構成を示す回路図。
【図12】第2の実施の形態に係るアナログ同期回路で使用される比較器の詳細な構成を示す回路図。
【図13】図12の比較器で用いられているインバータの入出力特性を示す図。
【図14】図12の比較器の動作を説明するための一部の信号の波形図。
【図15】図9及び図12の比較器を含むアナログ同期回路の等価回路図。
【図16】図9及び図12の比較器を含むアナログ同期回路の等価回路図。
【図17】第3の実施の形態に係るアナログ同期回路の原理を説明するための等価回路図。
【図18】第3の実施の形態に係るアナログ同期回路で使用される比較器の詳細な構成を示す回路図。
【図19】第3の実施の形態に係るアナログ同期回路で使用される図18とは異なる比較器の詳細な構成を示す回路図。
【図20】上記各実施の形態で使用されるキャパシタをLSI中で実現する際のMOSトランジスタのシンボル図及び素子構造を示す断面図。
【図21】図20に示すMOSトランジスタを用いて構成されるMOS型キャパシタを示す図。
【図22】第4及び第5の各実施の形態を含む各実施の形態で使用されるNチャネルMOSトランジスタにおいてバックゲートに対するゲート電圧V(gate)と容量C(gate)との関係を示す特性図。
【図23】上記第5の実施の形態で使用されるNチャネルMOSトランジスタの素子構造を示す断面図。
【図24】図23に示すMOSトランジスタを用いて構成されるMOS型キャパシタを示す図。
【図25】第8の実施の形態に係るアナログ同期回路で使用される比較器の詳細な構成を示す回路図。
【図26】従来のミラータイプDLLの一例を示すブロック図。
【図27】従来の問題点を説明するための特性図。
【符号の説明】
11…入力バッファ(IB)、
12…ディレイモニタ(DM)、
13…出力バッファ(OB)、
14、15…チャージ・バランス・ディレイ(CBD)、
16…OR回路、
17、18、19、20、21、22…AND回路、
23…比較器(CMP)、
23′…ダミー回路、
24…遅延回路(DL)、
31…差動増幅回路、
35…インバータ、
36…増幅回路、
C1、C2…キャパシタ、
S1、S2…定電流源回路、
N1、N2…NチャネルMOSトランジスタ、
SW1、SW2、SW3、SW3′…スイッチ、
Cc、Cc′…キャパシタ。
Claims (12)
- 第1のキャパシタと、
第1のクロック信号に応じて上記第1のキャパシタを充電開始し、上記第1のクロック信号から遅れた第2のクロック信号に応じて上記充電を停止する第1の電流源回路と、
第2のキャパシタと、
上記第2のクロック信号に応じて上記第2のキャパシタを充電開始する第2の電流源回路と、
上記第1、第2のキャパシタの充電電圧を比較し、これらが一致した際にタイミング信号を発生する比較回路とを具備し、
上記比較回路は、
一端に上記第1のキャパシタの充電電圧が与えられる第1のスイッチと、
一端に上記第2のキャパシタの充電電圧が与えられ、他端が上記第1のスイッチの他端に共通に接続された第2のスイッチと、
一端が上記第1及び第2のスイッチの他端の共通接続ノードに接続された第3のキャパシタと、
上記第3のキャパシタの他端が入力ノードに接続され、出力ノードから上記タイミング信号を出力する第1の増幅回路と、
上記第1の増幅回路の閾値電圧に相当する電圧を上記第3のキャパシタの他端に供給制御する第3のスイッチとを有して構成され、
上記第1及び第3のスイッチが導通するとき上記第2スイッチは非導通状態に制御され、上記第2のスイッチが導通するとき上記第1及び第3のスイッチは非導通状態に制御されることを特徴とするアナログ同期回路。 - 前記第1のキャパシタの容量と前記第1の電流源回路の電流量の比が、前記第2のキャパシタの容量と前記第2の電流源回路の電流量の比と実質的に等しいことを特徴とする請求項1記載のアナログ同期回路。
- 前記第1の増幅回路が一方及び他方の入力ノードを有する差動増幅回路であり、この差動増幅回路の一方の入力ノードに前記第3のキャパシタの他端が接続され、他方の入力ノードに閾値電圧に相当する前記電圧が入力されることを特徴とする請求項1または2記載のアナログ同期回路。
- 前記第1の増幅回路が反転回路であり、この反転回路の入力ノードに前記第3のキャパシタの他端が接続され、前記第3のスイッチがこの反転回路の入力ノードと出力ノードとの間に接続されていることを特徴とする請求項1または2記載のアナログ同期回路。
- 前記第1ないし第4のスイッチのそれぞれがCMOSトランスファゲートで構成されていることを特徴とする請求項1ないし4のいずれか1項記載のアナログ同期回路。
- 前記第1及び第2のキャパシタのそれぞれがインバージョン(inversion)領域で動作するMOS型トランジスタを用いたMOS型キャパシタで構成されていることを特徴とする請求項1ないし5のいずれか1項記載のアナログ同期回路。
- 前記MOS型トランジスタが、バックゲートが接地電圧の供給ノードに接続された低閾値電圧を有するトランジスタである請求項6項記載のアナログ同期回路。
- 前記MOS型トランジスタが、バックゲートが接地電圧の供給ノードに接続されたデプレッション型のトランジスタである請求項6項記載のアナログ同期回路。
- 前記第1及び第2のキャパシタのそれぞれがアキュムレーション(accumulation)領域で動作するMOS型トランジスタを用いたMOS型キャパシタで構成されていることを特徴とする請求項1ないし5のいずれか1項記載のアナログ同期回路。
- 前記MOS型トランジスタは、
p型半導体領域と、
上記p型半導体領域に形成されたn型ウエル領域と、
上記n型ウエル領域に形成されたp型ウエル領域とを有する半導体基板の上記p型ウエル領域内に形成されており、
上記n型ウエル領域及び上記p型ウエル領域に対して電源電圧が供給されることを特徴とする請求項9記載のアナログ同期回路。 - 前記MOS型トランジスタは、
n型半導体領域と、
上記n型半導体領域に形成されたp型ウエル領域とを有する半導体基板の上記p型ウエル領域内に形成されており、
上記p型ウエル領域に対して電源電圧が供給されることを特徴とする請求項9記載のアナログ同期回路。 - 前記MOS型トランジスタは、
p型半導体領域と、
上記p型半導体領域に形成されたn型ウエル領域とを有する半導体基板の上記n型ウエル領域内に形成されており、
上記n型ウエル領域に対して接地電圧が供給されることを特徴とする請求項9記載のアナログ同期回路。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP32420299A JP3790076B2 (ja) | 1999-11-15 | 1999-11-15 | アナログ同期回路 |
TW089123224A TW469701B (en) | 1999-11-15 | 2000-11-03 | Analog synchronization circuit |
US09/707,791 US6333658B1 (en) | 1999-11-15 | 2000-11-08 | Analog synchronization circuit |
KR10-2000-0067356A KR100389997B1 (ko) | 1999-11-15 | 2000-11-14 | 아날로그 동기 회로 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP32420299A JP3790076B2 (ja) | 1999-11-15 | 1999-11-15 | アナログ同期回路 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2001144606A JP2001144606A (ja) | 2001-05-25 |
JP3790076B2 true JP3790076B2 (ja) | 2006-06-28 |
Family
ID=18163209
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP32420299A Expired - Fee Related JP3790076B2 (ja) | 1999-11-15 | 1999-11-15 | アナログ同期回路 |
Country Status (4)
Country | Link |
---|---|
US (1) | US6333658B1 (ja) |
JP (1) | JP3790076B2 (ja) |
KR (1) | KR100389997B1 (ja) |
TW (1) | TW469701B (ja) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6975156B2 (en) * | 2003-09-30 | 2005-12-13 | Mediatek Inc. | Switched capacitor circuit capable of minimizing clock feedthrough effect in a voltage controlled oscillator circuit and method thereof |
KR100632368B1 (ko) * | 2004-11-23 | 2006-10-09 | 삼성전자주식회사 | 락킹속도가 향상되는 내부클락발생회로와 이에 포함되는아날로그 싱크로너스 미러 딜레이 |
JP2007121114A (ja) * | 2005-10-28 | 2007-05-17 | Elpida Memory Inc | デューティ検知回路、これらを備えたdll回路及び半導体装置 |
TWI669964B (zh) * | 2015-04-06 | 2019-08-21 | 日商新力股份有限公司 | Solid-state imaging device, electronic device, and AD conversion device |
JP2018093483A (ja) | 2016-11-29 | 2018-06-14 | 株式会社半導体エネルギー研究所 | 半導体装置、表示装置及び電子機器 |
US12040795B2 (en) | 2018-12-20 | 2024-07-16 | Semiconductor Energy Laboratory Co., Ltd. | Logic circuit formed using unipolar transistor, and semiconductor device |
CN118041349B (zh) * | 2024-02-06 | 2024-08-23 | 上海帝迪集成电路设计有限公司 | 一种外部时钟同步和内部时钟双向软切换电路及方法 |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3906247A (en) * | 1974-01-16 | 1975-09-16 | Gte Automatic Electric Lab Inc | Programmable proportional clock edge delay circuit |
DE3329269A1 (de) * | 1983-08-12 | 1985-02-28 | Siemens AG, 1000 Berlin und 8000 München | Schaltungsanordnung zum erzeugen von rechtecksignalen |
US5015892A (en) * | 1990-03-16 | 1991-05-14 | Motorola, Inc. | Asynchronous delay circuit |
JP3460913B2 (ja) * | 1995-09-29 | 2003-10-27 | 旭化成マイクロシステム株式会社 | 可変遅延時間発生回路とその方法 |
JPH09275569A (ja) * | 1996-04-05 | 1997-10-21 | Sony Corp | アナログ遅延回路 |
JP3410922B2 (ja) | 1996-04-23 | 2003-05-26 | 株式会社東芝 | クロック制御回路 |
JP3607439B2 (ja) * | 1996-11-11 | 2005-01-05 | 株式会社日立製作所 | 半導体集積回路装置 |
JP3309782B2 (ja) * | 1997-06-10 | 2002-07-29 | 日本電気株式会社 | 半導体集積回路 |
JPH11112308A (ja) * | 1997-10-06 | 1999-04-23 | Nec Corp | 同期遅延回路装置 |
JP3152191B2 (ja) * | 1997-12-16 | 2001-04-03 | 日本電気株式会社 | アナログ形位相同期回路 |
KR100319890B1 (ko) * | 1999-01-26 | 2002-01-10 | 윤종용 | 지연동기루프 및 이에 대한 제어방법 |
JP3590304B2 (ja) * | 1999-08-12 | 2004-11-17 | 株式会社東芝 | アナログ同期回路 |
-
1999
- 1999-11-15 JP JP32420299A patent/JP3790076B2/ja not_active Expired - Fee Related
-
2000
- 2000-11-03 TW TW089123224A patent/TW469701B/zh not_active IP Right Cessation
- 2000-11-08 US US09/707,791 patent/US6333658B1/en not_active Expired - Lifetime
- 2000-11-14 KR KR10-2000-0067356A patent/KR100389997B1/ko active IP Right Grant
Also Published As
Publication number | Publication date |
---|---|
JP2001144606A (ja) | 2001-05-25 |
TW469701B (en) | 2001-12-21 |
KR20010051665A (ko) | 2001-06-25 |
US6333658B1 (en) | 2001-12-25 |
KR100389997B1 (ko) | 2003-07-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5936443A (en) | Power-on reset signal generator for semiconductor device | |
US4943745A (en) | Delay circuit for semiconductor integrated circuit devices | |
US5696722A (en) | Level-shifter, semiconductor integrated circuit, and control methods thereof | |
US7576664B2 (en) | Apparatus and method of generating DBI signal in semiconductor memory apparatus | |
JPS61280097A (ja) | 差動電圧信号の増幅速度を制御するためのシステム | |
KR930010937B1 (ko) | 셀플레이트 전압발생수단을 갖춘 반도체 기억장치 | |
GB2249412A (en) | Substrate voltage generator for a semiconductor device | |
JP4211922B2 (ja) | 半導体装置 | |
US20050212575A1 (en) | Duty cycle correction circuit of delay locked loop and the delay locked loop having the duty cycle correction circuit | |
US5258669A (en) | Current sense amplifier circuit | |
KR100440448B1 (ko) | 온도 변화에 무관한 지연 시간을 확보할 수 있는 반도체집적 회로장치 | |
US5313435A (en) | Semiconductor memory device having address transition detector | |
JP3790076B2 (ja) | アナログ同期回路 | |
US6721232B2 (en) | Semiconductor device having phase error improved DLL circuit mounted thereon | |
JPS6137709B2 (ja) | ||
JP3102428B2 (ja) | 半導体装置 | |
US5652727A (en) | Semiconductor memory device | |
US7612605B2 (en) | Bootstrap voltage generating circuits | |
US6226206B1 (en) | Semiconductor memory device including boost circuit | |
JP3590304B2 (ja) | アナログ同期回路 | |
JPH07262781A (ja) | 半導体集積回路 | |
US5670909A (en) | Semiconductor device having a boosting circuit | |
JP2874613B2 (ja) | アナログ遅延回路 | |
JPH0549238A (ja) | 半導体装置 | |
JP2557871B2 (ja) | 半導体装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20050617 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20050920 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20051121 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20060328 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20060330 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 3790076 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090407 Year of fee payment: 3 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313115 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090407 Year of fee payment: 3 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100407 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100407 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110407 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110407 Year of fee payment: 5 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110407 Year of fee payment: 5 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130407 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140407 Year of fee payment: 8 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313115 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |