[go: up one dir, main page]

JP3789750B2 - Active vibration isolator - Google Patents

Active vibration isolator Download PDF

Info

Publication number
JP3789750B2
JP3789750B2 JP2000387121A JP2000387121A JP3789750B2 JP 3789750 B2 JP3789750 B2 JP 3789750B2 JP 2000387121 A JP2000387121 A JP 2000387121A JP 2000387121 A JP2000387121 A JP 2000387121A JP 3789750 B2 JP3789750 B2 JP 3789750B2
Authority
JP
Japan
Prior art keywords
vibration
rotating body
vibration isolation
magnetic bearing
detection output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000387121A
Other languages
Japanese (ja)
Other versions
JP2002188679A (en
Inventor
昌典 斎藤
一樹 佐藤
設治 篠田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP2000387121A priority Critical patent/JP3789750B2/en
Publication of JP2002188679A publication Critical patent/JP2002188679A/en
Application granted granted Critical
Publication of JP3789750B2 publication Critical patent/JP3789750B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2360/00Engines or pumps
    • F16C2360/44Centrifugal pumps
    • F16C2360/45Turbo-molecular pumps

Landscapes

  • Vibration Prevention Devices (AREA)
  • Magnetic Bearings And Hydrostatic Bearings (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は除振台テーブルに軸受に回転体磁気軸受装置を用いて機械装置を搭載したアクティブ除振装置に関するものである。
【0002】
【従来の技術】
振動を極度に嫌う電子顕微鏡、半導体製造装置等の機械装置は、空気ばね、又はゴムを用いた受動制御型の除振装置に代わり、除振台テーブルの重量の大部分を弾性バネで支持すると共に、電磁アクチュエータの制御で振動を除去するように構成されたアクティブ除振装置がある。図1はこの種のアクティブ除振装置の概略構成を示す図である。アクティブ除振装置10は、除振台ベース11と除振台テーブル12を具備し、除振台テーブル12は除振台ベース11上に設置された空気バネ等の弾性バネ13で支持されている。除振台ベース11と除振台テーブル12の間には電磁アクチュエータ14が配置され、該電磁アクチュエータ14をアクティブ除振制御装置15で制御して振動を除去するようになっている。なお、16は除振台テーブル12の振動を検出する振動センサである。
【0003】
図2はアクティブ除振制御装置15の構成例を示す図である。アクティブ除振制御装置15は振動検出手段15−1、位置検出手段15−2、除振制御演算手段15−3及び駆動制御部15−4を具備する。振動検出手段15−1は振動センサ16の水平方向の振動を検出する水平方向振動センサ16a及び鉛直方向の振動を検出する鉛直方向振動センサ16bの出力信号から除振台テーブル12の振動を検出し、その検出信号を除振制御演算手段15−3に出力する。位置検出手段15−2は除振台テーブルの変位を検出する変位センサ17(電磁アクチュエータ14内に内蔵)の出力信号から除振台テーブル12の位置を検出しその検出信号を除振制御演算手段15−3に出力する。
【0004】
除振制御演算手段15−3は振動検出手段15−1及び位置検出手段15−2の検出信号から除振台テーブル12の振動を除去するための位置制御信号を得るための除振制御演算を行い、除振制御信号を駆動制御部15−4を介して電磁アクチュエータ14に出力する。ここで水平方向振動センサ16a、鉛直方向振動センサ16b及び振動検出手段15−1を通るループL1を絶対系フィードバックループといい、変位センサ17及び位置検出手段15−2を通るループL2を相対系フィードバックループという。
【0005】
また、このようなアクティブ除振装置10の除振台テーブル12に搭載される機械装置は、高真空を必要とする電子顕微鏡等の半導体検査装置や半導体製造装置であり、半導体ウエハの加工処理や製造過程において真空ポンプで真空にし、且つ振動の除去を必要とする。高真空を発生するための手段として、例えば回転体の軸受に磁気軸受装置を用いたターボ分子ポンプがある。
【0006】
図3は従来の回転体磁気軸受制御装置の構成例を示す図である。回転体磁気軸受制御装置20は回転体変位検出手段21、回転体位相補償回路22及び回転体磁気軸受制御出力手段23を具備する。回転体変位検出手段21は回転体磁気軸受30の回転体31の変位を検出する回転体変位センサ32の変位検出出力から回転体31の変位を検出する。該変位検出信号は回転体位相補償回路22で位相補償及び増幅され、回転体磁気軸受制御出力手段23に出力され、該回転体磁気軸受制御出力手段23から回転体磁気軸受30を構成する鉛直方向磁気コイル33及び水平方向磁気コイル34に駆動電流を通電する。これを相対系フィードバックループLと言う。
【0007】
上記アクティブ除振装置の除振台テーブル上に回転体の軸受に磁気軸受装置を用いた機械装置を搭載する場合は、除振台テーブルの振動を除去する為に必要な各所に高性能の加速度センサを設置する必要があり、価格が高価となり、取り扱い上に問題があった。
【0008】
【発明が解決しようとする課題】
本発明は上述の点に鑑みてなされたもので、簡単な構成で且つ除振台テーブルに取り付ける高性能の振動センサの少なくとも一部を削除できる安価なアクティブ除振装置を提供することを目的とする。
【0009】
【課題を解決するための手段】
上記問題点を解決するため請求項1に記載の発明は、軸受に回転体磁気軸受装置を用いる機械装置と、該機械装置の回転体磁気軸受装置を搭載する除振台テーブルと、該除振台テーブルを支持する弾性バネと、該除振台テーブルを電磁石によって振動制御する電磁アクチュエータと、該除振台テーブル上の振動を検出する第1振動検出手段と、該除振台テーブルの変位を検出する変位センサと、該第1振動検出手段の第1振動検出出力と該変位センサの変位検出出力により除振台テーブルの振動を除去する制御信号を得るための除振制御演算を行う除振制御手段を具備し、該除振制御手段で電磁アクチュエータを制御して振動を除去するように構成したアクティブ除振装置において、回転体磁気軸受装置の変位検出出力又は回転体磁気軸受駆動電流のフィードバックループ信号を除振制御手段に第2振動検出出力として入力し、該除振制御手段は該第2振動検出出力と第1振動検出出力とを振動検出出力として除振制御演算を行うことを特徴とする。
【0010】
上記のように回転体磁気軸受装置の変位検出出力又は回転体磁気軸受駆動電流のフィードバックループ信号を除振制御手段に第2振動検出出力として入力し、該除振制御手段は該第2振動検出出力と第1振動検出出力とを振動検出出力として除振制御演算を行なうので、少なくとも除振台テーブルの例えば水平方向の振動を検出する振動センサを削除することができる。
【0011】
請求項2に記載の発明は、請求項1に記載のアクティブ除振装置において、回転体磁気軸受装置の変位検出出力又は該回転体磁気軸受駆動電流のフィードバックループ信号をローパスフィルタとハイパスフィルタを介して前記第2振動検出出力とすることを特徴とする。
【0012】
上記のように回転体磁気軸受装置の変位検出出力又は該回転体磁気軸受駆動電流のフィードバックループ信号をローパスフィルタを通すことにより積分し回転体磁気軸受の特有の成分を除去し、ハイパスフィルタを通すことにより微分し直流成分を除去し加速度センサに類似した第2振動検出手段で水平方向の振動を検出する。
【0013】
【発明の実施の形態】
以下、本発明の実施の形態例を図面に基づいて説明する。図4及び図5は本発明に係るアクティブ除振装置を用いる装置の構成例を示す図で、図4は全体構成を、図5は一部構成をそれぞれ示す。10はアクティブ除振装置であり、該アクティブ除振装置10は除振台設置床41面上に設けられた機械装置架台42上に設置されている。アクティブ除振装置10上には機械装置43が搭載されている。該機械装置43は図5に示すように、例えばターボ分子ポンプ等の回転機械装置44を具備し、該回転機械装置44は後に詳述するような回転体主軸が磁気軸受で浮上支持されるようになっている。
【0014】
図6はアクティブ除振装置10の電磁アクチュエータ14の構成例を示す図で、電磁アクチュエータ14は可動部14−1と固定部14−2を具備し、固定部14−2には水平方向磁気コイル(ラジアル磁気コイル)14−3及び鉛直方向磁気コイル(アキシャル磁気コイル)14−4が設けられ、更に水平方向変位センサ17a及び鉛直方向変位センサ17bからなる変位センサ17が設けられている。可動部14−1は除振台テーブル12に固定され、固定部14−2は除振台ベース11に固定される。電磁アクチュエータ14の水平方向磁気コイル14−3及び鉛直方向磁気コイル14−4は後に詳述するアクティブ除振制御装置15’により制御され、除振台テーブル12の振動を除去するようになっている。
【0015】
図7は回転機械装置(ここではターボ分子ポンプを示す)44の断面構成を示す図である。回転機械装置は回転体(回転翼)31を具備し、該回転体31の主軸31aは鉛直方向磁気コイル(アキシャル磁気コイル)33及び水平方向磁気コイル(ラジアル磁気コイル)34を具備する回転体磁気軸受30により浮上支持されている。鉛直方向磁気コイル33及び水平方向磁気コイル34が設けられた静止体35は図5に示すように除振台テーブル12に搭載された機械装置43のケーシング43aに固定されている。また、静止体35には回転体31の変位を検出する水平方向変位センサ(ラジアル変位センサ)32a及び鉛直方向変位センサ(アキシャル変位センサ)32bを具備する回転体変位センサ32(図8参照)が設けられている。回転体磁気軸受30の鉛直方向磁気コイル33及び水平方向磁気コイル34は後に詳述するように回転体磁気軸受制御装置20により駆動制御され、回転体31を所定位置に浮上支持するようになっている。なお図7において、36は回転駆動用モータコイルである。
【0016】
図8は回転体磁気軸受制御装置20及びアクティブ除振制御装置15’の構成例を示す図である。回転体磁気軸受制御装置20は図3と同様、回転体変位検出手段21、回転体位相補償回路22及び回転体磁気軸受制御出力手段23を具備する。回転体変位検出手段21は回転体磁気軸受30の回転体31の変位を検出する回転体変位センサ32(図7の水平方向変位センサ32a、鉛直方向変位センサ32b)の変位検出出力から回転体31の変位(水位方向変位、鉛直方向変位)を検出する。該変位検出信号は回転体位相補償回路22で位相補償及び増幅され、回転体磁気軸受制御出力手段23に出力され、該回転体磁気軸受制御出力手段23から回転体磁気軸受30を構成する鉛直方向磁気コイル33及び水平方向磁気コイル34に駆動電流を通電する。
【0017】
アクティブ除振制御装置15’は第1の振動検出手段15’−1、第2の振動検出手段15’−2、位置検出手段15’−3、除振制御演算手段15’−4及び駆動制御部15’−5を具備する。回転体磁気軸受制御装置20の水平方向磁気コイル34に通電される電流は、水平方向電流検出器18で検出され、ローパスフィルタ・ハイパスフィルタ19を通して積分・微分され、アクティブ除振制御装置15’の第2の振動検出手段15’−2に出力される。該第2の振動検出手段15’−2はこの検出電流より、水平方向の振動を検出しその検出出力を除振制御演算手段15’−4に出力する。
【0018】
第1の振動検出手段15’−1は鉛直方向振動センサ16bの出力から鉛直方向の振動を検出しその検出出力を除振制御演算手段15’−4に出力する。また、位置検出手段15’−3は変位センサ17から除振台テーブル12の位置を検出し、その検出出力を除振制御演算手段15’−4に出力する。
【0019】
除振制御演算手段15’−4は第1の振動検出手段15’−1、第2の振動検出手段15’−2及び位置検出手段15’−3の検出信号から除振台テーブル12の振動を除去するための除振制御信号を得るための除振制御演算を行い、除振制御信号を駆動制御部15’−5を介して電磁アクチュエータ14の水平方向磁気コイル14−3及び鉛直方向磁気コイル14−4(図6参照)に駆動制御電流を通電し除振台テーブルの振動を除去する。
【0020】
図9は回転体磁気軸受制御装置20の回転体の変位検出例を示す図である。回転体31が機械的中心に位置している場合は、X軸方向における回転体31と変位センサ32a(+X)との間隔Gap(+)及び回転体31と変位センサ32a(−X)との間隔Gap(−)が等しくなる。この時、回転体変位検出手段21のX軸方向検出出力は0電位となり、回転体31が変位センサ32a(+X)側に寄れば間隔Gap(+)と間隔Gap(−)の差に比例した変位検出信号が得られる。変位センサ32a(+Y)と変位センサ32a(−Y)を有するY軸方向も同様である。また、図示は省略するが鉛直方向の変位を検出する場合も同様である。
【0021】
回転体変位検出手段21から回転体位相補償回路22で増幅された駆動電流指令値は、回転体31のアンバランスも含まれるが、一般に磁気軸受で支持されている回転体の回転速度は400Hz以上であり、上記アンバランスの周波数成分も同等値となる。また、回転体の固有振動数も回転速度以上に設定されているので、アクティブ除振装置10を制御する周波数帯域100Hz以下とは干渉しない。
【0022】
水平方向磁気コイルに流れる電流は駆動電流指令値と回転体を磁気軸受支持する為のバイアス電流が加算された総合的制御電流であるので、その電流値を水平方向電流検出器18で検出し、ローパスフィルタ・ハイパスフィルタ19の100Hz(回転体の場合は40Hz)のローパスフィルタ部で積分することで、回転体磁気軸受30の特有の成分を除去する。そして直流成分を除去するためにハイパスフィルタ部で微分し、加速度センサに類似した第2の振動検出手段で水平方向の振動を検出することができる。
【0023】
第2の振動検出手段15’−2は、第1の振動検出手段より周波数特性が狭いが、過大振動の有無の補助手段としても使用することができる。微振動の場合は第1の振動検出手段15’−1で制御し、且つ制御範囲を逸脱した過大振動の場合は第2の振動検出手段15’−2で振動抑制或いは制御する。
【0024】
なお、上記例では回転体磁気軸受30の水平方向磁気コイル34に流れる電流を水平方向電流検出器18で検出して水平方向の振動を検出する場合を示しているが、これに限定されるものではなく、例えば鉛直方向磁気コイル33に流れる電流を検出し、鉛直方向の振動を検出するように構成し、除振台テーブル12に設けられる振動センサ16の鉛直方向振動センサ16bを省略するようにしてもよい。また、鉛直方向磁気コイル33と水平方向磁気コイル34に流れる電流を検出し、水平方向振動センサ16a及び鉛直方向振動センサ16bを具備する振動センサ16を省略してもよい。
【0025】
また、回転体磁気軸受30の回転体変位センサ32の水平方向変位センサ32a及び鉛直方向変位センサ32bの検出出力のいずれか一方又は双方を図示しない振動検出手段に導き、その振動検出出力を除振制御演算手段15’−4に出力し、除振台テーブル12に設けた水平方向振動センサ16a及び鉛直方向振動センサ16bのいずれか一方又は双方を省略してもよい。
【0026】
【発明の効果】
以上説明したように各請求項に記載の発明によれば下記のような優れた効果が得られる。
【0027】
請求項1に記載の発明によれば、回転体磁気軸受装置の変位検出出力又は回転体磁気軸受駆動電流のフィードバックループ信号を除振制御手段に第2振動検出出力として入力し、該除振制御手段は該第2振動検出出力と第1振動検出出力とを振動検出出力として除振制御演算を行なうので、簡単な構成で除振台テーブルに取り付ける高性能の除振センサの少なくとも一部を削除することができる。
【0028】
請求項2に記載の発明によれば、回転体磁気軸受装置の変位検出出力又は該回転体磁気軸受駆動電流のフィードバックループ信号をローパスフィルタを通すことにより積分し回転体磁気軸受の特有の成分を除去し、ハイパスフィルタを通すことにより微分し直流成分を除去し加速度センサに類似した第2振動検出手段で水平方向の振動を検出することができる。
【図面の簡単な説明】
【図1】アクティブ除振装置の概略構成例を示す図である。
【図2】アクティブ除振制御装置の構成を示す図である。
【図3】従来の回転体磁気軸受制御装置の構成例を示す図である。
【図4】本発明に係るアクティブ除振装置を用いる装置構成例を示す図である。
【図5】図4に示す装置の一部構成を示す図である。
【図6】本発明に係るアクティブ除振装置の電磁アクチュエータの構成例を示す図である。
【図7】本発明に係るアクティブ除振装置に搭載する回転機械装置の構成例を示す図である。
【図8】本発明に係るアクティブ除振装置の制御装置の構成例を示す図である。
【図9】回転体磁気軸受制御装置の回転体の変位検出例を示す図である。
【符号の説明】
10 アクティブ除振装置
11 除振台ベース
12 除振台テーブル
13 弾性バネ
14 電磁アクチュエータ
14−1 可動部
14−2 固定部
14−3 水平方向磁気コイル
14−4 鉛直方向磁気コイル
15’ アクティブ除振制御装置
15’−1 第1の振動検出手段
15’−2 第2の振動検出手段
15’−3 位置検出手段
15’−4 除振制御演算手段
15’−5 駆動制御部
16 振動センサ
17 変位センサ
18 水平方向電流検出器
19 ローパスフィルタ・ハイパスフィルタ
20 回転体磁気軸受制御装置
21 回転体変位検出手段
22 回転体位相補償回路
23 回転体磁気軸受制御出力手段
30 回転体磁気軸受
31 回転体
32 回転体変位センサ
33 鉛直方向磁気コイル
34 水平方向磁気コイル
35 静止体
36 回転駆動用モータコイル
41 除振台設置床
42 機械装置架台
43 機械装置
44 回転機械装置
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an active vibration isolation device in which a mechanical device is mounted on a vibration isolation table using a rotating magnetic bearing device as a bearing.
[0002]
[Prior art]
Mechanical devices such as electron microscopes and semiconductor manufacturing devices that are extremely hated of vibration support most of the weight of the vibration isolation table with elastic springs instead of passive control vibration isolation devices using air springs or rubber. In addition, there is an active vibration isolator configured to remove vibration by controlling an electromagnetic actuator. FIG. 1 is a diagram showing a schematic configuration of this type of active vibration isolator. The active vibration isolation device 10 includes a vibration isolation table base 11 and a vibration isolation table 12, and the vibration isolation table 12 is supported by an elastic spring 13 such as an air spring installed on the vibration isolation table base 11. . An electromagnetic actuator 14 is disposed between the vibration isolation table base 11 and the vibration isolation table 12. The electromagnetic actuator 14 is controlled by an active vibration isolation control device 15 so as to remove vibration. Reference numeral 16 denotes a vibration sensor that detects vibration of the vibration isolation table 12.
[0003]
FIG. 2 is a diagram illustrating a configuration example of the active vibration isolation control device 15. The active vibration isolation control device 15 includes a vibration detection unit 15-1, a position detection unit 15-2, a vibration isolation control calculation unit 15-3, and a drive control unit 15-4. The vibration detecting means 15-1 detects the vibration of the vibration isolation table 12 from the output signals of the horizontal vibration sensor 16a for detecting the horizontal vibration of the vibration sensor 16 and the vertical vibration sensor 16b for detecting the vertical vibration. The detection signal is output to the vibration isolation control calculation means 15-3. The position detection means 15-2 detects the position of the vibration isolation table 12 from the output signal of the displacement sensor 17 (built in the electromagnetic actuator 14) that detects the displacement of the vibration isolation table, and uses the detected signal as the vibration isolation control calculation means. Output to 15-3.
[0004]
The vibration isolation control calculation means 15-3 performs vibration isolation control calculation for obtaining a position control signal for removing vibration of the vibration isolation table 12 from the detection signals of the vibration detection means 15-1 and the position detection means 15-2. The vibration isolation control signal is output to the electromagnetic actuator 14 via the drive control unit 15-4. Here, the loop L1 passing through the horizontal direction vibration sensor 16a, the vertical direction vibration sensor 16b, and the vibration detection means 15-1 is called an absolute system feedback loop, and the loop L2 passing through the displacement sensor 17 and the position detection means 15-2 is a relative system feedback. This is called a loop.
[0005]
In addition, the mechanical device mounted on the vibration isolation table 12 of the active vibration isolation device 10 is a semiconductor inspection device such as an electron microscope or a semiconductor manufacturing device that requires high vacuum. In the manufacturing process, it is necessary to make a vacuum with a vacuum pump and to remove vibration. As a means for generating a high vacuum, for example, there is a turbo molecular pump using a magnetic bearing device for a bearing of a rotating body.
[0006]
FIG. 3 is a diagram showing a configuration example of a conventional rotating body magnetic bearing control device. The rotating body magnetic bearing control device 20 includes a rotating body displacement detecting means 21, a rotating body phase compensation circuit 22, and a rotating body magnetic bearing control output means 23. The rotating body displacement detecting means 21 detects the displacement of the rotating body 31 from the displacement detection output of the rotating body displacement sensor 32 that detects the displacement of the rotating body 31 of the rotating body magnetic bearing 30. The displacement detection signal is phase-compensated and amplified by the rotating body phase compensation circuit 22 and is output to the rotating body magnetic bearing control output means 23, and the rotating body magnetic bearing control output means 23 forms the rotating body magnetic bearing 30 in the vertical direction. A drive current is applied to the magnetic coil 33 and the horizontal magnetic coil 34. This is called a relative feedback loop L.
[0007]
When mounting a mechanical device using a magnetic bearing device as a bearing of a rotating body on the vibration isolation table of the above active vibration isolation device, high-performance acceleration is required at various locations necessary to eliminate vibration of the vibration isolation table. It was necessary to install a sensor, the price was expensive, and there was a problem in handling.
[0008]
[Problems to be solved by the invention]
The present invention has been made in view of the above-described points, and an object thereof is to provide an inexpensive active vibration isolation device that can delete at least a part of a high-performance vibration sensor that has a simple configuration and is attached to a vibration isolation table. To do.
[0009]
[Means for Solving the Problems]
The invention according to claim 1 for solving the above problems, and mechanical devices using a rotating body magnetic bearing device on the bearing, the anti-vibration table table for mounting the rotator magnetic bearing device of the machine,該除vibration An elastic spring for supporting the table, an electromagnetic actuator for controlling the vibration of the vibration isolation table with an electromagnet, a first vibration detecting means for detecting vibration on the vibration isolation table, and a displacement of the vibration isolation table. A vibration sensor for performing vibration isolation control to obtain a control signal for removing vibrations of the vibration isolation table from the displacement sensor to be detected, the first vibration detection output of the first vibration detection means, and the displacement detection output of the displacement sensor. comprising a control unit, in an active anti-vibration apparatus that is configured to remove the vibrations by controlling the electromagnetic actuator in該除vibration control means, driving displacement detection output or rotator magnetic bearing of the rotary body magnetic bearing device The feedback loop signal of the current is input to the vibration isolation control means as the second vibration detection output, and the vibration isolation control means performs vibration isolation control calculation using the second vibration detection output and the first vibration detection output as the vibration detection output. It is characterized by that.
[0010]
As described above, the displacement detection output of the rotating body magnetic bearing device or the feedback loop signal of the rotating body magnetic bearing drive current is input to the vibration isolation control means as the second vibration detection output, and the vibration isolation control means detects the second vibration detection output. Since the vibration isolation control calculation is performed using the output and the first vibration detection output as the vibration detection output, at least a vibration sensor that detects, for example, horizontal vibrations in the vibration isolation table can be deleted.
[0011]
According to a second aspect of the present invention, in the active vibration isolation device of the first aspect, the displacement detection output of the rotating body magnetic bearing device or the feedback loop signal of the rotating body magnetic bearing drive current is passed through a low-pass filter and a high-pass filter. The second vibration detection output.
[0012]
As described above, the displacement detection output of the rotating body magnetic bearing device or the feedback loop signal of the rotating body magnetic bearing drive current is integrated by passing through the low pass filter to remove the specific component of the rotating body magnetic bearing and pass through the high pass filter. Thus, the DC component is differentiated and the horizontal vibration is detected by the second vibration detecting means similar to the acceleration sensor.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings. 4 and 5 are diagrams showing a configuration example of an apparatus using the active vibration isolator according to the present invention. FIG. 4 shows an overall configuration, and FIG. 5 shows a partial configuration. Reference numeral 10 denotes an active vibration isolator, and the active vibration isolator 10 is installed on a mechanical device stand 42 provided on the surface of a vibration isolator mounting floor 41. A mechanical device 43 is mounted on the active vibration isolator 10. As shown in FIG. 5, the mechanical device 43 includes a rotating mechanical device 44 such as a turbo-molecular pump, and the rotating mechanical device 44 has a rotating body main shaft, which will be described in detail later, supported by a magnetic bearing. It has become.
[0014]
FIG. 6 is a diagram illustrating a configuration example of the electromagnetic actuator 14 of the active vibration isolation device 10. The electromagnetic actuator 14 includes a movable portion 14-1 and a fixed portion 14-2, and the fixed portion 14-2 includes a horizontal magnetic coil. A (radial magnetic coil) 14-3 and a vertical magnetic coil (axial magnetic coil) 14-4 are provided, and a displacement sensor 17 including a horizontal displacement sensor 17a and a vertical displacement sensor 17b is further provided. The movable part 14-1 is fixed to the vibration isolation table 12 and the fixed part 14-2 is fixed to the vibration isolation base 11. The horizontal direction magnetic coil 14-3 and the vertical direction magnetic coil 14-4 of the electromagnetic actuator 14 are controlled by an active vibration isolation control device 15 ', which will be described in detail later, so as to remove vibrations of the vibration isolation table 12. .
[0015]
FIG. 7 is a diagram showing a cross-sectional configuration of a rotating machine device (here, a turbo molecular pump is shown) 44. The rotating machine device includes a rotating body (rotating blade) 31, and the main shaft 31 a of the rotating body 31 includes a rotating body magnet including a vertical magnetic coil (axial magnetic coil) 33 and a horizontal magnetic coil (radial magnetic coil) 34. The bearing 30 is supported by levitation. The stationary body 35 provided with the vertical magnetic coil 33 and the horizontal magnetic coil 34 is fixed to the casing 43a of the mechanical device 43 mounted on the vibration isolation table 12 as shown in FIG. Further, the stationary body 35 includes a rotating body displacement sensor 32 (see FIG. 8) having a horizontal direction displacement sensor (radial displacement sensor) 32a for detecting the displacement of the rotating body 31 and a vertical direction displacement sensor (axial displacement sensor) 32b. Is provided. The vertical magnetic coil 33 and the horizontal magnetic coil 34 of the rotary magnetic bearing 30 are driven and controlled by the rotary magnetic bearing control device 20, as will be described in detail later, so that the rotary body 31 is levitated and supported at a predetermined position. Yes. In FIG. 7, reference numeral 36 denotes a rotational drive motor coil.
[0016]
FIG. 8 is a diagram illustrating a configuration example of the rotating body magnetic bearing control device 20 and the active vibration isolation control device 15 ′. The rotating body magnetic bearing control device 20 includes a rotating body displacement detecting means 21, a rotating body phase compensation circuit 22, and a rotating body magnetic bearing control output means 23, as in FIG. The rotator displacement detecting means 21 detects the rotator 31 from the displacement detection output of the rotator displacement sensor 32 (horizontal displacement sensor 32a, vertical displacement sensor 32b in FIG. 7) that detects the displacement of the rotator 31 of the rotator magnetic bearing 30. Displacement (water level direction displacement, vertical direction displacement) is detected. The displacement detection signal is phase-compensated and amplified by the rotating body phase compensation circuit 22 and is output to the rotating body magnetic bearing control output means 23, and the rotating body magnetic bearing control output means 23 forms the rotating body magnetic bearing 30 in the vertical direction. A drive current is applied to the magnetic coil 33 and the horizontal magnetic coil 34.
[0017]
The active vibration isolation control device 15 ′ includes first vibration detection means 15′-1, second vibration detection means 15′-2, position detection means 15′-3, vibration isolation control calculation means 15′-4, and drive control. Part 15'-5. The current supplied to the horizontal magnetic coil 34 of the rotating body magnetic bearing control device 20 is detected by the horizontal current detector 18 and integrated / differentiated through the low-pass filter / high-pass filter 19 to be detected by the active vibration isolation control device 15 ′. It is output to the second vibration detection means 15′-2. The second vibration detecting means 15′-2 detects horizontal vibration from the detected current and outputs the detected output to the vibration isolation control calculating means 15′-4.
[0018]
The first vibration detection means 15′-1 detects vertical vibration from the output of the vertical vibration sensor 16b and outputs the detection output to the vibration isolation control calculation means 15′-4. Further, the position detection means 15′-3 detects the position of the vibration isolation table 12 from the displacement sensor 17, and outputs the detection output to the vibration isolation control calculation means 15′-4.
[0019]
The anti-vibration control calculating means 15'-4 detects the vibration of the anti-vibration table 12 from the detection signals of the first vibration detecting means 15'-1, the second vibration detecting means 15'-2 and the position detecting means 15'-3. The vibration isolation control calculation for obtaining the vibration isolation control signal for removing the vibration is performed, and the vibration isolation control signal is transmitted to the horizontal magnetic coil 14-3 and the vertical magnetic field of the electromagnetic actuator 14 via the drive control unit 15'-5. A drive control current is applied to the coil 14-4 (see FIG. 6) to remove the vibration of the vibration isolation table.
[0020]
FIG. 9 is a diagram illustrating a displacement detection example of the rotating body of the rotating body magnetic bearing control device 20. When the rotator 31 is located at the mechanical center, the gap Gap (+) between the rotator 31 and the displacement sensor 32a (+ X) in the X-axis direction and between the rotator 31 and the displacement sensor 32a (−X). The gap Gap (−) becomes equal. At this time, the X-axis direction detection output of the rotating body displacement detecting means 21 becomes 0 potential, and is proportional to the difference between the gap Gap (+) and the gap Gap (−) when the rotating body 31 is moved to the displacement sensor 32a (+ X) side. A displacement detection signal is obtained. The same applies to the Y-axis direction having the displacement sensor 32a (+ Y) and the displacement sensor 32a (-Y). Although not shown, the same applies to the case of detecting the displacement in the vertical direction.
[0021]
The drive current command value amplified by the rotating body phase compensation circuit 22 from the rotating body displacement detecting means 21 includes an imbalance of the rotating body 31, but the rotational speed of the rotating body generally supported by a magnetic bearing is 400 Hz or more. The unbalanced frequency components are also equivalent. Further, since the natural frequency of the rotating body is also set to be equal to or higher than the rotational speed, it does not interfere with the frequency band of 100 Hz or less for controlling the active vibration isolator 10.
[0022]
Since the current flowing in the horizontal magnetic coil is a total control current obtained by adding the drive current command value and the bias current for supporting the rotating body to the magnetic bearing, the current value is detected by the horizontal current detector 18, By integrating with a low-pass filter unit of 100 Hz (40 Hz in the case of a rotating body) of the low-pass filter / high-pass filter 19, a specific component of the rotating body magnetic bearing 30 is removed. In order to remove the direct current component, it is differentiated by the high-pass filter section, and the horizontal vibration can be detected by the second vibration detecting means similar to the acceleration sensor.
[0023]
The second vibration detection means 15'-2 has narrower frequency characteristics than the first vibration detection means, but can also be used as an auxiliary means for the presence or absence of excessive vibration. In the case of slight vibration, control is performed by the first vibration detection means 15′-1, and in the case of excessive vibration that deviates from the control range, vibration suppression or control is performed by the second vibration detection means 15′-2.
[0024]
In the above example, the current flowing in the horizontal magnetic coil 34 of the rotating magnetic bearing 30 is detected by the horizontal current detector 18 to detect the horizontal vibration, but the present invention is not limited to this. Instead, for example, the current flowing in the vertical magnetic coil 33 is detected to detect the vibration in the vertical direction, and the vertical vibration sensor 16b of the vibration sensor 16 provided in the vibration isolation table 12 is omitted. May be. Further, the current flowing in the vertical magnetic coil 33 and the horizontal magnetic coil 34 may be detected, and the vibration sensor 16 including the horizontal vibration sensor 16a and the vertical vibration sensor 16b may be omitted.
[0025]
Further, one or both of the detection outputs of the horizontal direction displacement sensor 32a and the vertical direction displacement sensor 32b of the rotating body displacement sensor 32 of the rotating body magnetic bearing 30 are guided to a vibration detecting means (not shown), and the vibration detection output is vibration-isolated. Either or both of the horizontal direction vibration sensor 16a and the vertical direction vibration sensor 16b that are output to the control calculation means 15′-4 and provided on the vibration isolation table 12 may be omitted.
[0026]
【The invention's effect】
As described above, according to the invention described in each claim, the following excellent effects can be obtained.
[0027]
According to the first aspect of the present invention, the displacement detection output of the rotating body magnetic bearing device or the feedback loop signal of the rotating body magnetic bearing drive current is input to the vibration isolation control means as the second vibration detection output, and the vibration isolation control is performed. Since the means performs vibration isolation control calculation using the second vibration detection output and the first vibration detection output as vibration detection outputs, at least a part of the high-performance vibration isolation sensor attached to the vibration isolation table with a simple configuration is deleted. can do.
[0028]
According to the second aspect of the present invention, the displacement detection output of the rotating body magnetic bearing device or the feedback loop signal of the rotating body magnetic bearing drive current is integrated by passing through a low-pass filter, and the characteristic component of the rotating body magnetic bearing is obtained. It is possible to detect the vibration in the horizontal direction by the second vibration detecting means similar to the acceleration sensor by removing and differentiating by passing through a high-pass filter and removing the DC component.
[Brief description of the drawings]
FIG. 1 is a diagram illustrating a schematic configuration example of an active vibration isolation device.
FIG. 2 is a diagram illustrating a configuration of an active vibration isolation control device.
FIG. 3 is a diagram showing a configuration example of a conventional rotating body magnetic bearing control device.
FIG. 4 is a diagram showing an apparatus configuration example using an active vibration isolator according to the present invention.
FIG. 5 is a diagram showing a partial configuration of the apparatus shown in FIG. 4;
FIG. 6 is a diagram showing a configuration example of an electromagnetic actuator of the active vibration isolator according to the present invention.
FIG. 7 is a diagram showing a configuration example of a rotary machine device mounted on an active vibration isolator according to the present invention.
FIG. 8 is a diagram illustrating a configuration example of a control device of an active vibration isolator according to the present invention.
FIG. 9 is a diagram showing an example of displacement detection of a rotating body of the rotating body magnetic bearing control device.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 Active vibration isolator 11 Vibration isolation base 12 Vibration isolation table 13 Elastic spring 14 Electromagnetic actuator 14-1 Movable part 14-2 Fixed part 14-3 Horizontal direction magnetic coil 14-4 Vertical direction magnetic coil 15 'Active vibration isolation Control device 15'-1 First vibration detection means 15'-2 Second vibration detection means 15'-3 Position detection means 15'-4 Anti-vibration control calculation means 15'-5 Drive controller 16 Vibration sensor 17 Displacement Sensor 18 Horizontal current detector 19 Low-pass filter / high-pass filter 20 Rotating body magnetic bearing control device 21 Rotating body displacement detecting means 22 Rotating body phase compensation circuit 23 Rotating body magnetic bearing control output means 30 Rotating body magnetic bearing 31 Rotating body 32 Rotating body Body displacement sensor 33 Vertical direction magnetic coil 34 Horizontal direction magnetic coil 35 Stationary body 36 Motor coil 41 for rotational drive Vibration isolation table installation floor 42 Mechanical device mount 43 Mechanical device 44 Rotating mechanical device

Claims (2)

軸受に回転体磁気軸受装置を用いる機械装置と、該機械装置の回転体磁気軸受装置を搭載する除振台テーブルと、該除振台テーブルを支持する弾性バネと、該除振台テーブルを電磁石によって振動制御する電磁アクチュエータと、該除振台テーブル上の振動を検出する第1振動検出手段と、該除振台テーブルの変位を検出する変位センサと、該第1振動検出手段の第1振動検出出力と該変位センサの変位検出出力により除振台テーブルの振動を除去する制御信号を得るための除振制御演算を行う除振制御手段を具備し、該除振制御手段で前記電磁アクチュエータを制御して振動を除去するように構成したアクティブ除振装置において、
前記回転体磁気軸受装置の変位検出出力又は回転体磁気軸受駆動電流のフィードバックループ信号を前記除振制御手段に第2振動検出出力として入力し、該除振制御手段は該第2振動検出出力と前記第1振動検出出力とを振動検出出力として前記除振制御演算を行うことを特徴とするアクティブ除振装置。
Electromagnet and mechanical apparatus using a rotating body magnetic bearing device on the bearing, the anti-vibration table table for mounting the rotator magnetic bearing device of the machine, and an elastic spring for supporting the該除vibration base table, the該除vibration base table An electromagnetic actuator for controlling vibration by the first vibration detecting means, first vibration detecting means for detecting vibration on the vibration isolation table, a displacement sensor for detecting displacement of the vibration isolation table, and first vibration of the first vibration detecting means. And a vibration isolation control means for performing vibration isolation control calculation for obtaining a control signal for removing vibration of the vibration isolation table based on the detection output and the displacement detection output of the displacement sensor, and the electromagnetic actuator is controlled by the vibration isolation control means. In an active vibration isolator configured to control and remove vibration,
The displacement detection output of the rotating body magnetic bearing device or the feedback loop signal of the rotating body magnetic bearing drive current is input to the anti-vibration control means as the second vibration detection output, and the anti-vibration control means and the second vibration detection output An active vibration isolation device that performs the vibration isolation control calculation using the first vibration detection output as a vibration detection output.
請求項1に記載のアクティブ除振装置において、
前記回転体磁気軸受装置の変位検出出力又は該回転体磁気軸受駆動電流のフィードバックループ信号をローパスフィルタとハイパスフィルタを介して前記第2振動検出出力とすることを特徴とするアクティブ除振装置。
The active vibration isolator according to claim 1.
An active vibration isolation device characterized in that a displacement detection output of the rotating body magnetic bearing device or a feedback loop signal of the rotating body magnetic bearing drive current is used as the second vibration detection output through a low-pass filter and a high-pass filter.
JP2000387121A 2000-12-20 2000-12-20 Active vibration isolator Expired - Fee Related JP3789750B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000387121A JP3789750B2 (en) 2000-12-20 2000-12-20 Active vibration isolator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000387121A JP3789750B2 (en) 2000-12-20 2000-12-20 Active vibration isolator

Publications (2)

Publication Number Publication Date
JP2002188679A JP2002188679A (en) 2002-07-05
JP3789750B2 true JP3789750B2 (en) 2006-06-28

Family

ID=18854112

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000387121A Expired - Fee Related JP3789750B2 (en) 2000-12-20 2000-12-20 Active vibration isolator

Country Status (1)

Country Link
JP (1) JP3789750B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4493484B2 (en) * 2004-11-29 2010-06-30 株式会社日立ハイテクノロジーズ Active vibration isolation method and apparatus

Also Published As

Publication number Publication date
JP2002188679A (en) 2002-07-05

Similar Documents

Publication Publication Date Title
JP4287213B2 (en) Magnetic bearing device having vibration suppressing function, magnetic bearing device having vibration estimating function, and pump device equipped with the magnetic bearing device
US4999534A (en) Active vibration reduction in apparatus with cross-coupling between control axes
JPH02118225A (en) Method of actively controlling vibration generated in fixing section of rotary machine and magnetic controller for structure vibration
JP2002122138A (en) Magnetic bearing device
KR20000063039A (en) Magnetic bearing protective device and turbomolecular pump
JPH06288431A (en) Vibration resistant device
JPH05340444A (en) Anti-vibration device and control method thereof
KR20180116222A (en) A method for operating an apparatus for at least one of holding, positioning, and moving an apparatus and an object for at least one of holding, positioning, and moving an object
JP7003418B2 (en) Magnetic bearing equipment and vacuum pump
JPH02203040A (en) Magnetic vibration isolator
JP3789750B2 (en) Active vibration isolator
JP3259404B2 (en) Vibration suppressor
JP3883811B2 (en) Device using active vibration isolator
KR100575556B1 (en) High Precision Vibration Control Method of Magnetic Bearing Spindle
JP3114089B2 (en) Magnetic bearing device
JP3698773B2 (en) Turbo molecular pump
JP3712519B2 (en) Disc type bearingless rotating machine
JP2522736B2 (en) Vibration isolation device
JP2001263415A (en) Active vibration damping device, and composite actuator therefor
JP4152121B2 (en) Vacuum exhaust system using turbo molecular pump
JPH0674297A (en) Electromagnetic actuator
JP3042763B2 (en) Anti-vibration device
JPH0579533A (en) Vibration isolator
JP3625904B2 (en) Magnetic bearing device
JPH0965607A (en) Inner-rotor type motor

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050629

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051025

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051117

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20051117

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060328

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060329

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090407

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100407

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees