[go: up one dir, main page]

JP3786458B2 - 軸流タービン翼 - Google Patents

軸流タービン翼 Download PDF

Info

Publication number
JP3786458B2
JP3786458B2 JP00771896A JP771896A JP3786458B2 JP 3786458 B2 JP3786458 B2 JP 3786458B2 JP 00771896 A JP00771896 A JP 00771896A JP 771896 A JP771896 A JP 771896A JP 3786458 B2 JP3786458 B2 JP 3786458B2
Authority
JP
Japan
Prior art keywords
blade
flow
peripheral wall
trailing edge
axial
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP00771896A
Other languages
English (en)
Other versions
JPH09195705A (ja
Inventor
唯士 田沼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP00771896A priority Critical patent/JP3786458B2/ja
Publication of JPH09195705A publication Critical patent/JPH09195705A/ja
Application granted granted Critical
Publication of JP3786458B2 publication Critical patent/JP3786458B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Turbine Rotor Nozzle Sealing (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は軸流タービンの静翼または動翼の改良に係り、特に翼の加熱、冷却、流れの制御の目的で翼の内部に流体を導いて翼後縁又は翼表面から吹き出すようにしたものにおいて、流れの適正化のための吹き出し口部の形状を改良した軸流タービン翼に関する。
【0002】
【従来の技術】
軸流タービン翼の内部に中空部を形成して、翼まわりを流れる主流作動流体より高圧の流体を翼内部に導いて、後縁や翼表面から流出させるようにしたタービン翼は、タービンの性能と信頼性を向上させるために、ガスタービンでは一般的に使用されており、また蒸気タービンに適用する構成例も既に提案されている。
【0003】
ガスタービンにおいては、タービン翼を冷却するためにタービンの作動流体より低温高圧の空気を圧縮機から抽気して、タービン段落の静翼及び動翼の内部の中空部に導き、翼後縁や翼表面から吹き出している。
【0004】
一方、蒸気タービンに関しては、湿り蒸気中で使用されるタービン静翼内部に高温高圧の蒸気を導いて静翼を加熱して表面を流れる凝縮水分を再度蒸発させ、下流動翼の水分による浸食を防止し、さらに水滴の衝突によって生じる損失を低減するための技術が特開昭50−112604号などで提案されている。
【0005】
更に、一般の軸流流体機械の段落の二次流れ損失と後流損失の低減を目的として、翼表面から主流の一部を吸い込んで翼内部に導き、後縁から吹き出させる構造が特公昭56−14845号で提案されている。
【0006】
以上の従来技術の中から特開昭50−112604号に記載された蒸気タービンに関する技術を例にして具体的に説明する。
【0007】
図8および図9は、前述した蒸気タービンの例の一つで、低圧最終段への適用例である。タービンの段落は周方向に複数枚配置された静翼1と、同じく周方向に複数枚配置された動翼2とによって構成される。動翼2はロータ3に植え込まれており、ロータ3と共に回転する。
【0008】
静翼2はケーシング4に固定されており、ケーシング4の通路側表面は、静翼1に流通する主流作動流体Fmを外側から囲む外周壁10を形成しており、静翼2の内輪側植え込み部の表面は内周壁11を形成している。最終段の上流段落の静翼入口部には高温高圧の作動流体の吸い込み口5が設けてあり、この吸い込み口5から取り入れた蒸気はバイパス通路6を通って静翼1の内部の中空部7に導かれる。
【0009】
図9は図8のA−A断面図である。静翼1の後縁には吹き出し口としての後縁吹き出し口9が形成されており、中空部7の蒸気は吹き出し通路8によって後縁吹き出し口9に導かれる。
【0010】
以上のように構成した蒸気タービンにおいては、吸い込み口5から最終段に比べて高温高圧で、通常は乾き状態の蒸気を取り入れ、バイパス通路6を通して中空部7に導くようになっている。静翼1はこの蒸気によって加熱され、表面を流れる凝縮水分の一部は再度蒸発して蒸気になる。
【0011】
中空部7の蒸気は、吹き出し通路8を通って後縁吹き出し口9から主流蒸気中に吹き出される。このとき、静翼1の加熱によって蒸発せずに後縁まで到達した水分が吹き飛ばされて微細化する。この結果、動翼2に衝突する水分の合計量と浸食作用の強い比較的大きな水滴の数の両方が減少して動翼2の浸食が低減され、合わせて水滴の動翼2への衝突によって生ずる段落性能の低下も低減される。
【0012】
この従来技術においては、後縁吹き出し口9からの噴射の方向は作動流体の流出方向とほぼ一致させ、また噴射速度は作動流体の主流の速度に等しいか、もしくはそれより若干高めとなるようにされている。
【0013】
【発明が解決しようとする課題】
上記のように構成された蒸気タービンは、静翼上の凝縮水分を静翼表面から吸い込んで外部に排出してしまう方法に比べて、蒸気の一部が水分と一緒に外部に流出してしまうことが無いので、段落の性能を損なうことがなく、動翼の浸食を防止できて望ましいように思われる。そこで、環状翼列試験によって後縁からの吹き出しが段落性能に及ぼす影響を調べたところ、以下の問題点が明らかになった。
【0014】
図10は静翼の損失分布を全圧損失係数で表したものである。縦軸は後縁高さで無次元化した静翼出口の高さ位置を表し、横軸は吹き出しなしの時の流路中央の全圧損失係数ζPCDで無次元化した全圧損失係数を表している。実線は後縁吹き出しが無い場合、破線は後縁吹き出しが有る場合の計測値を示す。
【0015】
無次元高さ0.8以上で損失が急に増加するのは、外周壁面10の低エネルギー流体が主流に流れ込んで生ずる二次流れによる。この部分では、後縁吹き出し有りの時の損失が吹き出しなしを上回っている。
【0016】
一方、無次元高さ0.5から0.7ではわずかに吹き出し有りの損失が減少している。従って、外周壁側の高さ0.8から1.0の間で吹き出しを行った場合は吹き出しによる効率の低下が大きく、高さ0.5から1.0の間で吹き出しを行った場合には中央付近の損失減少により多少改善されるが、やはり効率は低下する。
【0017】
図11は翼列下流の二次流れを簡略化して表現した説明図である。外周壁及び内周壁上の境界層を形成する速度の遅い低エネルギーの流れの部分が、翼列流路の腹側から背側への圧力勾配によって翼背側に移動する。背側に到達した低エネルギー流体は更に背側の一定の高さの位置まで入り込んで行き、ここで翼面から離れて渦を形成して行く。
【0018】
従って、二次流れの影響領域においては、後縁に沿って流路中央に向かう速度成分が存在することがわかる。ここに後縁からの吹き出しを行うと、吹き出された流体は二次流れ渦に引き込まれて同じ方向に偏向し、その結果二次流れ渦にエネルギーを供給して二次流れ損失を増加させると考えられる。
【0019】
図8、図9で説明した従来技術の例では、吹き出しの周方向の角度は比較的長い助走区間として吹き出し通路8を設けることにより、作動流体の主流の方向に向けることができるが、後縁に沿った流れの方向はなんら拘束できず、その結果吹き出し通路8の入口と出口の状態で流れの方向が決定してしまうことになる。
【0020】
図8の中空部7の構造から明らかなように、中空部には外周壁から流路中央に向かう流れが生じており、前述した二次流れの方向に吹き出す傾向を助長していることがわかる。二次流れの影響があまり及ばない流路中央付近で吹き出しによって損失が低減される現象を明らかにするために高精度の流れの数値シミュレーションを実施したところ、吹き出しの無い後縁において通常生じている逆流領域が吹き出し流れで満たされており、逆流による乱れのない安定した流れになっていることが分かった。
【0021】
従って、二次元的な流れとなっている流路中央では、吹き出しは翼列の損失を低減するが、流れの3次元性が著しい内外壁の近くでは何らかの方法で吹き出しの半径方向の流れの向きを制御しない限り、吹き出しは二次流れを増大させる方向に作用し、段落全体で見た場合タービンの効率を低下させることになる。
【0022】
他の従来技術についても同様な問題点がある。特公昭56−14845号においても後縁に沿った方向の吹き出しの制御は何等なされておらず、そのかわりに二次流れの低減対策として周方向の吹き出し流出角度を幾何学的な静翼流出角から3〜5度オフセットすることを提案している。
【0023】
しかしながら、翼列の流出角度は流出速度などの流体条件で変化し、更に主流の方向と後縁のすぐ下流の後流内では1度以上の差が有るので効果的なオフセット角度を見つけることは事実上かなり難しく、効果の程度も十分ではないと考えられる。
【0024】
ガスタービン冷却翼に関しては非常に多くの提案がなされている。たとえば、特開平6−137105号では、後縁の外周壁と内周壁の近くで吹き出しスリットの開口面積を大きくして、二次流れ損失を低減させる技術が開示されている。しかしながら、開口面積を大きく取るだけで流出方向を効果的に制御しなければ、前述した例のようにかえって二次流れを増大させることになる。
【0025】
本発明は上述した事情を考慮してなされたもので、翼後縁や翼表面からの高圧流体の吹き出しによって損失が増加せず、むしろ吹き出しによって効率が向上するように機能する軸流タービン翼を提供することを目的とする。
【0026】
【課題を解決するための手段】
上述した課題を解決するために、請求項1の発明は、軸流タービンの静翼または動翼であって、翼の内部に中空部を形成するとともに、翼の後縁部に前記中空部に連通する吹き出し口を形成し、翼後縁まわりの作動流体流路に流れる主流作動流体よりも高圧で前記中空部に導かれた流体を、前記翼後縁側の吹き出し口から前記作動流体流路の内周側に位置する内周壁近くの後縁ではその内周壁側に傾斜する方向に、また前記作動流体流路の外周側に位置する外周壁近くではその外周壁側に傾斜する方向にそれぞれ傾けて前記作動流体流路に吹き出すようにした軸流タービン翼において、当該軸流タービン翼が配置される作動流体流路は流れの方向に流路高さが増加する拡大流路に形成されるとともに、前記吹き出し口を、タービン中心軸から図った外周壁の傾斜角をβt、外周壁と後縁の交点の半径をRt、内周壁の傾斜角をβr、内周壁と後縁の交点の半径をRrとし、任意半径Rにおける後縁位置で定義した平均傾斜角βmを、
[ 数1 ]
βm={βt(R−Rt)+βr(Rt−R)}/(Rt−Rr)
と定義した場合、後縁吹き出しの子午面傾斜角βが、
[ 数2 ]
R<(Rr+Rt)/2においてはβ<βm,
R>(Rr+Rt)/2においてはβ>βm
となるように形成して二次流れ損失を低減させたことを特徴とする。
【0027】
本発明によれば、拡大流路を有する軸流タービン翼において、翼内部の中空部に導かれた高圧流体後縁から吹き出される際に、流路の拡大に伴う幾何学的な平均傾斜角βmを基準として、内周壁近くでは内周壁側に、外周壁近くでは外周壁側に傾斜するように吹き出すので、図11に示した二次流れFsと逆向きの流れが後縁下流に生じて二次流れの渦を弱くし、二次流れ損失を低減させることができる。
【0030】
請求項の発明は、請求項記載の軸流タービン翼において、翼の腹側(正圧側)を、内周壁および外周壁の近くでそれぞれ内周壁と外周壁とに向くように、かつ子午面またはタービン中心軸に直角な面に投影した後縁線が弓形に湾曲するように形成し、前記後縁線に沿って吹き出し口を設けたことを特徴とする。
【0031】
本発明によれば、内周壁と外周壁の近くで翼の腹側が壁の方向に向くように後縁線を弓形に湾曲させるので、主流の流れが壁面に押しつけられるように翼列から流出し、後縁からの吹き出しも壁の方向を向くので、二次流れ渦が壁から離れて巻き上がることを防止でき、二次流れ渦の巻き上がりに起因する損失を低減することができる。
【0032】
請求項の発明は、請求項1または2のいずれかに記載の軸流タービン翼において、翼の内部に設けた中空部と、翼後縁部に沿って設けた吹き出し口との間に、吹き出し流体の半径方向の流れの向きを制御する複数の流れ案内板、案内翼、もしくは案内通路を設けたことを特徴とする。
【0033】
本発明によれば、吹き出し流体の半径方向の流れの向きを制御する案内板、案内翼、もしくは案内通路を設けて吹き出し流体の流れを壁側に向くように流出させるので、翼の後流に二次流れ渦と反対の方向の流れを引き起こし、二次流れ損失を低減させることができる。
【0034】
請求項の発明は、請求項1からまでのいずれかに記載の軸流タービン翼において、前記吹き出し口を後縁の全長の内の前記内周壁および外周壁の極めて近くの一部を除く全領域に設けたことを特徴とする。
【0035】
本発明によれば、壁の極めて近くでは吹き出し口を設けないようにしたので、吹き出し流れが壁の境界層と干渉して混合と摩擦による損失を生ずることを防ぐことができる。
【0036】
請求項6の発明は、軸流タービンの静翼または動翼であって、翼の内部に中空部を形成するとともに、翼の後縁部に前記中空部に連通する吹き出し口を形成し、翼後縁まわりの作動流体流路に流れる主流作動流体よりも高圧で前記中空部に導かれた流体を、前記翼後縁側の吹き出し口から前記作動流体流路に吹き出すようにした軸流タービン翼において、高圧流体の吹き出し方向を、翼背側の内周壁の近くでは内周壁側に、翼背側の外周壁の近くでは外周壁側に、翼腹側の内周壁の近くでは外周壁側に、翼腹側の外周壁の近くでは内周壁側にそれぞれ向くように、翼表面吹き出し口を形成し、二次流れ損失を低減させたことを特徴とする。
【0037】
本発明によれば、後縁ではなく翼表面から二次流れを妨げる方向に高圧流体を吹き出すので、二次流れ渦の発生段階で効果的に渦の成長を妨げることができて、効果的に二次流れ損失を低減することができる。
【0038】
請求項の発明は、軸流タービンの静翼または動翼であって、翼の内部に中空部を形成するとともに、翼の後縁部に前記中空部に連通する吹き出し口を形成し、翼後縁まわりの作動流体流路に流れる主流作動流体よりも高圧で前記中空部に導かれた流体を、前記翼後縁側の吹き出し口から前記作動流体流路に吹き出すようにした軸流タービン翼において、高圧流体の吹き出し方向を、翼背側の内周壁の近くでは内周壁側に、翼背側の外周壁の近くでは外周壁側に、翼腹側の内周壁の近くでは外周壁側に、翼腹側の外周壁の近くでは内周壁側にそれぞれ向くように、翼表面吹き出し口を形成し、二次流れ損失を低減させたことを特徴とする。
【0039】
図1および図2は軸流タービンの第1実施形態を示している。なお、従来の構成と同一または対応する部分には図8および図9と同一の符号を用いて説明する。
【0040】
本実施形態では、図1および図2に示すように、作動流体流路の外周壁10を構成するケーシング4と内周壁11を構成する静翼内輪21との間に、周方向に数十枚の静翼1が接合固定されている。また、ロータ3には周方向に数十枚の動翼2が取り付けられ、高速で回転できる構成になっている。
【0041】
ケーシング4には高圧流体通路16が設けられており、図示しない上流のタ一ビン段落や外部の圧縮機などから、翼の加熱、冷却あるいは流れの制御等の目的で高圧流体が静翼1の内部の中空部に導かれるようになっている。なお、本実施形態は静翼を対象として説明しているが、動翼を対象とする場合には、高圧流体通路16がロータ3の内部に設けられる。
【0042】
図2は図1のB−B断面図であり、この図2R>2に示すように、中空部7と後縁吹き出し口9の間には、吹き出し通路8が設けられている。そして図1に示すように、吹き出し通路8は案内板14と、案内翼13とによって仕切られ、各半径ごとにあらかじめ決められた子午面傾斜角βで、高圧流体が後縁から吹き出すようになっている。
【0043】
タービン中心軸から計った外周壁の傾斜角をβt、外周壁と後縁の交点の半径をRt、内周壁の傾斜角をβr、内周壁と後縁の交点の半径をRrとし、任意半径Rにおける後縁位置で定義した平均傾斜角βmを、
[数3]
βm={βt(R−Rr)+βr(Rt−R)}/(Rt−Rr)
と定義した場合、後縁吹き出しの子午面傾斜角βが、
[数4]
R<(Rr+Rt)/2においてはβ<βm,
R>(Rr+Rt)/2においてはβ>βm
となるように、後縁吹き出し口9を形成する案内板14及び案内翼13の形状と半径方向の取り付け角度を調整している。
【0044】
内周壁11と外周壁10との壁際で、後縁全長のそれぞれ5%から10%の長さの位置までには後縁吹き出し口9を設けず、吹き出し通路内周側壁15と吹き出し通路外周側壁12とを設けている。
【0045】
次に、本実施形態の作用について説明する。高圧流体の流れFhは、中空部7から吹き出し通路8を通って後縁吹き出し口9から主流作動流体Fmに吹き出す間に、吹き出し通路8の中に設けられた案内板14、案内翼13、吹き出し通路外周側壁12、吹き出し通路内周側壁15によって、流路中央より外周壁寄りでは外周壁10の方向に、また内周壁寄りでは内周壁11の方向に向かう速度成分を与えられる。一方、壁の極めて近い位置には吹き出し口が開口していないので、壁の近くで吹き出した流体同士が衝突することがなく滑らかに流れる。
【0046】
このように本実施形態によれば、後縁からの吹き出しの方向を後縁に沿って内周壁11及び外周壁10の方向に傾斜させることができ、しかも壁の極めて近い位置に過度の集中をすることがないので、効果的に二次流れを抑制してタービン段落の損失を低減することができる。
【0047】
翼を周方向に傾斜させたり、湾曲させる従来の二次流れの抑制手段では、周方向に平均的な効果しか期待できないのに対し、本実施形態では二次流れの渦が集中する後流付近に、集中的に二次流れの渦と逆方向の流れを起こすものであり、より効果的に渦を減衰させることができる。
【0048】
図3は本発明を適用したタービン段落の半径方向の損失分布を示している。従来例とは逆に、後縁吹き出しを行なうことによって二次流れ損失が大幅に低減している。
【0049】
図4は、本発明の第2実施形態に係る軸流タービン翼を示している。本実施形態においては、静翼1が内周壁11外周壁10との間に接合固定されている。外周壁1Οには高圧流体入口17が開口しており、静翼内部の中空部7に連通している。
【0050】
そして、中空部7と後縁吹き出し口9との間の吹き出し通路8には、高圧流体の流れFhを壁方向に向けるために、案内板14が設けられている。静翼1は、内周壁11と外周壁10との近くで腹側(正圧面)がそれぞれ内周壁11および外周壁10の方向に向くように、タービン軸中心に直行した面に投影した後縁線を弓形に湾曲させている。
【0051】
このような第2実施形態の構成によると、翼の腹側が壁の方向に向くように後縁を弓形に湾曲させたことによって、吹き出し通路8を通る高圧流体の流れが自然に壁方向を向くようになり、高圧流体の流れの損失を低く押さえることができる。従って主流作動流体と翼内部に供給される高圧流体との圧力差が小さいときでも、二次流れの抑制効果を発揮することができる。
【0052】
図5は本発明の第3実施形態に係る軸流タービン翼を示している。本実施形態においては、外周壁10と内周壁11の間に接合固定されている静翼1の内部に、中空部7が形成されており、高圧流体入口17が中空部7の外周壁10側に開口している。静翼1の後縁20は、子午面から見て後縁中央部が下流側に突出するように弓形に湾曲している。
【0053】
ただし、内外壁の極めて近い位置で後縁20の湾曲部が終了し、後縁線と内外壁のなす角度が鋭角にならないように形成されている。後縁20部分の内部には吹き出し通路8が設けられ、吹き出し通路8は内外壁面の近くで吹き出し通路外周側壁12と吹き出し通路内周側壁15とによって仕切られている。
【0054】
このような第3実施形態によれば、中空部7に供給された高圧流体が吹き出し通路8を通って後縁20とほぼ直行する方向に噴出する。この場合、後縁20の形状が湾曲しているため、壁近くの高圧流体の流れは内外壁の方向に向かうことになる。従って、前記第1実施形態と同様の効果が奏される。すなわち、第3実施形態においては、吹き出し流れが後縁20に略直行して吹き出すので、吹き出し通路内部の案内板や案内翼を省略することができ、より単純な形状で二次流れ抑制効果を実現できる。
【0055】
図6および図7は、本発明の第4実施形態に係る軸流タービン翼を示している。本実施形態では、静翼1内部の中空部7から、腹側表面吹き出し口18と背側表面吹き出し口19とを設けている点が他の実施形態と異なっている。更に、腹側表面吹き出し口18は流路中央方向に吹き出すように開口し、背側表面吹き出し口19は壁側に向かって吹き出すようになっており、共に二次流れの渦の方向と逆の流れを作り出して、損失を低減する効果がある。
【0056】
【発明の効果】
以上で詳述したように、本発明に係る軸流タービン翼よれば、翼列の二次流れと反対方向の吹き出し流れを生じさせることができ、それによって二次流れの渦を減衰させることができる。従って、後縁や翼表面からの吹き出しによっては損失が増加せず、むしろ吹き出しによって効率が向上する等の効果が奏される。
【図面の簡単な説明】
【図1】 本発明に係る軸流タービン翼の第1実施形態を示す断面図。
【図2】 図1におけるB−B断面図。
【図3】 前記第1実施形態の効果を説明する全圧損失の高さ方向分布図。
【図4】 本発明に係る軸流タービン翼の第2実施形態を示す斜視図。
【図5】 本発明に係る軸流タービン翼の第3実施形態を示す断面図。
【図6】 本発明に係る軸流タービン翼の第4実施形態を示す断面図。
【図7】 本発明に係る軸流タービン翼の第4実施形態を異なる面で示す断面図。
【図8】 従来の軸流タービン翼を示す断面図。
【図9】 図8におけるΑ−Α断面図。
【図10】 従来の軸流タービン翼の問題点を説明する全圧損失係数の高さ方向分布図。
【図11】 軸流タービンの二次流れを説明する概念図。
【符号の説明】
1 静翼
2 動翼
3 ロータ
4 ケーシング
5 吸い込み口
6 バイパス通路
7 中空部
8 吹き出し通路
9 後縁吹き出し口
10 外周壁
11 内周壁
12 通路外周側壁
13 案内翼
14 案内板
15 吹き出し通路内周側壁
16 高圧流体通路
17 流体入口
18 腹側表面吹き出し口
19 背側表面吹き出し口
20 後縁
21 静翼内輪

Claims (5)

  1. 軸流タービンの静翼または動翼であって、翼の内部に中空部を形成するとともに、翼の後縁部に前記中空部に連通する吹き出し口を形成し、翼後縁まわりの作動流体流路に流れる主流作動流体よりも高圧で前記中空部に導かれた流体を、前記翼後縁側の吹き出し口から前記作動流体流路の内周側に位置する内周壁近くの後縁ではその内周壁側に傾斜する方向に、また前記作動流体流路の外周側に位置する外周壁近くではその外周壁側に傾斜する方向にそれぞれ傾けて前記作動流体流路に吹き出すようにした軸流タービン翼において、当該軸流タービン翼が配置される作動流体流路は流れの方向に流路高さが増加する拡大流路に形成されるとともに、前記吹き出し口を、タービン中心軸から図った外周壁の傾斜角をβt、外周壁と後縁の交点の半径をRt、内周壁の傾斜角をβr、内周壁と後縁の交点の半径をRrとし、任意半径Rにおける後縁位置で定義した平均傾斜角βmを、
    [ 数1 ]
    βm={βt(R−Rt)+βr(Rt−R)}/(Rt−Rr)
    と定義した場合、後縁吹き出しの子午面傾斜角βが、
    [ 数2 ]
    R<(Rr+Rt)/2においてはβ<βm,
    R>(Rr+Rt)/2においてはβ>βm
    となるように形成して二次流れ損失を低減させたことを特徴とする軸流タービン翼。
  2. 請求項1記載の軸流タービン翼において、翼の腹側(正圧側)を、内周壁および外周壁の近くでそれぞれ内周壁と外周壁とに向くように、かつ子午面またはタービン中心軸に直角な面に投影した後縁線が弓形に湾曲するように形成し、前記後縁線に沿って吹き出し口を設けたことを特徴とする軸流タービン翼。
  3. 請求項1または2のいずれかに記載の軸流タービン翼において、翼の内部に設けた中空部と、翼後縁部に沿って設けた吹き出し口との間に、吹き出し流体の半径方向の流れの向きを制御する複数の流れ案内板、案内翼、もしくは案内通路を設けたことを特徴とする軸流タービン翼。
  4. 請求項1からまでのいずれかに記載の軸流タービン翼において、前記吹き出し口を後縁の全長の内の前記内周壁および外周壁の極めて近くの一部を除く全領域に設けたことを特徴とする軸流タービン翼。
  5. 軸流タービンの静翼または動翼であって、翼の内部に中空部を形成するとともに、翼の後縁部に前記中空部に連通する吹き出し口を形成し、翼後縁まわりの作動流体流路に流れる主流作動流体よりも高圧で前記中空部に導かれた流体を、前記翼後縁側の吹き出し口から前記作動流体流路に吹き出すようにした軸流タービン翼において、高圧流体の吹き出し方向を、翼背側の内周壁近くでは内周壁側に、翼背側の外周壁の近くでは外周壁側に、翼腹側の内周壁の近くでは外周壁側に、翼腹側の外周壁の近くでは内周壁側にそれぞれ向くように、翼表面吹き出し口を形成し、二次流れ損失を低減させたことを特徴とする軸流タービン翼。
JP00771896A 1996-01-19 1996-01-19 軸流タービン翼 Expired - Lifetime JP3786458B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP00771896A JP3786458B2 (ja) 1996-01-19 1996-01-19 軸流タービン翼

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP00771896A JP3786458B2 (ja) 1996-01-19 1996-01-19 軸流タービン翼

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2005202157A Division JP2005299680A (ja) 2005-07-11 2005-07-11 軸流タービン翼

Publications (2)

Publication Number Publication Date
JPH09195705A JPH09195705A (ja) 1997-07-29
JP3786458B2 true JP3786458B2 (ja) 2006-06-14

Family

ID=11673520

Family Applications (1)

Application Number Title Priority Date Filing Date
JP00771896A Expired - Lifetime JP3786458B2 (ja) 1996-01-19 1996-01-19 軸流タービン翼

Country Status (1)

Country Link
JP (1) JP3786458B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3591175A1 (de) * 2018-07-02 2020-01-08 Siemens Aktiengesellschaft Ausgangöffnung einer dampfturbine

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6099252A (en) * 1998-11-16 2000-08-08 General Electric Company Axial serpentine cooled airfoil
US6164913A (en) * 1999-07-26 2000-12-26 General Electric Company Dust resistant airfoil cooling
US6419446B1 (en) * 1999-08-05 2002-07-16 United Technologies Corporation Apparatus and method for inhibiting radial transfer of core gas flow within a core gas flow path of a gas turbine engine
IT1319140B1 (it) * 2000-11-28 2003-09-23 Nuovo Pignone Spa Sistema di refrigerazione per ugelli statorici di turbine a gas
DE60041774D1 (de) * 2000-12-05 2009-04-23 United Technologies Corp Rotorschaufel
JP4724034B2 (ja) * 2005-03-31 2011-07-13 株式会社東芝 軸流タービン
GB2440344A (en) * 2006-07-26 2008-01-30 Christopher Freeman Impulse turbine design
JP2011074804A (ja) * 2009-09-30 2011-04-14 Hitachi Ltd 蒸気タービンのノズル
US8790084B2 (en) * 2011-10-31 2014-07-29 General Electric Company Airfoil and method of fabricating the same
EP2816199B1 (en) * 2013-06-17 2021-09-01 General Electric Technology GmbH Control of low volumetric flow instabilities in steam turbines
JP2015048716A (ja) * 2013-08-30 2015-03-16 株式会社東芝 蒸気タービン
JP2017053287A (ja) * 2015-09-10 2017-03-16 新日本造機株式会社 蒸気タービン
JP6603971B2 (ja) 2016-08-09 2019-11-13 三菱重工コンプレッサ株式会社 蒸気タービン
JP6637455B2 (ja) * 2017-02-10 2020-01-29 三菱日立パワーシステムズ株式会社 蒸気タービン
CN111022127B (zh) * 2019-11-29 2021-12-03 大连理工大学 一种涡轮叶片尾缘曲线式排气劈缝结构
CN115680785A (zh) * 2021-07-30 2023-02-03 上海电气电站设备有限公司 用于降低鼓风温度的静叶栅及汽轮机

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3591175A1 (de) * 2018-07-02 2020-01-08 Siemens Aktiengesellschaft Ausgangöffnung einer dampfturbine

Also Published As

Publication number Publication date
JPH09195705A (ja) 1997-07-29

Similar Documents

Publication Publication Date Title
JP3786458B2 (ja) 軸流タービン翼
EP0992654B1 (en) Coolant passages for gas turbine components
US8262340B2 (en) Turbomachine exerting dynamic influence on the flow
JP3671981B2 (ja) 曲折した冷却用チャネルを備えたタービンシュラウドセグメント
EP2148042B1 (en) A blade for a rotor having a squealer tip with a partly inclined surface
US8202039B2 (en) Blade shroud with aperture
JPS6349522Y2 (ja)
JP4063937B2 (ja) ガスタービンエンジン内の翼の冷却通路の乱流促進構造
JP5235253B2 (ja) 凸形圧縮機ケーシング
JP2001065306A (ja) 回転機械用の冷却可能なステータベーン
JP2001059402A (ja) 回転機械のタービンセクションの冷却方法
JPH0353442B2 (ja)
JPH0424524B2 (ja)
JP2003065299A (ja) ガスタービンエンジンの圧縮機用アセンブリ
JPH0370084B2 (ja)
US10082031B2 (en) Rotor of a turbine of a gas turbine with improved cooling air routing
WO2014041619A1 (ja) ガスタービン
EP3483395B1 (en) Inter-turbine ducts with flow control mechanisms
KR102492725B1 (ko) 에어포일에서 충돌 공기를 재사용하기 위한 충돌 인서트, 충돌 인서트를 포함하는 에어포일, 터보머신 구성요소, 및 이를 포함하는 가스 터빈
GB2127105A (en) Improvements in cooled gas turbine engine aerofoils
KR20220040981A (ko) 가스 터빈 블레이드의 스퀄러 팁의 냉각 기술
JP4184565B2 (ja) 蒸気タービンノズルおよびその蒸気タービンノズルを用いた蒸気タービン
EP0278434A2 (en) A blade, especially a rotor blade
JP2005299680A (ja) 軸流タービン翼
KR20030063369A (ko) 축류 터보 압축기

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050315

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050510

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050711

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20051122

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060123

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20060126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060317

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060320

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100331

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100331

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110331

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120331

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130331

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130331

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140331

Year of fee payment: 8

EXPY Cancellation because of completion of term