JP3784354B2 - Filter media for liquid filtration - Google Patents
Filter media for liquid filtration Download PDFInfo
- Publication number
- JP3784354B2 JP3784354B2 JP2002254459A JP2002254459A JP3784354B2 JP 3784354 B2 JP3784354 B2 JP 3784354B2 JP 2002254459 A JP2002254459 A JP 2002254459A JP 2002254459 A JP2002254459 A JP 2002254459A JP 3784354 B2 JP3784354 B2 JP 3784354B2
- Authority
- JP
- Japan
- Prior art keywords
- filter medium
- fiber
- fibers
- organic
- filtration
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Filtering Materials (AREA)
- Paper (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、液体中に含有される粒子を効率良く除去し、清浄な液体を得るための液体濾過用フィルター濾材に関するものである。更に詳しくは、金属の型彫、切断加工等に使用されている放電加工機の加工液中に含まれる加工クズやIC生産における基板のウエハの切断、研磨、エッチング等の工程で使用される超純水中に含まれる加工クズを効率良く除去し清浄な液体を得るための濾材、及び自動車用エンジンオイル、燃料等各種液体濾過用のフィルター濾材に関するものである。特に、多様化する放電加工機に対応して、主に下記の▲1▼、▲2▼の用途に適したものである。
▲1▼濾材の厚みが薄くフィルターユニットに入れる濾材面積が多く取れる。
▲2▼被切削物から発生する削り屑の粒径が比較的粗い加工液に適用する。
【0002】
【従来の技術】
従来、放電加工機やIC生産工程で使用されている液体濾過用フィルターや自動車用エンジンオイル、燃料等各種液体濾過用のフィルターには、天然パルプと有機繊維の混抄シートにフェノール樹脂等を含浸処理したシート、ポリエステル不織布(スパンボンド)等が使用されているが、濾過効率が低く、ライフが短い等の問題がある。
【0003】
即ち、従来の濾材は濾材内部で粒子を捕捉する機能であり、ライフを延ばすために比較的粗い濾材を使用しており、濾材内部に粒子が入り濾材の空隙をある程度埋める迄は目標の濾過効率は得られない。濾材の空隙が埋まると圧損が上昇し液の透過性が悪くなりライフが短くなるか、濾材内部の粒子が濾材内部から流出し効率が悪くなる等の問題がある。
【0004】
又、高性能のフィルターとしてフッ素樹脂等の多孔質シートがあるが高価なため特殊用途に限定され、放電加工機やIC生産工程のように多量の液体を処理する濾材としては不適である。
【0005】
これらの問題を解決する方法として、フィブリル化された有機繊維を用いた濾材が開発されている(特開昭59−92011号公報)。しかしながら、このような繊維を単独で用いて通常の湿式抄紙法により製造しようとした場合には、ワイヤーから流失が大きく、ワイヤーの目づまりを生じる等の製造上の問題が避けられない。たとえ濾材が得られたとしても、繊維が微細であるために得られる濾材は非常に緻密となり、その結果高い濾過効率は得られるものの濾過抵抗が高く実用に適さない。濾過抵抗を下げようとして比較的径の太いモノフィラメントの繊維を含有した場合には、抄造工程での微細繊維の流失がより多くなり、濾過効率の低下が著しく、十分な性能が得られない。
【0006】
特開平3−12208号公報では、繊維径が1μm以下にフィブリル化された有機繊維、繊維径1〜5μmの極細有機繊維、及び繊維径5μm以上の有機繊維を配合することによって、フィブリル化された有機繊維の凝集を抑え、均質なネットワークを形成し、さらに、カレンダー処理を施して、濾材表面の平滑性を向上させ、表面濾過機構を有している濾材が提案されている。この濾材は表面濾過機構であるために、濾過性能、ライフは非常に良好である。しかし、濾材の厚みは非常に薄く、腰(硬さ)がないために、ひだ折加工ができない。さらに湿潤強度が非常に弱いために、放電加工機用フィルター、自動車エンジンオイル用フィルター、自動車燃料用フィルターに使用した場合、液体の圧力で破れてしまう。
【0007】
又、特開昭61−268321号公報、同61−268325号公報、同61−275495号公報等に密度勾配をつけた2層構成の濾材が例示されているが、これらの濾材は、2層の濾材を組合せることにより濾過効率とライフのバランスをとっており、本発明の濾材表面(濾材層のみ)で濾過性能を得る方法とは基本的に異なったものである。
【0008】
これらの問題を解決するために、本発明者が出願した特開平06−126112号公報の液体濾過用フィルター濾材は濾過効率が高く、且つひだ折加工性が優れ、湿潤強度も強く、現在、有用に活用されているが、放電加工機の多様化や高速化に伴い、使用するワイヤーの直径や加工速度も多様化し、かつライフ重視に対応するために新たな濾材の開発が必要とされてきた。即ち、粗削り加工時に発生する削り屑の粒子径は大きいことから、大きい粒子に対してもライフの長い濾材が求められている。
【0009】
【発明が解決しようとする課題】
本発明は上記の欠点や問題点を解決し、被切削物から発生する削り屑の粒径が比較的粗い加工液に対してライフの長い液体濾過用濾材を提供することを目的としている。
【0010】
【課題を解決するための手段】
これらの問題点を解決する方法として、種々の繊維の濾材への応用を検討した結果、今までに無い良好なフィルター特性が得られることを見出し、本発明を完成させた。
【0011】
即ち、本発明の液体濾過用濾材は、該濾材が、濾材層と支持体層とを一体化してなるものであり、該濾材層が、繊維径が1μm以下にフィブリル化された有機繊維0.5以上5質量%未満と繊維径が1μm以上の有機繊維を含み、繊維径1μm以上の有機繊維の一部又は全部に繊維状有機バインダーを用い、且つ10〜50μmの平均空隙径を有し、5〜50g/m2の坪量からなるものであり、該支持体層が、繊維径8μm以上の有機繊維で、ポリオレフィン系、ポリアミド系、ポリエステル系、アクリル系、ビニロン系、塩ビ酢酸ビニル系の合成繊維の少なくとも1種類を含み、その一部がポリエステル系、ポリオレフィン系、塩ビ酢酸ビニル系の繊維状有機バインダーの少なくとも1種類を含有し、且つ20〜150g/m2の坪量からなる液体濾過用濾材である。
さらに、濾材層の坪量と支持体層の坪量との比が1:0.5〜1:10の範囲であり、濾材層を上流側として使用する液体濾過用濾材である。
また、濾材層と支持体層とが湿式抄紙法により抄き合わせ一体化されている液体濾過用濾材である。
また、繊維径が1μm以下にフィブリル化された有機繊維が、芳香族ポリアミド繊維、レーヨン繊維、溶剤紡糸法で製造されたリヨセル繊維、パルプ繊維のいずれか1種以上である液体濾過用濾材である。
【0012】
【発明の実施の形態】
本発明の液体濾過用濾材は、薄くて表面濾過性能を有する濾材層と、液体の透過性が良く高強度でひだ折り加工性の良い支持体層とを抄合わせ一体化することにより得られる液体濾過用フィルター濾材である。
本発明の濾材に用いられる繊維径が1μm以下にフィブリル化された有機繊維としては、例えば、以下に示す方法で加工されたものが挙げられる。
1)合成高分子溶液を該高分子の貧溶媒中にせん断力をかけながら流下させ、繊維状フィブリルを沈澱させる方法(フィブリッド法、特公昭35−11851号公報)。
2)合成モノマーを重合させながらせん断をかけフィブリルを析出させる方法(重合せん断法、特公昭47−21898号公報)。
3)二種以上の非相溶性高分子を混合し、溶融押し出し、又は紡糸し、切断後機械的な手段で繊維状にフィブリル化する方法(スプリット法、特公昭35−9651号公報)。
4)二種以上の非相溶性高分子を混合し、溶融押し出し、又は紡糸し、切断後溶剤に侵漬して一方の高分子を溶解し、繊維状にフィブリル化する方法(ポリマーブレンド溶解法、米国特許3、382、305号)。
5)合成高分子をその溶媒の沸点以上で、且高圧側から低圧側へ爆発的に噴出させた後、繊維状にフィブリル化する方法(フィラシュ紡糸法、特公昭36−16460号公報)。
6)ポリエステル系高分子に該ポリエステルに非相溶のアルカリ可溶成分をブレンドし、成形後アルカリにより減量後叩解し、繊維状にフィブリル化する方法(アルカリ減量叩解法、特開昭56−315号公報)。
7)ケブラー繊維等の高結晶性、高配向性繊維を適当な繊維長に切断後、水中に分散させ、ホモジナイザー、叩解機等を用いてフィブリル化する方法(特開昭56−100801号公報、特開昭59−92011号公報)等の方法によって得られる繊維であり、具体的な例としては、ケブラー繊維を均質化装置でフィブリル化したティアラー400S(ダイセル社製)、アルカリ減量叩解法によって得られたポリエステルパルプ、木材パルプを均質化装置でフィブリル化したセリッシュ100S(ダイセル社製)、溶剤紡糸法で作製したリヨセル繊維、木材パルプ、その他にナイロン、ポリエチレン、ポリプロピレン等の合成繊維をビーター、PFIミル、ボールミル、ダイノミル等で叩解した繊維等が挙げられる。
【0013】
これらフィブリル化された有機繊維の配合量は0.5以上5質量%未満が適当であり、好ましくは1〜4.5質量%である。0.5質量%未満では濾材の平均空隙径が大きくなり十分な捕集効率が得られず、また5質量%を越えると特開平06−126112号公報の液体濾過用フィルター濾材に示すように高性能濾過領域となる。
【0014】
本発明の濾材層に用いられる繊維径が1μm以上の有機繊維とは、例えば1〜5μmのポリエステル繊維、PVA繊維、アクリル繊維等の極細繊維が挙げられる。これらの繊維の配合量は5〜70質量%が適当であり、好ましくは10〜60質量%である。5質量%未満では1μm以下の微細繊維のワイヤーからの流失が多く十分な濾過効率が得られず、又、湿紙のワイヤーからの剥がれが悪い等の製造上の問題を生じ、又、70質量%を超えると濾過抵抗が大きくなり実用に適さない。
【0015】
また、本発明の濾材層に用いられる繊維径1μm以上の有機繊維には、上記繊維径1〜5μmの繊維の他に、繊維径8μm以上の有機繊維としてポリオレフィン、ポリアミド、ポリエステル、ポリアクリルアミド、ビニロン等の合成繊維のほか、パルプ、リンター、リント、又はその誘導体等が挙げられ、繊維径1μm以上の有機繊維と併用することが望ましい。
【0016】
本発明に用いられる繊維状有機バインダーは、芯鞘タイプ(コアシェルタイプ)、並列タイプ(サイドバイサイドタイプ)などの複合繊維が挙げられる。例えば、ポリプロピレン(芯)とポリエチレン(鞘)の組み合わせ(商品名:ダイワボウNBF−H:大和紡績社製)、ポリプロピレン(芯)とエチレンビニルアルコール(鞘)の組み合わせ(商品名:ダイワボウNBF−E:大和紡績社製)、ポリプロピレン(芯)とポリエチレン(鞘)の組み合わせ(商品名:チッソESC:チッソ社製)、高融点ポリエステル(芯)と低融点ポリエステル(鞘)の組み合わせ(商品名:メルテイ4080:ユニチカ社製)が挙げられる。また、低融点のみで構成される繊維状バインダー(全融タイプ)や、ポリビニルアルコール系のような熱水性バインダーは、濾材の乾燥工程で皮膜を形成し易く、濾過抵抗が大きくなり好ましくないが、特性を阻害しない範囲で使用することはできる。 繊維状有機バインダーの繊維径は特に限定されないが、3〜50μmの範囲であることが好ましく、より好ましくは7〜20μmである。
【0017】
繊維径8μm以上の有機繊維の配合量は特に限定しないが、10〜95質量%であるが、これらのうち繊維状有機バインダーの配合量は全繊維量の20〜60質量%が適当であり、好ましくは30〜50質量%である。20質量%未満では濾材の表面強度が弱く、フィルターユニットの加工性の点で問題があり、60質量%を超えると濾過抵抗が大きくなり実用上問題がある。又、繊維径5μm以上の有機繊維が70質量%を超えるとシートの平均空隙径が大きくなり、濾過性能が悪くなる。
【0018】
本発明の濾材層の坪量は5〜50g/m2が適当であり、好ましくは10〜40g/m2である。5g/m2未満ではピンホール等により信頼性の点で問題がある。50g/m2を越えると濾過抵抗が上昇し抄紙性が悪くなり、又、表面濾過の点から坪量を増やしても効果は期待できず、コスト面でも問題がある。
【0019】
本発明の濾材層の平均空隙径は表面濾過の点で10〜50μmが適当であり、好ましくは12〜40μmである。液体中の比較的粗い粒子(平均粒子径:2〜10ミクロン、粒子径測定器:マイクロトラックにて測定)を対象とすることから平均ポア径が10μm未満では過剰なスペックとなり、平均空隙径が50μmを超えると粒子が濾材にトラップされることなく流出してしまう。また、濾材層と支持体層合わせた濾材全体の平均空隙径は、濾材層のみの空隙径より若干小さく7〜45μmである。
最大空隙径については特に限定しないが、濾材の均質性の点で最大空隙径は平均空隙径の3倍以下が好ましい。
【0020】
本発明の支持体に用いられる繊維径が8μm以上の有機繊維とは、ポリオレフィン、ポリアミド、ポリエステル、ポリアクリルアミド、ビニロン等の合成繊維が挙げられ、少なくとも1種類を含有する支持体である。これらの有機繊維の特徴としては、シートに腰を持たせる点で繊維強度が強く、剛直な繊維が好ましい。又、濾材を通過した微細粒子の付着によるライフの低下を抑える点で、皮膜を形成しない棒状(断面の形状が円形、楕円形、繭形等)の形態をした繊維が好ましい。他の使用できる繊維としては、皮膜の少ない未叩解の天然パルプ、麻パルプ、コットンリンター、リント、また、再生繊維としては、レーヨン、キュプラ、リヨセル繊維が、半合成繊維としては、アセテート、トリアセテート、プロミックスが、合成繊維としては、ナイロン、アクリル、ビニロン、ビニリデン、ポリ塩化ビニル、ポリエステル、ポリエチレン、ポリプロピレン、ベンゾエート、ポリクラール、フェノール系などの繊維が挙げられる。上記の繊維の他に、植物繊維として、針葉樹パルプ、広葉樹パルプなどの木材パルプや藁パルプ、竹パルプ、ケナフパルプなどの木本類、草本類を含むものとする。さらに、古紙、損紙などから得られるパルプ繊維も含まれる。
【0021】
支持体層の繊維状有機バインダーの配合量は10〜70質量%の範囲が適当であり、10質量%未満では抄紙後樹脂バインダーを含浸する工程で必要な耐水強度が得られない。又、70質量%を超えると低融点のバインダーの皮膜が多くなり、フィルター濾材全体の圧力損失が高くなり、ライフが短くなる。
【0022】
支持体に用いる繊維の繊維径は8μm以上が適当であり、繊維径が8μm未満では支持体の濾過抵抗が大きくなり、液体の透過性が悪くなる。しかし、抄造安定性を高めるために8μm以下の繊維を混合する事はできる。繊維径の上限は特に限定しないが、抄紙性等を考慮すると繊維径は50μm以下が好ましい。
【0023】
本発明の支持体の坪量は20〜150g/m2が適当であり、好ましくは30〜100g/m2である。20g/m2未満ではひだ折り加工性が悪く、150g/m2を超えると厚みが増し、ユニットに納まる濾材面積が小さくなり、又濾過抵抗が大きくなり実用上問題があると共にコスト面からも好ましくない。
【0024】
本発明の支持体に使用する繊維は、水、及び油等による膨潤の少ない合成繊維を主体としているために、湿潤引張強度が強く、液体の圧力による濾材の破れが無い。
【0025】
本発明のフィルター濾材は、一般紙や湿式不織布を製造するための抄紙機、例えば長網抄紙機、円網抄紙機、傾斜ワイヤー式抄紙機等を2機組合せたコンビネーションマシンによる抄合わせ等により製造される。組合せは同一タイプの抄紙機の組合せ、異種の抄紙機の組合せどちらでも可能である。
【0026】
本発明の濾材の強度、腰(硬さ)を上げる目的で各種バインダーを含浸、コーティング、スプレー方法等で付与することが可能である。用いられるバインダーは、アクリル系、酢酸ビニル系、エポキシ系、ウレタン系、合成ゴム系、塩化ビニリデン系等のラテックス、PVA、澱粉、フェノール樹脂等を単独、又は2種類以上を併用できる。
【0027】
本発明の液体濾過用濾材に付与されるバインダーの量は、該フィルター濾材に対して30質量%以下が適当であり、好ましくは20質量%以下である。30質量%を超えるとフィルター濾材の濾過抵抗が大きくなり、実用上問題がある。該フィルター濾材にバインダーを付与する方法としては、特に限定はしないが、サイズプレス、タブサイズ、スプレー含浸、内添等が挙げられる。
【0028】
又、必要に応じ濾材の特性を阻害しない範囲で撥水剤、分散剤、歩留り向上剤、染料等の添加剤を配合することができる。
【0029】
【実施例】
以下、本発明を実施例により説明するが、本発明はこれらに何等限定されるものではない。
【0030】
実施例1
(濾材層の作製)
パルパー分散機が設置されている2m3の分散タンクに、分散水を1m3注入した後、ケブラー微細繊維(ティアラー400S、ダイセル化学社製)、極細ポリエステル繊維(帝人社製、0.1デシテックス×3mm、直径約3μm)、ポリエステル繊維(帝人社製、0.6デシテックス×5mm、直径約7μm)、繊維状有機バインダーとして熱接着性(芯鞘タイプ)ポリエステル繊維(ユニチカ社製4080、2.2デシテックス×5mm、直径約15μm)を1:20:29:50の繊維配合比率になるように投入し、10分間分散して水性スラリーを作製し、円網抄紙機を用いて坪量20g/m2の濾材層を形成する。
(支持体層の作製)
パルパー分散機が設置された2m3の分散タンクに、分散水を1m3注入した後、NBKP(三菱製紙社製)、繊維状有機バインダーとして熱接着性(芯鞘タイプ)ポリエステル繊維(ユニチカ社製4080、2.2×5mm、直径約15μm)を40:60の繊維配合比率になるように投入し、30分間分散して水性スラリーを作製し、円網抄紙機を用いて坪量45g/m2の支持体層を形成する。
上記の濾材層と支持体層とを円網抄紙機2機が直列に設置されているコンビネーションマシンで湿紙の状態で抄き合わせて一体化した後、プレス加工し、表面温度120℃のシリンダードライヤーで乾燥して65g/m2の濾材を作製した。該濾材に市販のアクリル系エマルジョンを固形分で5g/m2含浸後、乾燥させ液体濾過用濾材を作製した。
【0031】
実施例2
実施例1の濾材層の繊維配合比率を2.5:20:27.5:50にした以外は、実施例1と同様の方法で液体濾過用濾材を作製した。
【0032】
実施例3
実施例1の濾材層の繊維配合比率を4.5:20:25.5:50にした以外は、実施例1と同様の方法で液体濾過用濾材を作製した。
【0033】
比較例1
実施例1の濾材層の繊維配合比率を0:20:30:50にした以外は、実施例1と同様の方法で液体濾過用濾材を作製した。
【0034】
比較例2
実施例1の濾材層の繊維配合比率を6:20:24:50にした以外は、実施例1と同様の方法で液体濾過用濾材を作製した。
【0035】
実施例及び比較例における空隙径、ライフは以下の方法で測定した。
濾材の空隙径:濾材の空隙径は、ASTM−F−316記載のバブルポイント法及びミーンフロー法により最大空隙径、平均空隙径を求めた。
【0036】
ライフ:ライフ試験は、液体濾過用濾材をプリーツ加工してフィルターを作製し、粗加工用の直径0.32mmのワイヤーを使用する放電加工機のフィルターセット部位にセットし、連続で切削加工した際にフィルター圧が2.0kg/cm2になるまでの時間を測定した。
結果を表1に示す。
【0037】
【表1】
【0038】
これらの結果より、繊維径が1μm以下にフィブリル化された有機繊維を1〜4.5質量%配合した実施例1,2,3の液体濾過用濾材は、繊維径が1μm以下にフィブリル化された有機繊維を全く配合していない比較例1、並びに6質量%配合した比較例2に比較してライフが長いことが分かる。また、比較例1はライフ測定の際の初期の濁りが著しく、実際に使用することは不可能な状態であったが、実施例1〜3,並びに比較例2は使用可能な濁りの状態であった。プリーツ加工性、引張強度、湿潤引張強度に関しては、実施例1〜3、比較例1、2共に良好であり問題なかった。
【0039】
【発明の効果】
本発明の液体濾過用濾材は、濾材層に配合する繊維径が1μm以下にフィブリル化された有機繊維の配合比率をコントロールする事により、放電加工機の荒削り加工の際等にライフを満足させることが出来る。そのためには、他に繊維径1μm以上の有機繊維として繊維径1〜5μmの極細有機繊維、及び繊維径8μm以上の有機繊維を組み合わせることが重要である。これにより繊維径1μm以下の繊維の凝集が抑えられ、繊維径1〜5μmの極細繊維が良く絡み合いより均一なネットワークを形成し、均質で微細な空隙径を有し、粒子を濾材表面で濾過するという表面濾過機能を有するためである。
又、この濾材に濾過抵抗の少ない繊維から成る支持体を抄合わせすることにより、濾材のみでは得られなかったひだ折り加工性、湿潤引張強度が良好で、ライフの長い液体濾過用濾材が得られた。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a filter medium for liquid filtration for efficiently removing particles contained in a liquid and obtaining a clean liquid. More specifically, processing scraps contained in the machining fluid of electric discharge machines used for metal sculpture, cutting, etc., and ultra-high used in processes such as cutting, polishing and etching of substrate wafers in IC production. The present invention relates to a filter medium for efficiently removing processing debris contained in pure water to obtain a clean liquid, and a filter medium for filtering various liquids such as automobile engine oil and fuel. In particular, it is suitable for the following uses (1) and (2) corresponding to diversified electric discharge machines.
(1) The thickness of the filter medium is thin and a large area of filter medium can be taken into the filter unit.
(2) Applicable to a machining fluid in which the particle size of shavings generated from a workpiece is relatively coarse.
[0002]
[Prior art]
Conventionally, liquid filtration filters used in electrical discharge machines and IC production processes, engine oil for automobiles, and various liquid filtration filters such as fuel are impregnated with phenol resin or the like on a mixed sheet of natural pulp and organic fibers. Sheet, polyester nonwoven fabric (spunbond), etc. are used, but there are problems such as low filtration efficiency and short life.
[0003]
In other words, the conventional filter medium has a function of trapping particles inside the filter medium, and a relatively coarse filter medium is used to extend the life, and the target filtration efficiency is reached until particles enter the filter medium and fill the gap of the filter medium to some extent. Cannot be obtained. When the gaps in the filter medium are filled, there is a problem that the pressure loss increases and the liquid permeability is deteriorated and the life is shortened, or the particles inside the filter medium flow out from the filter medium and the efficiency is deteriorated.
[0004]
In addition, a porous sheet such as a fluororesin is available as a high-performance filter, but it is expensive and is limited to special applications, and is not suitable as a filter medium for processing a large amount of liquid, such as an electric discharge machine or an IC production process.
[0005]
As a method for solving these problems, a filter medium using fibrillated organic fibers has been developed (Japanese Patent Laid-Open No. 59-92011). However, when such a fiber is used alone and an attempt is made to produce by a normal wet papermaking method, a problem in production such as a large amount of loss from the wire and clogging of the wire is unavoidable. Even if a filter medium is obtained, the filter medium obtained is very dense because the fibers are fine. As a result, although high filtration efficiency is obtained, the filtration resistance is high and not suitable for practical use. In the case where monofilament fibers having a relatively large diameter are included in order to reduce the filtration resistance, the loss of fine fibers in the paper making process is increased, the filtration efficiency is remarkably lowered, and sufficient performance cannot be obtained.
[0006]
In JP-A-3-12208, fibrillation was achieved by blending organic fibers fibrillated to a fiber diameter of 1 μm or less, ultrafine organic fibers having a fiber diameter of 1 to 5 μm, and organic fibers having a fiber diameter of 5 μm or more. There has been proposed a filter medium that suppresses the aggregation of organic fibers, forms a homogeneous network, and further performs calendering to improve the smoothness of the filter medium surface and has a surface filtration mechanism. Since this filter medium is a surface filtration mechanism, the filtration performance and life are very good. However, the filter medium is very thin and has no waist (hardness), so that it cannot be folded. Furthermore, since the wet strength is very weak, when it is used for a filter for an electric discharge machine, a filter for an automobile engine oil, or a filter for an automobile fuel, it is broken by the liquid pressure.
[0007]
JP-A-61-268321, JP-A-61-268325, JP-A-61-275495, etc. exemplify two-layer filter media with a density gradient. The filtration efficiency and life are balanced by combining the above filtration media, which is basically different from the method of obtaining filtration performance on the surface of the filtration media (only the filtration media layer) of the present invention.
[0008]
In order to solve these problems, the filter medium for liquid filtration disclosed in Japanese Patent Application Laid-Open No. 06-126112 filed by the present inventor has high filtration efficiency, excellent crease processability, strong wet strength, and is currently useful. However, with the diversification and speeding up of EDM machines, the diameter of wire used and the machining speed have also diversified, and the development of new filter media has been required to meet the emphasis on life. . That is, since the particle size of the shavings generated during rough cutting is large, a filter medium having a long life is required even for large particles.
[0009]
[Problems to be solved by the invention]
An object of the present invention is to solve the above-mentioned drawbacks and problems, and to provide a filter medium for liquid filtration having a long life with respect to a machining fluid in which the particle size of shavings generated from a workpiece is relatively coarse.
[0010]
[Means for Solving the Problems]
As a method for solving these problems, as a result of studying application of various fibers to filter media, it was found that excellent filter characteristics could be obtained, and the present invention was completed.
[0011]
That is, the filter medium for liquid filtration of the present invention is obtained by integrating the filter medium layer and the support layer, and the filter medium layer is fibrillated to a fiber diameter of 1 μm or less. 5 or less and less than 5% by mass and organic fiber having a fiber diameter of 1 μm or more, using a fibrous organic binder in part or all of the organic fiber having a fiber diameter of 1 μm or more, and having an average pore diameter of 10 to 50 μm, It consists of a basis weight of 5 to 50 g / m 2 , and the support layer is an organic fiber having a fiber diameter of 8 μm or more, and is made of polyolefin, polyamide, polyester, acrylic, vinylon, or vinyl chloride acetate. comprising at least one synthetic fiber, a portion of polyester, polyolefin, and contains at least one fibrous organic binder vinyl PVC acetate-based, and it from the basis weight of 20 to 150 g / m 2 Liquid is a filtration medium.
Furthermore, the ratio of the basis weight of the filter medium layer to the basis weight of the support layer is in the range of 1: 0.5 to 1:10, and the filter medium for liquid filtration uses the filter medium layer as the upstream side.
In addition, the filter medium is a filter medium for liquid filtration in which a filter medium layer and a support layer are combined by wet papermaking.
Moreover, the organic fiber fibrillated to have a fiber diameter of 1 μm or less is at least one of aromatic polyamide fiber, rayon fiber, lyocell fiber produced by a solvent spinning method, and pulp fiber. .
[0012]
DETAILED DESCRIPTION OF THE INVENTION
The filter medium for liquid filtration according to the present invention is a liquid obtained by combining a thin filter medium layer having surface filtration performance and a support layer having high liquid permeability, high strength, and good fold-foldability. It is a filter medium for filtration.
Examples of the organic fiber fibrillated to have a fiber diameter of 1 μm or less used in the filter medium of the present invention include those processed by the following method.
1) A method in which a synthetic polymer solution is allowed to flow in a poor solvent of the polymer while applying a shearing force to precipitate fibrous fibrils (Fibrid method, Japanese Patent Publication No. 35-11851).
2) A method of precipitating fibrils by polymerizing a synthetic monomer to cause shearing (polymerization shearing method, Japanese Patent Publication No. 47-21898).
3) A method in which two or more incompatible polymers are mixed, melt-extruded, or spun, and fibrillated into fibers by mechanical means after cutting (split method, Japanese Examined Patent Publication No. 35-9651).
4) Method of mixing two or more incompatible polymers, melt-extrusion or spinning, immersing in a solvent after cutting, dissolving one polymer, and fibrillating into a fiber (polymer blend dissolution method) U.S. Pat. No. 3,382,305).
5) A method in which a synthetic polymer is expelled from the high-pressure side to the low-pressure side at a boiling point of the solvent or higher and then fibrillated into a fiber (Filash spinning method, Japanese Patent Publication No. 36-16460).
6) A method in which an alkali-soluble component that is incompatible with the polyester is blended into a polyester polymer, the amount is reduced with an alkali and beaten, and then fibrillated into a fibrous form (alkali weight-loss beating method, Japanese Patent Laid-Open No. 56-315). Issue gazette).
7) A method in which highly crystalline and highly oriented fibers such as Kevlar fibers are cut into appropriate fiber lengths, dispersed in water, and fibrillated using a homogenizer, a beating machine or the like (Japanese Patent Laid-Open No. 56-100801) JP-A-59-92011) is a fiber obtained by a method such as Tearer 400S (manufactured by Daicel) obtained by fibrillating Kevlar fiber with a homogenizer, and obtained by an alkali weight loss beating method. Serisch 100S (manufactured by Daicel), which is a fibrillated polyester pulp and wood pulp produced by a homogenizer, lyocell fiber produced by a solvent spinning method, wood pulp, and other synthetic fibers such as nylon, polyethylene, polypropylene, etc., beater, PFI Examples thereof include fibers beaten with a mill, ball mill, dyno mill or the like.
[0013]
The blending amount of these fibrillated organic fibers is suitably 0.5 or more and less than 5% by mass, preferably 1 to 4.5% by mass. If it is less than 0.5% by mass, the average pore diameter of the filter medium becomes large and sufficient trapping efficiency cannot be obtained, and if it exceeds 5% by mass, the filter medium for liquid filtration disclosed in JP-A-06-126112 has a high value. It becomes a performance filtration area.
[0014]
Examples of the organic fiber having a fiber diameter of 1 μm or more used in the filter medium layer of the present invention include ultrafine fibers such as 1 to 5 μm polyester fiber, PVA fiber, and acrylic fiber. The amount of these fibers is appropriately 5 to 70% by mass, preferably 10 to 60% by mass. If it is less than 5% by mass, fine fibers of 1 μm or less will be washed away from the wire, and sufficient filtration efficiency will not be obtained. Also, production problems such as poor peeling of the wet paper from the wire will occur. If it exceeds 50%, the filtration resistance increases and is not suitable for practical use.
[0015]
In addition, the organic fiber having a fiber diameter of 1 μm or more used in the filter medium layer of the present invention includes polyolefin, polyamide, polyester, polyacrylamide, vinylon as the organic fiber having a fiber diameter of 8 μm or more in addition to the fiber having a fiber diameter of 1 to 5 μm. In addition to synthetic fibers such as these, pulp, linter, lint, or derivatives thereof may be mentioned, and it is desirable to use them together with organic fibers having a fiber diameter of 1 μm or more.
[0016]
Examples of the fibrous organic binder used in the present invention include composite fibers such as a core-sheath type (core-shell type) and a parallel type (side-by-side type). For example, a combination of polypropylene (core) and polyethylene (sheath) (trade name: Daiwabo NBF-H: manufactured by Daiwabo Co., Ltd.), a combination of polypropylene (core) and ethylene vinyl alcohol (sheath) (trade name: Daiwabo NBF-E: Daiwabo Co., Ltd.), combination of polypropylene (core) and polyethylene (sheath) (trade name: Chisso ESC: manufactured by Chisso), combination of high-melting polyester (core) and low-melting polyester (sheath) (trade name: Melty 4080 : Manufactured by Unitika Ltd.). In addition, fibrous binders composed of only a low melting point (total melt type) and hot-water binders such as polyvinyl alcohol are not preferred because they tend to form a film in the drying step of the filter medium and increase the filtration resistance. It can be used as long as the properties are not impaired. Although the fiber diameter of a fibrous organic binder is not specifically limited, It is preferable that it is the range of 3-50 micrometers, More preferably, it is 7-20 micrometers.
[0017]
The blending amount of the organic fiber having a fiber diameter of 8 μm or more is not particularly limited, but is 10 to 95% by mass. Among these, the blending amount of the fibrous organic binder is suitably 20 to 60% by mass of the total fiber amount, Preferably it is 30-50 mass%. If the amount is less than 20% by mass, the surface strength of the filter medium is weak, and there is a problem in terms of workability of the filter unit. If the amount exceeds 60% by mass, the filtration resistance increases and there is a practical problem. On the other hand, when the organic fiber having a fiber diameter of 5 μm or more exceeds 70% by mass, the average void diameter of the sheet increases and the filtration performance deteriorates.
[0018]
5-50 g / m < 2 > is suitable for the basic weight of the filter medium layer of this invention, Preferably it is 10-40 g / m < 2 >. If it is less than 5 g / m 2 , there is a problem in terms of reliability due to pinholes and the like. If it exceeds 50 g / m 2 , the filtration resistance increases and the paper-making property is deteriorated, and even if the basis weight is increased from the viewpoint of surface filtration, the effect cannot be expected, and there is a problem in terms of cost.
[0019]
The average pore diameter of the filter medium layer of the present invention is suitably 10 to 50 μm, preferably 12 to 40 μm in terms of surface filtration. Since the target is relatively coarse particles in liquid (average particle size: 2 to 10 microns, particle size measuring device: measured with Microtrac), the average pore size is less than 10 μm, resulting in excessive specifications, and the average pore size is If it exceeds 50 μm, the particles flow out without being trapped by the filter medium. Moreover, the average void diameter of the entire filter medium combined with the filter medium layer and the support layer is 7 to 45 μm, which is slightly smaller than the void diameter of only the filter medium layer.
The maximum void diameter is not particularly limited, but the maximum void diameter is preferably 3 times or less of the average void diameter in terms of the homogeneity of the filter medium.
[0020]
The organic fiber having a fiber diameter of 8 μm or more used in the support of the present invention includes synthetic fibers such as polyolefin, polyamide, polyester, polyacrylamide, and vinylon, and is a support containing at least one kind. As a characteristic of these organic fibers, a fiber having a strong fiber strength and a rigid fiber is preferable in that the sheet has a waist. In addition, a fiber having a rod-like shape (a cross-sectional shape is circular, elliptical, bowl-shaped, etc.) that does not form a film is preferable in terms of suppressing a reduction in life due to adhesion of fine particles that have passed through the filter medium. Other usable fibers include unpulverized natural pulp, hemp pulp, cotton linter, and lint with little film, and regenerated fibers include rayon, cupra, and lyocell fibers, and semisynthetic fibers include acetate, triacetate, Examples of synthetic fibers of synthetic fibers include nylon, acrylic, vinylon, vinylidene, polyvinyl chloride, polyester, polyethylene, polypropylene, benzoate, polyclar, and phenolic fibers. In addition to the above-described fibers, the plant fibers include wood pulps such as softwood pulp and hardwood pulp, woods such as straw pulp, bamboo pulp, kenaf pulp, and herbs. Furthermore, pulp fibers obtained from waste paper, waste paper and the like are also included.
[0021]
The blending amount of the fibrous organic binder in the support layer is suitably in the range of 10 to 70% by mass, and if it is less than 10% by mass, the water resistance required in the step of impregnating the resin binder after papermaking cannot be obtained. On the other hand, when the content exceeds 70% by mass, the binder film having a low melting point is increased, the pressure loss of the entire filter medium is increased, and the life is shortened.
[0022]
The fiber diameter of the fiber used for the support is suitably 8 μm or more. When the fiber diameter is less than 8 μm, the filtration resistance of the support increases and the liquid permeability deteriorates. However, it is possible to mix fibers of 8 μm or less in order to improve papermaking stability. The upper limit of the fiber diameter is not particularly limited, but the fiber diameter is preferably 50 μm or less in consideration of papermaking properties.
[0023]
20-150 g / m < 2 > is suitable for the basic weight of the support body of this invention, Preferably it is 30-100 g / m < 2 >. If it is less than 20 g / m 2 , the fold-folding processability is poor, and if it exceeds 150 g / m 2 , the thickness increases, the area of the filter medium that can be accommodated in the unit decreases, the filtration resistance increases, and there are practical problems and is also preferable from the cost aspect. Absent.
[0024]
Since the fibers used for the support of the present invention are mainly composed of synthetic fibers that are less swelled by water, oil, etc., the wet tensile strength is strong and the filter medium is not broken by the pressure of the liquid.
[0025]
The filter medium of the present invention is manufactured by combining with a combination machine that combines two paper machines for producing general paper and wet nonwoven fabric, for example, a long net paper machine, a circular net paper machine, and an inclined wire type paper machine. Is done. The combination can be a combination of the same type of paper machines or different types of paper machines.
[0026]
Various binders can be impregnated, coated, sprayed or the like for the purpose of increasing the strength and waist (hardness) of the filter medium of the present invention. As the binder to be used, acrylic type, vinyl acetate type, epoxy type, urethane type, synthetic rubber type, vinylidene chloride type latex, PVA, starch, phenol resin and the like can be used alone or in combination of two or more.
[0027]
30 mass% or less is suitable for the quantity of the binder provided to the filter medium for liquid filtration of this invention with respect to this filter medium, Preferably it is 20 mass% or less. When it exceeds 30% by mass, the filtration resistance of the filter medium increases, which causes a practical problem. The method for applying the binder to the filter medium is not particularly limited, and examples include size press, tab size, spray impregnation, and internal addition.
[0028]
If necessary, additives such as a water repellent, a dispersant, a yield improver, and a dye can be blended within a range that does not impair the characteristics of the filter medium.
[0029]
【Example】
EXAMPLES Hereinafter, although an Example demonstrates this invention, this invention is not limited to these at all.
[0030]
Example 1
(Preparation of filter media layer)
After injecting 1 m 3 of dispersed water into a 2 m 3 dispersion tank where a pulper disperser is installed, Kevlar fine fibers (Tearer 400S, manufactured by Daicel Chemical Industries), extra fine polyester fibers (manufactured by Teijin Limited, 0.1 dtex × 3 mm, diameter of about 3 μm), polyester fiber (manufactured by Teijin Ltd., 0.6 decitex × 5 mm, diameter of about 7 μm), heat-adhesive (core-sheath type) polyester fiber (unit 8040, manufactured by Unitika Ltd.) as a fibrous organic binder Decitex × 5 mm, diameter of about 15 μm) is added so as to have a fiber blending ratio of 1: 20: 29: 50, and dispersed for 10 minutes to prepare an aqueous slurry, and a basis weight of 20 g / m using a circular net paper machine. 2 filter media layers are formed.
(Preparation of support layer)
After injecting 1m 3 of dispersion water into a 2m 3 dispersion tank where a pulper disperser is installed, NBKP (manufactured by Mitsubishi Paper Industries), thermal adhesive (core-sheath type) polyester fiber (manufactured by Unitika) as a fibrous organic binder 4080, 2.2 × 5 mm, diameter of about 15 μm) is added so as to have a fiber blending ratio of 40:60, and dispersed for 30 minutes to prepare an aqueous slurry, and a basis weight of 45 g / m using a circular net paper machine. A second support layer is formed.
The filter media layer and the support layer are combined in a wet paper state by a combination machine in which two circular paper machines are installed in series, and then pressed into a cylinder with a surface temperature of 120 ° C. It dried with the drier and produced the filter medium of 65 g / m < 2 >. The filter medium was impregnated with a commercially available acrylic emulsion at a solid content of 5 g / m 2 and dried to prepare a filter medium for liquid filtration.
[0031]
Example 2
A filter medium for liquid filtration was produced in the same manner as in Example 1, except that the fiber blending ratio of the filter medium layer of Example 1 was changed to 2.5: 20: 27.5: 50.
[0032]
Example 3
A filter medium for liquid filtration was produced in the same manner as in Example 1, except that the fiber blending ratio of the filter medium layer of Example 1 was 4.5: 20: 25.5: 50.
[0033]
Comparative Example 1
A filter medium for liquid filtration was produced in the same manner as in Example 1 except that the fiber blending ratio of the filter medium layer of Example 1 was changed to 0: 20: 30: 50.
[0034]
Comparative Example 2
A filter medium for liquid filtration was produced in the same manner as in Example 1 except that the fiber blending ratio of the filter medium layer of Example 1 was changed to 6: 20: 24: 50.
[0035]
The void diameter and life in Examples and Comparative Examples were measured by the following methods.
Pore diameter of filter medium: As for the void diameter of the filter medium, the maximum void diameter and average void diameter were determined by the bubble point method and mean flow method described in ASTM-F-316.
[0036]
Life: In the life test, a filter is prepared by pleating a filter medium for liquid filtration, set on a filter set part of an electric discharge machine using a wire with a diameter of 0.32 mm for rough machining, and continuously cut. The time until the filter pressure reached 2.0 kg / cm 2 was measured.
The results are shown in Table 1.
[0037]
[Table 1]
[0038]
From these results, the filter media for liquid filtration of Examples 1, 2, and 3 containing 1 to 4.5% by mass of organic fibers fibrillated to a fiber diameter of 1 μm or less were fibrillated to a fiber diameter of 1 μm or less. It can be seen that the life is longer than Comparative Example 1 in which no organic fiber was blended and Comparative Example 2 in which 6% by mass was blended. Moreover, although the initial turbidity at the time of life measurement was remarkable in Comparative Example 1, it was in a state where it could not be actually used, but Examples 1 to 3 and Comparative Example 2 were in a usable turbid state. there were. Regarding pleatability, tensile strength, and wet tensile strength, Examples 1 to 3 and Comparative Examples 1 and 2 were all good and had no problem.
[0039]
【The invention's effect】
The filter medium for liquid filtration according to the present invention satisfies the life in the roughing process of an electric discharge machine by controlling the blending ratio of the organic fibers fibrillated to a fiber diameter of 1 μm or less in the filter medium layer. I can do it. For that purpose, it is important to combine an organic fiber having a fiber diameter of 1 μm or more and an organic fiber having a fiber diameter of 8 μm or more as an organic fiber having a fiber diameter of 1 μm or more. As a result, aggregation of fibers having a fiber diameter of 1 μm or less is suppressed, ultrafine fibers having a fiber diameter of 1 to 5 μm are well entangled to form a more uniform network, have a uniform and fine void diameter, and filter the particles on the surface of the filter medium. This is because it has a surface filtration function.
Also, by combining the filter medium with a support made of fibers with low filtration resistance, a liquid filter medium for filtration with a long life can be obtained that has good fold-folding properties and wet tensile strength that could not be obtained only with the filter medium. It was.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002254459A JP3784354B2 (en) | 2002-08-30 | 2002-08-30 | Filter media for liquid filtration |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002254459A JP3784354B2 (en) | 2002-08-30 | 2002-08-30 | Filter media for liquid filtration |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004089853A JP2004089853A (en) | 2004-03-25 |
JP3784354B2 true JP3784354B2 (en) | 2006-06-07 |
Family
ID=32060220
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002254459A Expired - Fee Related JP3784354B2 (en) | 2002-08-30 | 2002-08-30 | Filter media for liquid filtration |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3784354B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007113135A (en) * | 2005-10-19 | 2007-05-10 | Daifuku Paper Mfg Co Ltd | Filter paper for liquid filtration and method for producing the filter paper for liquid filtration |
US7456120B2 (en) * | 2006-09-13 | 2008-11-25 | E. I. Du Pont De Nemours And Company | Bag filter comprising meta-aramid and acrylic fiber |
JP6888242B2 (en) * | 2015-03-18 | 2021-06-16 | 東レ株式会社 | Extra fine fiber sheet |
CN113931010B (en) * | 2020-07-13 | 2023-11-10 | 杭州特种纸业有限公司 | Fuel filter paper and preparation method thereof |
-
2002
- 2002-08-30 JP JP2002254459A patent/JP3784354B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2004089853A (en) | 2004-03-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5288402A (en) | Liquid filter medium including a fibrillated filtering layer and an organic fiber support | |
JP2021521000A (en) | Filtration medium particularly useful for filtering fluids associated with wire electric discharge machining (WEDM) processes | |
JP2008000652A (en) | Filter medium | |
JP4086729B2 (en) | Filter media and filter media for liquid filtration | |
US8662316B2 (en) | Filter medium for liquid filtration and process for producing the same | |
JP3305372B2 (en) | Filter media for liquid filtration | |
JP4738579B2 (en) | Filter medium for liquid filtration and method for producing the same | |
JP4120737B2 (en) | Filter material for liquid filtration | |
JP5599071B2 (en) | Filter media | |
JP3784354B2 (en) | Filter media for liquid filtration | |
JP2006061789A (en) | Filter media for liquid filtration | |
KR20190022519A (en) | Separator for capacitors | |
JP2005058832A (en) | Filter media for liquid filtration | |
JP2014073432A (en) | Filter medium | |
JP2633355B2 (en) | Filter media for liquid filtration | |
JPH09841A (en) | Filter material and filter for liquid filtration using the same | |
JP5759435B2 (en) | Filter media | |
JP2006055735A (en) | Filter media for liquid filtration | |
JP2016137459A (en) | Nonwoven fabric for filter, and filter medium for filter | |
JP4839709B2 (en) | Filter and manufacturing method thereof | |
JP2003038918A (en) | Filter medium for liquid filtration and method for producing the same | |
JP2019034269A (en) | Filter medium for filter, and filter medium for laminated filter | |
JP2007083184A (en) | Filter media and filter media for liquid filtration | |
JP2755425B2 (en) | Filter materials for high-performance air filters | |
JP2003129393A (en) | Organic ultra-fine fiber sheet |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20040709 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20051130 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20051206 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060206 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20060307 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20060314 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 3784354 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090324 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100324 Year of fee payment: 4 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100324 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110324 Year of fee payment: 5 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110324 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120324 Year of fee payment: 6 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120324 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130324 Year of fee payment: 7 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130324 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140324 Year of fee payment: 8 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |