[go: up one dir, main page]

JP3782363B2 - Oil water separation method and apparatus for drainage drainage - Google Patents

Oil water separation method and apparatus for drainage drainage Download PDF

Info

Publication number
JP3782363B2
JP3782363B2 JP2002065520A JP2002065520A JP3782363B2 JP 3782363 B2 JP3782363 B2 JP 3782363B2 JP 2002065520 A JP2002065520 A JP 2002065520A JP 2002065520 A JP2002065520 A JP 2002065520A JP 3782363 B2 JP3782363 B2 JP 3782363B2
Authority
JP
Japan
Prior art keywords
tank
drain
water
oil
drainage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002065520A
Other languages
Japanese (ja)
Other versions
JP2003260466A (en
Inventor
哲夫 外谷
昭宏 竹前
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Orion Machinery Co Ltd
Original Assignee
Orion Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Orion Machinery Co Ltd filed Critical Orion Machinery Co Ltd
Priority to JP2002065520A priority Critical patent/JP3782363B2/en
Publication of JP2003260466A publication Critical patent/JP2003260466A/en
Application granted granted Critical
Publication of JP3782363B2 publication Critical patent/JP3782363B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Water Treatment By Electricity Or Magnetism (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、帯電した油粒子を含むコンプレッサーのドレンを油水分離して放流可能な処理水とするためのシステムにおいて、特に、余分なスラッジを排出することなく油粒子の電荷を除去するための方法に関する。
【0002】
【従来の技術】
工場等で使用されるコンプレッサー等からはドレントラップを介して常時ドレン水が排出されている。ドレン水は油分を含むので、ドレン配管に油水分離装置を設けて油分の分離を行い環境基準を満たす一定の品質まで水質を改善してから放流する必要がある。一般的に、油水分離の方法としては、比重差による浮上分離、疎水コロイドに少量のイオンを加える凝析、微細気泡による凝集(補集)、活性炭や吸着材による吸着が知られている。
【0003】
コンプレッサーから排出されるドレン水は微細な油粒子を含み、通常は単純な油粒子と帯電した油粒子の両方を有する。単純な油粒子は比較的簡単に安定した粗大な油粒子へと変化し、また貯溜部の表面に浮上するので比重分離・吸着分離等の方法により容易に分離できるが、帯電した油粒子は水中では負電荷により反発し合って微細な粒子のまま集合しにくく、安定な親水性コロイド溶液を形成するので、吸着材等による分離が難しい。例えば高圧コンプレッサやレシプロ型コンプレッサーから排出されるドレンでは、高温高圧下で運転されるためにこのような帯電した油粒子の割合が多い。そこで油粒子の電荷を除去するために、電解法を用いて金属陽イオンにより油粒子の電荷を除去する方法が用いられる。
【0004】
特開平11−114304号明細書記載の発明は、浮上油分離槽、電解槽、吸着槽の順で一連に接続し、吸着槽に加圧空気供給手段を接続した油水分離装置を開示している。水に混合した油分は、電解槽で凝集浮上分離して、吸着槽で空気で攪拌しながら吸着させている。
【0005】
特許第2691119号明細書記載の発明は、分離槽、電解槽、浮上層を備えた電解法による密閉加圧式油水分離器において、前期分離槽と電解槽の間に空気(気泡)溶解器と減圧弁とを設けている。この発明において、油分は電解処理によって生成されるスラッジに凝集吸着させ、気泡によってフロックの浮上を助長させ、分離している。
【0006】
【発明が解決すべき課題】
電解分離手段を用いる従来の油水分離方法では、いずれも電極から過剰の金属イオンを溶出させることにより水酸化アルミニウムAl(OH)などのフロックを生じさせ、これを重力分離や吸着分離で回収することにより油を取り除いているが、分離されるAl(OH)フロックは産業廃棄物として処理しなければならずコストがかかるし装置の保守の手間も大きい。また金属イオンの使用量が大きいと陽電極が早く消耗し、電極の寿命を縮める。さらに余分な電力を消費することになる。
【0007】
本発明は帯電油粒子を含むドレン水の処理方法において、産業廃棄物であるフロックの発生を押さえ、かつ維持コストが安く電力の消費を節約できるような、油粒子の電荷除去方法を提供することを目的とする。
【0008】
【課題を解決するための手段】
請求項1記載の発明は、ドレン水を前処理槽に受け入れて貯溜し、前処理槽の水を金属イオンを供給可能な電極を備えた電解槽に所定量ずつ導入して電解処理し、油粒子の負電荷を除去し凝集しやすくしたのち後処理槽で補集させるドレン排水の油水分離方法において、前記電解槽の後段にさらに空気吹き込み槽を設けて油粒子を気泡で凝集すると共に、ドレンの送り込みから油粒子の帯電除去に要する一定時間後に自動的に電極電流を遮断することを特徴とするドレン排水の油水分離方法により、上記の課題を解決する。
【0009】
請求項2記載の発明は、ドレン水を貯溜する前処理槽と、前処理槽内のドレン水をドレン水位に応じて一定量ずつ下流に給送するドレン送り込み手段と、金属イオンを供給可能な電極を有する電解槽と、油粒子を気泡で凝集する空気吹き込み槽と、油粒子を吸着材で吸着するする後処理槽と、ドレン送り込み手段の作動後、給送された油粒子の帯電除去に要する一定時間後に自動的に電極への通電を停止する制御手段を有することを特徴とするドレン排水の油水分離装置により、上記の課題を解決する。
【0010】
本発明の帯電除去装置はコンプレッサからドレントラップを介して排出されるドレン水を、いったん受け入れて貯溜する前処理槽を有する。前処理槽はドレン水に含まれる圧縮空気を大気中に放出し、後段に送られるドレン水の圧力を調整する。また、はじめから粗大な油粒子として含まれる油分を吸着又は重力分離により処理する機能を有することが好ましい。
【0011】
前処理槽の下部に貯溜されたドレン水は水位に応じて動作するドレン送り込み手段により電解槽内に送り込まれる。ドレン送り込み手段は水位の上昇を検知するレベルスイッチ等を有し、圧縮空気供給手段に接続されており、ドレンが一定水位に達する毎に所定量のドレン水を電解槽のドレン入口に送り込む。電解槽中の構造は、ドレン送り込み手段から送り込まれたドレン水がすぐに出口から流出することがないように、一定の回り込みを有するような迂回式の流路とすることが好ましい。電解槽は陽極及び陰極を有し、陽極にはアルミニウムや銅などの負電荷中和能力の大きい溶出金属電極を使用する。陰極はステンレス鋼のような安定した材料で構成され、電解槽容器で代用することもできる。電極の電源は、制御手段により制御されている。
【0012】
容器内の電解部位に引き込まれたドレン水が電極間を移動する間に、陽電極から溶出した金属イオンは、電気引力により周囲の負帯電した油粒子を引き寄せ、油粒子の負帯電エネルギーを除去する。電荷を除去された油粒子は疎水性となり、粒子同士の反発力を失って徐々に凝析する。油粒子の負電荷を金属イオンで除去するには、イオン価の大きいものほど有効であり、例えばAlは同量のNaに比べて約500倍、Cuに比べて約8倍の負帯電除去効果を有するから、陽極にアルミニウム電極を使用すれば大きな負帯電除去効果を発揮し、電極も長持ちするのでもっとも好ましい。電荷を除去された単純な油粒子を含むドレン水は、後段の重力分離槽や吸着槽に送られ、油分を除去されて放流可能な処理水となる。
【0013】
従来の方法では油粒子の負電荷を除去した後もさらに電極に通電して金属イオンを析出させ、金属イオンの凝集力を利用して油粒子を含むフロックを生成させて重力分離等の方法により分離していたが、本発明では油粒子の負帯電除去に必要な最小限の金属イオンが溶出する程度に通電し、油粒子の凝集分離は後段の吸着槽等で行うものとした点に特徴がある。
【0014】
アルミニウム電極を用いた実験によれば油粒子の帯電除去が完了するまでの間はほとんどAl(OH)のフロックが生成されず、それ以後に溶出したAl3+イオンが主にフロックの形成を行うことがわかった。そこで電解を油粒子の帯電除去に必要な最小限に押さえれば、フロックの生成を抑制できる。請求項1及び2記載の発明においては、過剰な金属イオンの供給を防ぐため、電源の制御手段がドレンの送り込み1回に対して帯電除去に必要な時間だけ通電し、その後に自動的に電力を遮断するようにしている。
【0015】
金属イオンの過供給を防ぐ方法としては、電極の通電時間を制御するほかに電圧を制御する方法が考えられる。請求項3の発明は、ドレン水を前処理槽に受け入れて貯溜し、前処理槽の水を金属イオンを供給可能な電極を備えた電解槽に導入して電解処理し、油粒子の負電荷を除去し凝集しやすくしたのち後処理槽で補集させるドレン排水の油水分離方法において、前記電解槽の後段にさらに空気吹き込み槽を設けて油粒子を気泡で凝集すると共に、前記電極間の電圧をドレンの油粒子の帯電除去に要する一定電圧以下に保つことを特徴とするドレン排水の油水分離方法により、上記の課題を解決する。
【0016】
請求項4の発明は、ドレン水を貯溜する前処理槽と、前処理槽内のドレン水をドレン水位に応じて一定量ずつ下流に給送するドレン送り込み手段と、金属イオンを供給可能な電極を有する電解槽と、油粒子を気泡で凝集する空気吹き込み槽と、油粒子を吸着材で吸着する後処理槽と、前記電極間の電圧をドレンの油粒子の帯電除去に要する一定電圧以下に保つ制御手段を有することを特徴とするドレン排水の油水分離装置により、上記の課題を解決する。
【0017】
請求項3および4記載の発明は、制御手段がドレン圧送ユニットの作動回数が示すドレン送り込み量に比例して、電極の電圧を加減するものである。請求項1の方法と比べて、ドレンの排出量が多い場合にも対応しやすい長所を有する。
【0018】
請求項5及び6記載の発明は、ドレン水を貯溜する前処理槽と、前処理槽内のドレン水をドレン水位に応じて一定量ずつ下流に給送するドレン送り込み手段と、金属イオンを供給可能な電極を有する電解槽と、電解槽の下流に設けられた水質センサと、油粒子を気泡で凝集する空気吹き込み槽と、油粒子を吸着材で吸着する後処理槽と、水質センサの示す水質に応じて電極の電力供給を停止したり電圧を調節する制御手段を有することを特徴とするドレン排水の油水分離装置により、上記の課題を解決する。水質センサとしては、例えば電解槽の出口管に設けられた電気伝導度センサや、吸着槽の出口に設けられた透光度センサなどを使用することができる。これらのセンサが水質の低下を示した時に電極の電圧を大きくすれば、処理水質の低下を防ぐことができ、逆に水質が一定値以上となった時に電力を遮断すれば過剰な電解を防止し、フロックの発生を防いだり電力を節約できる。
【0019】
【発明の実施の形態】
以下、図面を参照しながら、本発明の具体的な実施形態について説明する。図1において、1は前処理槽、2はドレン送り込み手段、3は電解槽、4は空気吹き込み槽、5は1次吸着槽、6は2次吸着槽、7は制御手段を示す。この実施例では油粒子の電荷除去後の処理に圧縮空気の吹き込みと吸着材による吸着を併用している。
【0020】
本実施例の前処理槽1は、ドレン水を貯溜するほかに、コンプレッサからドレン水と共に排出される圧縮空気を大気中に放出し、ドレン水に元々粗大な油粒子として含まれる油分を吸着等により処理する機能を有する。前処理槽1は底面にドレン入口101及びドレン出口102を有する円筒形の容器からなり、ドレン入口101は図示しない圧縮空気配管のドレントラップに接続されている。ドレン入口101に連通するシャフト103を設け、その周囲に粗処理に適した油吸着材104を充填する。シャフト102側面に設けた微細な噴出口105からドレン水を噴出させ、油吸着材103の内部を流下させる。ドレン水が流下する間に吸着しやすい粗大な油粒子を粗処理するとともに、余分な圧力空気を上部の開口106から放出させる。開口にはドレン水の飛散を防ぐためのバッファ107が設けられている。
【0021】
前処理槽1のドレン出口102に接続されたドレン管には一対の逆止弁V1,V2を介してドレン送り込み手段2が介装されている。逆止弁V1,V2の間から分岐したドレン支管は上方へ延びて前処理槽1の中位の高さに設置されたドレン圧送ユニット201のドレン室202の底部に接続されている。ドレン室202の内部にはドレン液面の上昇を検出して制御手段7に出力するレベルスイッチ203が設けられている。ドレン室202のレベルスイッチ203が検出する水面の高さは前処理槽1の適当なドレン水の高さに対応するようになっている。またドレン室202の上部には電磁弁E1及び圧力調節弁Rを経て圧縮空気の本管に通じる圧縮空気配管が接続されている。ドレンの下流管は逆止弁V2及び立ち上げ部を経て電解槽の上部に接続されている。
【0022】
電解槽3は、ドレン入口301及びドレン出口302を上部に設けた略円筒形のステンレス鋼の容器からなり、内部にアルミニウム製の円筒形の電極303が収容されている(図2)。ドレン入口301から内側に延びたドレン管305の先端部がゴム製の絶縁部304を介して電極303の上部に結合されている。電極303の底部にはドレン水が出入りできる開口部が設けられ、電極303の内側を下降したドレン水は開口部から流出したあと容器底部を回って再び電極303の外側を上昇するようになっている。また周囲が絶縁された導電体からなる軸部306が容器の上面及びドレン管305を貫通して電極303の底部に固定されている。軸部306の上部及び容器に設けられた端子はそれぞれ電源制御部307を介して電源に接続されている。電源制御部307は制御手段7により制御されている。
【0023】
本実施例では、空気吹き込み槽4の出口管には電気伝導度センサS1が設けられている。電気伝導度センサS1は2個の電極と電源回路と電流測定手段を少なくとも有し、ドレン水に流れた電流の大きさを測定することにより電気伝導度の増減を検出し、制御手段7に出力する。別の実施例として、1次吸着槽5又は2次吸着槽6の出口に、非図示のドレン透光度センサを設けることもできる。ドレン透光度センサは特開2001−9205明細書に記載されたものと類似の装置であり、ドレン管内に設置された発光素子と、受光素子と、電源回路と、電流量検出手段とからなり、ドレン水を通過した光の量を測定することにより、ドレン水の透光度又は濁度の増減を検出し、制御手段7に出力する。
【0024】
コンプレッサの運転により排出されたドレン水は、前処理槽1の内部を流下して容器の底部に徐々にたまり、水位が上がる。それにより圧送ユニット201内のレベルスイッチ203が水位の上昇を検出すると、電磁弁E1が開いて圧送ユニット201に一定時間圧縮空気を供給し、ドレン室202及びドレン支管内に引き込まれたドレン水を排出する。ドレン本管の分岐部の前後には逆止弁V1、V2が設けられているので、排出されたドレン水は電解槽3に送られる。前処理槽1のドレン水が一定量に達する毎に約100ccのドレン水が前処理槽1から電解槽3に給送される(タクト処理)。出力75KWのコンプレッサを標準的な気象条件の下で運転すると、圧送されるドレン量は最大18l/時(平均8l/時)程度なので、1分間に数回程度(100ccずつ)のドレン圧送が行われる。
【0025】
電解槽3内のドレン水は圧送ユニット2による数回のタクト処理の間に徐々に電解槽内の流路を進む。後述する制御手段7により軸部306と容器の間に直流電圧(10V)が印可されると、電極303と容器外周部との間に電位差が生じ、陽電極から溶出したAl3+イオンは、電気引力により周囲の負帯電した油粒子を引き寄せ、油粒子の負電荷を除去する。ドレン水はアルミニウム製電極303容器側部の間で上昇する間に帯電除去され、油粒子同士の反発力が除かれ凝集しやすい状態となってドレン出口302から順次流出する。このように電解槽内のドレンはいったん容器の底部を迂回しながら帯電を除去されるのでドレン入口301から流入した未処理のドレンがそのままドレン出口302から流出することはない。
【0026】
例えばアルミニウム電極を有する容積250ccの電解槽に、標準的な油濃度200mg/lのドレン水100ccを新しく流入させ、直流10Vを電極に印加して処理水の水質を測定すると、油粒子の負電荷除去に必要な通電時間はアルミニウム電極の場合で3分程度であった。そこで圧送ユニットの1回の動作に対して通電時間を3分程度とすれば、ほとんどフロックを形成させることなく油粒子の荷電を除去することができる。電極に銅電極を用いた場合、油粒子の負電荷除去に必要な通電時間は8分程度であるので、8分後に通電を停止するようにする。
【0027】
本実施例では制御手段7は電気伝導度センサS1の出力を監視し、ドレン水の送り込みにより上昇した電気伝導度が一定値以下になった時には上記の通電時間内であっても通電を停止して、過剰な電解によるフロックの発生を予防する。
【0028】
電解槽で油粒子の電荷を除去されたドレン水は、後段の空気吹き込み槽4、1次吸着槽5及び2次吸着槽6に送られ、互いに凝集しやすくなった油粒子を気泡で凝集した後吸着材に吸着させて分離され、油濃度が5mg/l以下の放流可能な処理水となって排出される。これらの処理については本出願人の同日の出願「油水分離方法及び装置」に詳細に記載されている。
【0029】
【発明の効果】
本発明のドレン排水の油水分離装置における帯電除去装置は、金属イオンの溶出を押さえることにより産業廃棄物であるスラッジの生成を抑制するので、廃棄物処理が不要となり、溶出電極の寿命が長くなるので、油水分離装置の維持コストを削減することができる。本装置で前処理されたドレン水を吸着材等で処理することにより、吸着材の能力を最大限に発揮させ、高品質の処理水を得ることができる。
【0030】
コンプレッサ等の運転環境に合わせて最適な制御方法を用いれば、ドレンの量や油濃度が変動しても、電解量は自動的に調節されるため、管理の手間を省くことができる。
【図面の簡単な説明】
【図1】 本発明に係る帯電除去装置を使用した油水分離装置の一例を示す。
【図2】 図1における電解槽の縦断面図である。
【符号の説明】
1 前処理槽
101 ドレン入口
102 ドレン出口
103 シャフト
104 油吸着材
105 噴出口
106 開口
107 バッファ
2 ドレン送り込み手段
201 ドレン圧送ユニット
202 ドレン室
203 レベルスイッチ
3 電解槽
301 ドレン入口
302 ドレン出口
303 電極
304 絶縁部
305 ドレン管
306 軸部
4 空気吹き込み槽
5 1次吸着槽
6 2次吸着槽
7 制御手段
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a system for separating the drain of a compressor containing charged oil particles into treated water that can be discharged into oil water, and in particular, a method for removing the charge of oil particles without discharging excess sludge. About.
[0002]
[Prior art]
Drain water is constantly discharged from compressors used in factories and the like through a drain trap. Since drain water contains oil, it is necessary to provide an oil / water separator in the drain pipe to separate the oil and improve the water quality to a certain level that meets environmental standards before discharging. In general, as a method of oil-water separation, floating separation by specific gravity difference, coagulation adding a small amount of ions to a hydrophobic colloid, aggregation (collection) by fine bubbles, adsorption by activated carbon or an adsorbent are known.
[0003]
The drain water discharged from the compressor contains fine oil particles and usually has both simple oil particles and charged oil particles. Simple oil particles change relatively easily into stable and coarse oil particles, and float on the surface of the reservoir so that they can be easily separated by specific gravity separation / adsorption separation, etc. Then, they repel each other due to negative charges and are difficult to aggregate as fine particles, and form a stable hydrophilic colloid solution, so that separation with an adsorbent or the like is difficult. For example, a drain discharged from a high-pressure compressor or a reciprocating compressor has a high ratio of such charged oil particles because it is operated at a high temperature and a high pressure. Therefore, in order to remove the electric charge of the oil particles, a method of removing the electric charge of the oil particles with a metal cation using an electrolytic method is used.
[0004]
The invention described in Japanese Patent Application Laid-Open No. 11-114304 discloses an oil-water separator in which a floating oil separation tank, an electrolytic tank, and an adsorption tank are connected in series, and a pressurized air supply means is connected to the adsorption tank. . The oil mixed in water is agglomerated and separated in an electrolytic cell and adsorbed while stirring with air in an adsorption cell.
[0005]
The invention described in the specification of Japanese Patent No. 2691119 is a hermetically pressurized oil-water separator by an electrolysis method provided with a separation tank, an electrolytic tank, and a floating layer, and an air (bubble) dissolver and a reduced pressure between the previous separation tank and the electrolytic tank. And a valve. In the present invention, the oil is agglomerated and adsorbed on sludge generated by the electrolytic treatment, and flotation is promoted and separated by bubbles.
[0006]
[Problems to be Solved by the Invention]
In all conventional oil-water separation methods using electrolytic separation means, flocs such as aluminum hydroxide Al (OH) 3 are produced by eluting excess metal ions from the electrode, and this is recovered by gravity separation or adsorption separation. However, the Al (OH) 3 floc to be separated must be treated as industrial waste, which is costly and requires much maintenance. In addition, when the amount of metal ions used is large, the positive electrode is consumed quickly, and the life of the electrode is shortened. Furthermore, extra power is consumed.
[0007]
An object of the present invention is to provide a method for removing oil particles, which suppresses generation of flocs, which are industrial wastes, and saves power consumption at a low maintenance cost in a method for treating drain water containing charged oil particles. With the goal.
[0008]
[Means for Solving the Problems]
According to the first aspect of the present invention, drain water is received and stored in a pretreatment tank, and water in the pretreatment tank is introduced into an electrolytic tank equipped with an electrode capable of supplying metal ions by a predetermined amount for electrolytic treatment. In the oil / water separation method for drainage drainage, in which the negative charge of the particles is removed to facilitate aggregation and then collected in the post-treatment tank, an air blowing tank is further provided in the subsequent stage of the electrolytic tank to aggregate the oil particles with bubbles, and The above-mentioned problem is solved by a drain water drainage oil / water separation method characterized in that the electrode current is automatically cut off after a certain period of time required to remove the charged oil particles from the feed.
[0009]
The invention according to claim 2 is capable of supplying metal ions, a pretreatment tank for storing drain water, a drain feeding means for feeding the drain water in the pretreatment tank downstream by a certain amount according to the drain water level, and Electrolytic tank with electrodes, air blowing tank for agglomerating oil particles with bubbles, post-treatment tank for adsorbing oil particles with adsorbent, and draining means for removing charged oil particles after operation The above-mentioned problem is solved by an oil-water separator for drainage drainage, characterized by having a control means for automatically stopping energization of the electrodes after a certain time required.
[0010]
The static eliminator of the present invention has a pretreatment tank that once receives and stores drain water discharged from a compressor through a drain trap. The pretreatment tank releases the compressed air contained in the drain water into the atmosphere, and adjusts the pressure of the drain water sent to the subsequent stage. Moreover, it is preferable to have the function to process the oil component contained as coarse oil particles from the beginning by adsorption or gravity separation.
[0011]
The drain water stored in the lower part of the pretreatment tank is fed into the electrolytic cell by drain feeding means that operates according to the water level. The drain feeding means has a level switch for detecting an increase in the water level and is connected to the compressed air supply means, and feeds a predetermined amount of drain water to the drain inlet of the electrolytic cell every time the drain reaches a certain water level. It is preferable that the structure in the electrolytic cell is a detour-type flow path having a constant wraparound so that the drain water fed from the drain feed means does not immediately flow out of the outlet. The electrolytic cell has an anode and a cathode, and an elution metal electrode having a large negative charge neutralizing ability such as aluminum or copper is used for the anode. The cathode is made of a stable material such as stainless steel, and an electrolytic cell container can be substituted. The power source of the electrode is controlled by the control means.
[0012]
While drain water drawn into the electrolysis site in the container moves between the electrodes, the metal ions eluted from the positive electrode attract the surrounding negatively charged oil particles by electric attraction and remove the negatively charged energy of the oil particles. To do. The oil particles from which the charge has been removed become hydrophobic and lose their repulsive force and gradually coagulate. To remove the negative charge of oil particles with metal ions, the higher the ionic value, the more effective. For example, Al is about 500 times less than the same amount of Na and about 8 times more negative charge removal than Cu. Therefore, it is most preferable to use an aluminum electrode for the anode because it exhibits a large negative charge removal effect and the electrode also lasts longer. The drain water containing simple oil particles from which electric charges have been removed is sent to a gravity separation tank or adsorption tank at a subsequent stage, and the oil is removed to become treated water that can be discharged.
[0013]
In the conventional method, after removing the negative charge of the oil particles, the electrode is further energized to deposit metal ions, and the flocs containing the oil particles are generated by utilizing the cohesive force of the metal ions, and the gravity separation or the like is used. However, the present invention is characterized in that the present invention is energized to the extent that the minimum metal ions required for removing the negative charge of the oil particles are eluted, and the oil particles are aggregated and separated in a subsequent adsorption tank or the like. There is.
[0014]
According to an experiment using an aluminum electrode, almost no floc of Al (OH) 3 is generated until the charge removal of oil particles is completed, and Al 3+ ions eluted after that mainly form flocs. I understood it. Therefore, if the electrolysis is suppressed to the minimum necessary for the charge removal of the oil particles, generation of floc can be suppressed. In the first and second aspects of the invention, in order to prevent the excessive supply of metal ions, the power source control means energizes only for the time required for charge removal for one drain feed, and then automatically supplies power. To block.
[0015]
As a method for preventing the excessive supply of metal ions, a method of controlling the voltage in addition to controlling the energization time of the electrode can be considered. According to the invention of claim 3, drain water is received and stored in a pretreatment tank, the water of the pretreatment tank is introduced into an electrolytic tank equipped with an electrode capable of supplying metal ions, and subjected to electrolytic treatment, and the negative charge of oil particles In the oil-water separation method for drainage drainage, which is collected in a post-treatment tank after being removed and easily aggregated, an air blowing tank is further provided at the subsequent stage of the electrolytic tank to aggregate oil particles with bubbles, and the voltage between the electrodes The above-mentioned problem is solved by a method for separating oil from drainage drainage, which is characterized by maintaining the voltage below a certain voltage required for the charge removal of drain oil particles.
[0016]
According to a fourth aspect of the present invention, there is provided a pretreatment tank for storing drain water, drain feed means for feeding the drain water in the pretreatment tank to the downstream by a certain amount according to the drain water level, and an electrode capable of supplying metal ions. An electrolytic bath having an air bubble, an air blowing bath for agglomerating oil particles with bubbles, a post-treatment bath for adsorbing oil particles with an adsorbent, and a voltage between the electrodes to be equal to or lower than a predetermined voltage required for the charge removal of drain oil particles. The above-mentioned problem is solved by an oil / water separator for drainage drainage characterized by having a control means for maintaining.
[0017]
According to the third and fourth aspects of the present invention, the control means increases or decreases the voltage of the electrode in proportion to the drain feed amount indicated by the number of operations of the drain pumping unit. Compared with the method of claim 1, it has an advantage that it can easily cope with a case where the amount of drainage is large.
[0018]
The invention described in claims 5 and 6 supplies a pretreatment tank for storing drain water, a drain feeding means for feeding the drain water in the pretreatment tank to the downstream by a certain amount according to the drain water level, and supplying metal ions. An electrolyzer having a possible electrode, a water quality sensor provided downstream of the electrolyzer , an air blowing tank for agglomerating oil particles with bubbles, a post-treatment tank for adsorbing oil particles with an adsorbent, and a water quality sensor The above problem is solved by an oil / water separator for drainage drainage, characterized by having a control means for stopping the power supply of the electrode or adjusting the voltage according to the water quality. As the water quality sensor, for example, an electrical conductivity sensor provided at the outlet pipe of the electrolytic tank, a translucency sensor provided at the outlet of the adsorption tank, or the like can be used. When these sensors show a decrease in water quality, increasing the voltage of the electrode can prevent the deterioration of the treated water quality, and conversely preventing excessive electrolysis if the power is cut off when the water quality exceeds a certain level. In addition, the occurrence of flocks can be prevented and power can be saved.
[0019]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, specific embodiments of the present invention will be described with reference to the drawings. In FIG. 1, 1 is a pretreatment tank, 2 is a drain feeding means, 3 is an electrolytic tank, 4 is an air blowing tank, 5 is a primary adsorption tank, 6 is a secondary adsorption tank, and 7 is a control means. In this embodiment, the blowing of compressed air and the adsorption by the adsorbent are used in combination for the treatment after the charge removal of the oil particles.
[0020]
The pretreatment tank 1 of the present embodiment not only stores drain water, but also releases compressed air discharged from the compressor together with the drain water into the atmosphere, and adsorbs oil components originally contained as coarse oil particles in the drain water. It has the function to process by. The pretreatment tank 1 is formed of a cylindrical container having a drain inlet 101 and a drain outlet 102 on the bottom surface, and the drain inlet 101 is connected to a drain trap of a compressed air pipe (not shown). A shaft 103 communicating with the drain inlet 101 is provided, and an oil adsorbent 104 suitable for rough processing is filled around the shaft 103. Drain water is ejected from a fine ejection port 105 provided on the side surface of the shaft 102, and the inside of the oil adsorbent 103 is caused to flow down. Coarse oil particles that are likely to be adsorbed while drain water flows down are coarsely processed, and excess pressure air is discharged from the upper opening 106. A buffer 107 for preventing the drain water from scattering is provided at the opening.
[0021]
The drain pipe connected to the drain outlet 102 of the pretreatment tank 1 is provided with a drain feeding means 2 via a pair of check valves V1, V2. The drain branch pipe branched from between the check valves V1 and V2 extends upward and is connected to the bottom of the drain chamber 202 of the drain pumping unit 201 installed at the middle height of the pretreatment tank 1. Inside the drain chamber 202 is provided a level switch 203 that detects the rise of the drain liquid level and outputs it to the control means 7. The height of the water surface detected by the level switch 203 in the drain chamber 202 corresponds to the appropriate drain water height in the pretreatment tank 1. In addition, a compressed air pipe that is connected to a compressed air main pipe through an electromagnetic valve E1 and a pressure control valve R is connected to the upper portion of the drain chamber 202. The downstream pipe of the drain is connected to the upper part of the electrolytic cell through the check valve V2 and the rising part.
[0022]
The electrolytic cell 3 is composed of a substantially cylindrical stainless steel container provided with a drain inlet 301 and a drain outlet 302 on the upper side, and an aluminum cylindrical electrode 303 is accommodated therein (FIG. 2). A distal end portion of a drain pipe 305 extending inward from the drain inlet 301 is coupled to an upper portion of the electrode 303 via a rubber insulating portion 304. An opening through which drain water can enter and exit is provided at the bottom of the electrode 303, and the drain water descending from the inside of the electrode 303 flows out of the opening and then travels around the bottom of the container to rise again outside the electrode 303. Yes. In addition, a shaft portion 306 made of a conductor whose periphery is insulated passes through the top surface of the container and the drain pipe 305 and is fixed to the bottom portion of the electrode 303. Terminals provided on the upper portion of the shaft portion 306 and the container are connected to a power supply via a power supply control portion 307, respectively. The power supply control unit 307 is controlled by the control means 7.
[0023]
In the present embodiment, an electrical conductivity sensor S <b> 1 is provided at the outlet pipe of the air blowing tank 4. The electrical conductivity sensor S1 has at least two electrodes, a power supply circuit, and current measuring means, and detects the increase or decrease in electrical conductivity by measuring the magnitude of the current flowing in the drain water, and outputs it to the control means 7 To do. As another example, a drain transmissivity sensor (not shown) can be provided at the outlet of the primary adsorption tank 5 or the secondary adsorption tank 6. The drain transmissivity sensor is a device similar to that described in Japanese Patent Application Laid-Open No. 2001-9205, and includes a light emitting element, a light receiving element, a power supply circuit, and a current amount detecting means installed in the drain pipe. By measuring the amount of light that has passed through the drain water, an increase or decrease in the translucency or turbidity of the drain water is detected and output to the control means 7.
[0024]
The drain water discharged by the operation of the compressor flows down inside the pretreatment tank 1 and gradually accumulates at the bottom of the container, and the water level rises. As a result, when the level switch 203 in the pressure feeding unit 201 detects a rise in the water level, the electromagnetic valve E1 opens to supply compressed air to the pressure feeding unit 201 for a certain period of time, and to drain water drawn into the drain chamber 202 and the drain branch pipe. Discharge. Since the check valves V <b> 1 and V <b> 2 are provided before and after the branch portion of the drain main pipe, the discharged drain water is sent to the electrolytic cell 3. Every time the drain water in the pretreatment tank 1 reaches a certain amount, about 100 cc of drain water is fed from the pretreatment tank 1 to the electrolytic cell 3 (tact treatment). When a compressor with an output of 75 KW is operated under standard weather conditions, the maximum amount of drainage that can be pumped is about 18 l / hr (average 8 l / hr), so several times per minute (100 cc each) can be pumped. Is called.
[0025]
The drain water in the electrolytic cell 3 gradually proceeds through the flow path in the electrolytic cell during several tact treatments by the pumping unit 2. When a DC voltage (10 V) is applied between the shaft portion 306 and the container by the control means 7 to be described later, a potential difference is generated between the electrode 303 and the outer periphery of the container, and Al 3+ ions eluted from the positive electrode are The negatively charged oil particles are attracted by the attractive force to remove the negative charges of the oil particles. The drain water is removed by electrification while rising between the sides of the aluminum electrode 303 container, and the repulsive force between the oil particles is removed, and the drain water is easily aggregated and flows out from the drain outlet 302 sequentially. In this way, the drain in the electrolytic cell is once removed from the charge while bypassing the bottom of the container, so that the untreated drain that has flowed from the drain inlet 301 does not flow out of the drain outlet 302 as it is.
[0026]
For example, when 100 cc of drain water having a standard oil concentration of 200 mg / l is newly introduced into an electrolytic cell having a volume of 250 cc having an aluminum electrode and DC 10 V is applied to the electrode to measure the quality of the treated water, the negative charge of the oil particles The energization time required for removal was about 3 minutes in the case of the aluminum electrode. Therefore, if the energization time is set to about 3 minutes for one operation of the pressure feeding unit, the charge of the oil particles can be removed with almost no floc formed. When a copper electrode is used as the electrode, the energization time required for removing the negative charge of the oil particles is about 8 minutes, so the energization is stopped after 8 minutes.
[0027]
In this embodiment, the control means 7 monitors the output of the electrical conductivity sensor S1, and stops the energization even within the energization time when the electrical conductivity increased by the drain water feeding becomes below a certain value. To prevent flocs due to excessive electrolysis.
[0028]
The drain water from which the electric charge of the oil particles has been removed in the electrolytic tank is sent to the air blowing tank 4, the primary adsorption tank 5 and the secondary adsorption tank 6 in the subsequent stage, and the oil particles that have become easy to aggregate with each other are aggregated with bubbles. It is adsorbed and separated by a post-adsorbent, and discharged as treated water with an oil concentration of 5 mg / l or less that can be discharged. These treatments are described in detail in the same application “Oil-water separation method and apparatus” on the same day of the present applicant.
[0029]
【The invention's effect】
The electrification removal device in the drainage oil-water separator of the present invention suppresses the generation of sludge, which is industrial waste, by suppressing the elution of metal ions, so that waste treatment is not required and the life of the elution electrode is increased. Therefore, the maintenance cost of the oil / water separator can be reduced. By treating the drain water pretreated with this apparatus with an adsorbent or the like, the capacity of the adsorbent can be maximized and high-quality treated water can be obtained.
[0030]
If an optimal control method is used in accordance with the operating environment such as a compressor, the amount of electrolysis is automatically adjusted even if the amount of drain or oil concentration fluctuates.
[Brief description of the drawings]
FIG. 1 shows an example of an oil-water separator using a charge removing device according to the present invention.
2 is a longitudinal sectional view of the electrolytic cell in FIG. 1. FIG.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Pretreatment tank 101 Drain inlet 102 Drain outlet 103 Shaft 104 Oil adsorbent 105 Jet outlet 106 Opening 107 Buffer 2 Drain feeding means 201 Drain pressure feeding unit 202 Drain chamber 203 Level switch 3 Electrolyzer 301 Drain inlet 302 Drain outlet 303 Electrode 304 Insulation Section 305 Drain pipe 306 Shaft section 4 Air blowing tank 5 Primary adsorption tank 6 Secondary adsorption tank 7 Control means

Claims (6)

ドレン水を前処理槽に受け入れて貯溜し、前処理槽の水を金属イオンを供給可能な電極を備えた電解槽に所定量ずつ導入して電解処理し、油粒子の負電荷を除去し凝集しやすくしたのち後処理槽で吸着材に吸着させるドレン排水の油水分離方法において、前記電解槽の後段にさらに空気吹き込み槽を設けて油粒子を気泡で凝集すると共に、ドレンの送り込みから油粒子の帯電除去に要する一定時間後に自動的に電極への通電を停止することを特徴とするドレン排水の油水分離方法Drain water is received and stored in the pretreatment tank, and the water in the pretreatment tank is introduced into the electrolytic tank equipped with electrodes capable of supplying metal ions by a predetermined amount to perform electrolytic treatment, removing the negative charge of the oil particles and agglomerating In the oil-water separation method for drainage drainage to be adsorbed by the adsorbent in the post-treatment tank, an air blowing tank is further provided at the subsequent stage of the electrolytic tank to aggregate the oil particles with bubbles, and the oil particles are fed from the drain feed. An oil-water separation method for drainage drainage, which automatically stops energization of an electrode after a predetermined time required for charge removal. ドレン水を貯溜する前処理槽と、前処理槽内のドレン水をドレン水位に応じて一定量ずつ下流に給送するドレン送り込み手段と、金属イオンを供給可能な電極を有する電解槽と、油粒子を気泡で凝集する空気吹き込み槽と、油粒子を吸着材で吸着する後処理槽と、ドレン送り込み手段の作動後、給送された油粒子の帯電除去に要する一定時間後に自動的に電極への通電を停止する制御手段を有することを特徴とするドレン排水の油水分離装置A pretreatment tank for storing drain water, a drain feeding means for feeding the drain water in the pretreatment tank downstream by a certain amount according to the drain water level, an electrolytic tank having an electrode capable of supplying metal ions, and an oil An air blowing tank that agglomerates particles with bubbles, a post-treatment tank that adsorbs oil particles with an adsorbent, and a drain feeding means that automatically operates to the electrode after a certain time required to remove the charged oil particles. An oil-water separator for drainage drainage, characterized by having control means for stopping energization of the drainage. ドレン水を前処理槽に受け入れて貯溜し、前処理槽の水を金属イオンを供給可能な電極を備えた電解槽に導入して電解処理し、油粒子の負電荷を除去し凝集しやすくしたのち後処理槽で吸着材に吸着させるドレン排水の油水分離方法において、前記電解槽の後段にさらに空気吹き込み槽を設けて油粒子を気泡で凝集すると共に、前記電極間の電圧をドレンの油粒子の帯電除去に要する程度の電圧に保つことを特徴とするドレン排水の油水分離方法Drain water is received and stored in the pretreatment tank, and the water in the pretreatment tank is introduced into an electrolytic tank equipped with an electrode capable of supplying metal ions and electrolyzed to remove the negative charge of the oil particles and facilitate aggregation. In the oil-water separation method of drainage drained to be adsorbed by the adsorbent in the post-treatment tank, an air blowing tank is further provided at the subsequent stage of the electrolytic tank to aggregate oil particles with bubbles, and the voltage between the electrodes is set to drain oil particles. An oil-water separation method for drainage drainage, characterized in that the voltage is maintained at a level required for the charge removal. ドレン水を貯溜する前処理槽と、前処理槽内のドレン水をドレン水位に応じて一定量ずつ下流に給送するドレン送り込み手段と、金属イオンを供給可能な電極を有する電解槽と、油粒子を気泡で凝集する空気吹き込み槽と、油粒子を吸着材で吸着する後処理槽と、前記電極間の電圧をドレンの油粒子の帯電除去に要する程度の電圧に保つ制御手段を有することを特徴とするドレン排水の油水分離装置A pretreatment tank for storing drain water, a drain feeding means for feeding the drain water in the pretreatment tank downstream by a certain amount according to the drain water level, an electrolytic tank having an electrode capable of supplying metal ions, and an oil An air blowing tank for agglomerating the particles with bubbles, a post-treatment tank for adsorbing the oil particles with the adsorbent, and a control means for maintaining the voltage between the electrodes at a voltage required to remove the oil particles from the drain. An oil / water separator for drainage drainage. ドレン水を貯溜する前処理槽と、前処理槽内のドレン水をドレン水位に応じて一定量ずつ下流に給送するドレン送り込み手段と、金属イオンを供給可能な電極を有する電解槽と、電解槽の下流に設けられた水質センサと、油粒子を気泡で凝集する空気吹き込み槽と、油粒子を吸着材で吸着する後処理槽と、前記水質センサの示す水質が一定値以上となったときに自動的に電極への通電を停止する制御手段を有することを特徴とするドレン排水の油水分離装置A pretreatment tank for storing drain water, a drain feeding means for feeding the drain water in the pretreatment tank downstream by a certain amount according to the drain water level, an electrolytic tank having an electrode capable of supplying metal ions, and electrolysis When a water quality sensor provided downstream of the tank, an air blowing tank for agglomerating oil particles with bubbles, a post-treatment tank for adsorbing oil particles with an adsorbent, and the water quality indicated by the water quality sensor are above a certain value A drainage oil-water separator having a control means for automatically stopping energization of the electrode. ドレン水を貯溜する前処理槽と、前処理槽内のドレン水をドレン水位に応じて一定量ずつ下流に給送するドレン送り込み手段と、金属イオンを供給可能な電極を有する電解槽と、電解槽の下流に設けられた水質センサと、油粒子を気泡で凝集する空気吹き込み槽と、油粒子を吸着材で吸着する後処理槽と、前記水質センサの示す水質が高くなったときに自動的に電極の電圧を低下させる制御手段を有することを特徴とするドレン排水の油水分離装置A pretreatment tank for storing drain water, a drain feeding means for feeding the drain water in the pretreatment tank downstream by a certain amount according to the drain water level, an electrolytic tank having an electrode capable of supplying metal ions, and electrolysis A water quality sensor provided downstream of the tank, an air blowing tank for agglomerating oil particles with bubbles, a post-treatment tank for adsorbing oil particles with an adsorbent, and automatically when the water quality indicated by the water quality sensor becomes high The drainage oil-water separator has a control means for reducing the voltage of the electrode.
JP2002065520A 2002-03-11 2002-03-11 Oil water separation method and apparatus for drainage drainage Expired - Lifetime JP3782363B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002065520A JP3782363B2 (en) 2002-03-11 2002-03-11 Oil water separation method and apparatus for drainage drainage

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002065520A JP3782363B2 (en) 2002-03-11 2002-03-11 Oil water separation method and apparatus for drainage drainage

Publications (2)

Publication Number Publication Date
JP2003260466A JP2003260466A (en) 2003-09-16
JP3782363B2 true JP3782363B2 (en) 2006-06-07

Family

ID=28671271

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002065520A Expired - Lifetime JP3782363B2 (en) 2002-03-11 2002-03-11 Oil water separation method and apparatus for drainage drainage

Country Status (1)

Country Link
JP (1) JP3782363B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101867022B1 (en) * 2011-05-30 2018-07-24 대우조선해양 주식회사 Zero discharge system for ship

Also Published As

Publication number Publication date
JP2003260466A (en) 2003-09-16

Similar Documents

Publication Publication Date Title
US20160016828A1 (en) Continuous flow electroflocculation water treatment system
US20140311920A1 (en) Continuous flow electroflocculation water treatment system
WO2006084110A2 (en) Ballasted flocculation process and system incorporating an electro-coagulation reactor for treating water or wastewater
CN104291415A (en) Method for treating rolling emulsification wastewater through electrocoagulation
JP3782363B2 (en) Oil water separation method and apparatus for drainage drainage
Shin et al. Performance evaluation of electrocoagulation and electrodewatering system for reduction of water content in sewage sludge
JP4139609B2 (en) Oil / water separation system
US8273240B2 (en) Method and apparatus for treating wastewater containing emulsified oil
JP3782379B2 (en) Electrolytic oil-water separator
CN102482125B (en) Water Treatment Method And System
JP4111260B2 (en) Oil-water separation method and apparatus
JP2005074316A (en) Compressor drain processing equipment
JP2738890B2 (en) Oil-water separator using electrolysis
ES2753414T3 (en) Method and apparatus for the treatment of an aqueous dispersion
KR101066336B1 (en) Groundwater Purification Method in Extracted Low-Density Non-Aqueous Liquid (LUNPL) for Oil Pollution Recovery
JP4008248B2 (en) Electrolytic water treatment equipment
KR100466280B1 (en) Suspended solid removing method of wastewater by electrofloatation and sedimentation
KR101055785B1 (en) Oil-water separator and its separation method
JP4013527B2 (en) Water treatment equipment
JP4420754B2 (en) Wastewater treatment by electrolysis
JP2691119B2 (en) Pressurized oil-water separator using electrolysis
CN110845058B (en) Sewage treatment method based on electrochemistry
JP2005270779A (en) Method and apparatus for separating heavy metal
JP4088609B2 (en) Oil-water separation method and apparatus
JPS6312678B2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040226

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051107

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051114

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060113

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060309

R150 Certificate of patent or registration of utility model

Ref document number: 3782363

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090317

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100317

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100317

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110317

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110317

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120317

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130317

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130317

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140317

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term