[go: up one dir, main page]

JP3779009B2 - Method for producing high-quality reduced iron from steelmaking dust - Google Patents

Method for producing high-quality reduced iron from steelmaking dust Download PDF

Info

Publication number
JP3779009B2
JP3779009B2 JP30602096A JP30602096A JP3779009B2 JP 3779009 B2 JP3779009 B2 JP 3779009B2 JP 30602096 A JP30602096 A JP 30602096A JP 30602096 A JP30602096 A JP 30602096A JP 3779009 B2 JP3779009 B2 JP 3779009B2
Authority
JP
Japan
Prior art keywords
dust
iron
reduced iron
reduced
pellets
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP30602096A
Other languages
Japanese (ja)
Other versions
JPH10147806A (en
Inventor
恒男 池田
法明 時藤
修史 真島
俊治 高島
Original Assignee
株式会社 テツゲン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 テツゲン filed Critical 株式会社 テツゲン
Priority to JP30602096A priority Critical patent/JP3779009B2/en
Publication of JPH10147806A publication Critical patent/JPH10147806A/en
Application granted granted Critical
Publication of JP3779009B2 publication Critical patent/JP3779009B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Manufacture Of Iron (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、製鉄所や精錬所で発生する種々のダストをリサイクルして再資源化を図る際の処理方法に関し、特に、製鉄ダストを原料として還元鉄を製造する場合、還元鉄のFe含有量を高めた高品位還元鉄を製造する方法に関するものである。
【0002】
【従来の技術】
従来、製鉄所では焼結、高炉、転炉、電気炉等の加工・精錬工程で種々のダストが発生する。これらの工程では加工や精錬に必要な石灰石や珪石等の副原料の添加や燃料として使用する石炭やコークスの灰分が混在する等の結果、不純物がダストに含まれるために鉄含有量が低い。また、プロセスガスに随伴し集塵機で補修回収されるダストが中心であることから極めて微粒である。このため、これらのダストは集積配合し、乾燥、凝似粒化あるいは造粒等の事前処理を行い、主として鉄源工程の焼結、高炉、転炉に酸化鉄の形態でリサイクルされている。しかし、鉱石やスクラップから系内に入る亜鉛酸化物がダスト中に循環濃縮するため、その一部がリサイクルできず廃棄や在庫として貯留されており、脱亜鉛処理が必要となっている。
【0003】
そこで、ダスト中の亜鉛の除去に関する方法として、高炉ダストのように亜鉛酸化物がダストの細粒部分に偏析している場合は湿式分級法によって高亜鉛濃度ダストと低亜鉛濃度ダストに分別して使用される。また、脱亜鉛法として炭素還元法や鉄還元法が利用されるが、亜鉛を還元除去するためには、亜鉛より酸素親和力の弱いダスト中に含まれる鉄酸化物も同時に還元する必要がある。製鉄ダストの平均鉄含有量は40〜50%程度であり、これを原料として還元鉄を製造しても、還元鉄の品位が低い。これらの理由により炭素還元法は経済的プロセスとして競争力に乏しい欠点がある。
【0004】
一方、製鉄所や精錬所から発生するダストを還元処理して脱亜鉛を行いダストリサイクルをしている従来技術を大別すると、ガス還元法、固体還元法、溶融還元法がある。ガス還元法では、微粉の酸化鉄ダストを流動層で水素あるいはCOガスで還元して鉄粉を製造する方法等がある。また、ガス・固体還元法としては、ロータリーキルンを使用してダストと炭材を混合して原料を900〜1200℃で還元し、金属化率70〜80%の還元鉄を製造する方法であり、炭材を内装したペレットを製造し、ロータリーキルンや回転炉床タイプの焼成炉を使用して還元し金属化率70〜80%の還元ペレットを製造する方法であり、また、溶融還元法では、ダスト類に炭材を加えて鉄浴型の溶解炉で溶解し酸素等の高密度エネルギーを用いてスラグ中酸化鉄をスラグ浴に浮遊する炭材や溶銑によって還元し銑鉄を製造する方法。また、シャフト炉型のコークス充填炉に羽口から空気とともに微粉状のダストを吹き込み、コークス充填層で溶融還元を行う方法等がある。
【0005】
【発明が解決しようとする課題】
上述したように、製鉄所や精錬所で発生するダストはリサイクルして再資源化されているが、この結果、系内に亜鉛酸化物が次第に循環蓄積し、例えば高炉への酸化亜鉛の装入原単位が許容管理限界に達するとダスト類のこれ以上のリサイクルが進まず、系外に廃棄されるか、系内に不良在庫としてストックされることになる。ダストの積極的なリサイクルを促進する手段として、ダスト類をロータリーキルンや流動層で還元処理を行い、酸化鉄を還元して、その過程で亜鉛酸化物を還元除去する方法が採用されている。しかし、製鉄所で発生するダスト類は高炉や転炉での溶解精錬に必要な生石灰等の副原料やコークス灰分等を含み希釈されるため鉄分が低く、通常の還元処理によって製造される還元鉄は不純物が高く、T.Feは70%程度であり、製鋼用原料として経済的に十分価値のあるものとは言えず、T.FeやM.Feの向上、還元処理法の改善が求められているのが実状である。
【0006】
【課題を解決するための手段】
上記問題を解消するために、本発明は、焼結機、高炉、転炉等から発生する製鉄ダスト類を配合するに当たり、還元処理によって低融点開始温度のスラグが生成するように、予めダストの脈石成分の塩基度を適度に調整し、かつコークス等の石炭系炭材を内装した乾燥グリーンペレットを製造する。これを回転炉床タイプの焼成炉で焼成する際、ペレット内部で炭材によって還元され、粒内の物質移動作用によって凝集したメタリック鉄粒子を、同時に生成する低融点スラグ部分から分離せしめるような還元温度や還元時間を設定し還元処理を行うことを特徴とする製鉄ダストからの高品位粒状還元鉄の製造方法にある。
【0007】
【発明の実施の形態】
以下、本発明について詳細に説明する。
製鉄所で発生する数種のダストと炭材を配合する際、混合物に含まれている、CaO、SiO2 、Al2 3 等の脈石成分の塩基度CaO/SiO2 を低融点スラグを生成させる範囲として、1.4〜1.6に調整する。これは、塩基度が1.4未満であるとスラグと鉄分とが有効に分離せず、また1.6超であるとスラグの融点が低下し溶融するため、安定的に鉄分との分離が出来なくなるためである。また、微粉コークスや無煙炭等の炭材をカーボン換算で10〜20%となるように内装する。これは、10%未満ではダストを還元するに至らず、また、20%超ではダストを還元するには余る量であり、このカーボン分はスラグ中に残査として残り、エネルギーとしての役割をしないためである。これらの原料を充分混合し、ベントナイト等のバインダーを加えて、ペレタイザーにて、平均粒径10mm程度のグリーンペレットを製造する。
【0008】
乾燥したグリーンペレットを回転炉床タイプの焼成炉に薄層に装入し、以下の機能が達成できるよう1250〜1350℃で焼成する。すなわち、ダスト中の酸化鉄は内装された炭材中のカーボンによって還元され、メタリック鉄となり、炭素による浸炭に応じてメタリック鉄の融点が低下し凝集する。一方、脈石成分を含んだ部分は、未還元のFeOと予め調整されているCaO、SiO2 、Al2 3 から構成される部分が反応して低融点スラグを生成する。この結果、ペレット内部で相互の物質移動が生じて、表面張力によってメタリック鉄が凝集し、スラグ部分と分離し、粒状還元鉄の状態となる。
【0009】
回転炉床タイプの焼成炉では装入したペレットは炉床に静置して処理されるので、排出部分では銑滓が分離した、粒状化したメタリック鉄部分と半溶融スラグ部分とが存在し、スクレーパーによって排出される。排出された混合物は冷却され、機械的方法や磁力選別によって分別処理される。勿論、これらの分離した形で、次工程に熱間装入して処理することも可能である。
【0010】
ダストを原料とするペレットは、高品位鉄鉱石を原料とするペレットと異なり、多量のスラグ成分や不純物を含んでおり、従来の還元処理では鉄含有量の高い高品位還元鉄を得ることは困難であるが、これを低融点のスラグを形成するように配合調整することによって、還元生成したメタリック鉄がペレット内の物質移動により凝集し、粒状化する作用を利用して、本発明に示した還元処理を行うことにより、ダストを原料として高品位還元鉄を製造することが可能である。
【0011】
【実施例】
以下、実施例を示して、具体的に本発明について説明する。
図1は本発明の高品位粒状還元鉄を製造するための設備フローを示す図である。図1に示すような製造工程に従って、原料貯鉱槽、混練ダストの配合原料に、ベントナイト貯留ホッパーからバインダーとしてベントナイトを外掛1%を加え、ボールミルで粉砕混合し、水分を調整し、ペレタイザーで造粒した後、篩を用いて6mm〜18mm(平均10mm)のダストグリーンペレットを製造した。
また、表1に本発明で使用した製鉄所ダストの銘柄とその配合内訳を示す。還元材としてダスト中の含有炭素に加えて、コークス乾式消火設備の集塵機粉(微粒コークス)で調整し、カーボン配合割合は14.7%とした。
【0012】
【表1】

Figure 0003779009
【0013】
上記ペレットを回転炉床タイプの焼成炉に装入し、還元処理を行う。ペレットは回転炉床に静置され、回転炉床と共に移動する過程でペレットに内装されている微粉のカーボンによってダスト中の酸化鉄粒子が直接還元反応によって、短時間の間で金属鉄に還元される。回転炉床タイプでの還元鉄製造法と効果的な操業法を確立するために行った小型装置での試験の結果を述べる。すなわち、回転炉床タイプでの適正な操業条件を把握するため、小型装置を使用して行った試験の結果を図2、図3、図4及び表2、表3に示す。
【0014】
【表2】
Figure 0003779009
【0015】
【表3】
Figure 0003779009
【0016】
表2は、焼成炉の燃焼バーナーの空気比を0.6〜1.0に変化させ昇熱状況、燃料原単位、金属化率を調べた結果を示しているが、空気比0.6では時間内に昇温せず、0.8の場合は燃料原単位が1.0の場合に比較して40%以上も増加する。金属化率は若干下がるが空気比は1.0近傍が最も経済的である。
表3は、内装炭材の配合比の影響を調べたものである。カーボン量10%未満の場合、加熱時間を長くすると酸化する現象が認められる。また、カーボン量20超の場合、焼成後のペレットに未反応のカーボンが残留し、還元後圧潰強度が低下する。カーボン量10〜20%の場合が適正であり脱亜鉛率も高い結果が得られた。
【0017】
図2に回転炉床内のペレットの層厚と還元後圧潰強度との関係を示したものである。ペレットの層厚を厚くすると、下層部の焼成が不充分で還元反応が充分に進行しないことによる。従って、ペレットの層厚は20〜30mmの薄層とする必要がある。上述したバッチ試験結果を参考にして、カーボン量15%、層厚30mm、空気比0.9〜1.0の条件で連続装入を行い、焼成温度を変化させた焼成試験の結果の実施例を表4、表5に示す。表4は、設定操業条件を示したものである。また、表5は、設定操業条件にて還元処理を行った還元鉄の性状を示したものである。
【0018】
【表4】
Figure 0003779009
【0019】
【表5】
Figure 0003779009
【0020】
上述のように、回転炉床タイプの焼成炉を使用して、1250℃で22分程度の短時間で金属化率80%、脱亜鉛率90%、還元鉄の強度136kg/p、5mm以上の製品歩留88%が得られており、製鉄ダストの有効な還元処理による脱亜鉛法であり、ダストのリサイクルを促進する上で有効な手段である。しかし、実施例に示したように、原料を製鉄所で発生する転炉ダスト、焼結ダスト、高炉ダスト等の各種プロセスの廃棄ダストを主原料とする場合、各プロセスで使用される石灰石や生石灰、燃料として使用する石炭系の炭材のアッシュ等が不純物として混入することから、原料の平均鉄含有量は、50%程度であり、これを原料として製造される還元鉄の鉄含有量は70%程度であり、製鋼用として使用する場合、スクラップ等と比較して改善の余地がある。
【0021】
図3は回転炉床方式で還元処理を行い製造された還元鉄の各処理温度におけるT−Feと塩基度の関係を示す図である。この図3に示すように、1250℃、1300℃及び1350℃の各処理温度における塩基度は1.4〜1.6の範囲においてT.Feが90%以上の値を示していることが判る。これに対して、塩基度が1.4未満及び1.6超えるとT.Feの値は90%以下と低下することが判る。
【0022】
図4は回転炉床方式で還元処理を行い製造された還元鉄のT.Fe及びM.Feと焼成温度の関係を示す図である。そこで、前述したような配合を行った原料にCaOを添加し、塩基度を1.4〜1.6に調整する。この配合原料を直径約10mmのグリーンペレットとして、回転炉床方式の焼成炉に装入し、焼成温度を1300℃と高め還元処理を行うと、従来タイプの還元鉄を製造する目的で、同一原料を用いて1100℃、1200℃での還元処理を行った結果を比較のために示す。1300℃で還元処理を行った還元鉄は、還元鉄部分と脈石成分部分が分離しており、還元鉄部分は凝集した粒状である。1100℃での還元処理を行ったものはペレットの原型を留めており、脈石部分の分離は認められない。1200℃での還元処理を行ったものは中間の半溶融状態を示している。
【0023】
このように、本発明の特徴は、回転炉床を利用して原料ペレットを極力静置状態を維持しつつ還元処理を行う際、凝集した粒状還元鉄部分と脈石成分部分を分離せしめ、還元処理終了後、水冷等の冷却処理を行い、機械処理、磁選処理等によって還元鉄部分の品質を著しく改善することにある。また、還元処理における最適温度は、ダストペレットの脈石成分によって決まる、溶着開始温度よりやや高い温度が望ましいが、本実施例では原料ペレットのスラグ部分のCaO/SiO2 は1.56とした場合、還元処理温度は1300℃が最適であり、初期の目的の初期の目的の高品質粒状還元鉄が製造される。
【0024】
表6に粒状還元鉄の品質と分離されたスラグ部分の化学性状を示す。この表6から明らかなように、本発明の還元処理を行ってスラグ部分を分離して製造した粒状還元鉄の品位は、塩基度を1.4〜1.6の範囲において、処理温度1250〜1350℃においては、T.Feは90%以上の高品位となり、一般的な条件で製造した還元鉄の品位と比較して、格段に高い値を示している。
【0025】
【表6】
Figure 0003779009
【0026】
【発明の効果】
以上述べたように、本発明によって、製鉄所で発生するダストを原料として鉄含有量を飛躍的に改善した高品位の還元鉄を製造することができる。また、ダストのリサイクルに必要な脱亜鉛を還元処理法を用いて行うに際して、製鋼用原料として、通常使用されるスクラップと比較しても、付加価値の高い還元鉄を製造することができるため、経済的効果が極めて優れている。
【図面の簡単な説明】
【図1】本発明の高品位粒状還元鉄を製造するための設備フローを示す図、
【図2】回転炉床方式でのペレットの層厚と還元後圧潰強度との関係を示した図、
【図3】回転炉床方式で還元処理を行い製造された還元鉄の各処理温度におけるT−Feと塩基度の関係を示す図、
【図4】回転炉床方式で還元処理を行い製造された還元鉄のT.Fe及びM.Feと焼成温度の関係を示す図である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a processing method for recycling various kinds of dust generated at steelworks and smelters, and in particular, when reducing iron is produced using ironmaking dust as a raw material, the Fe content of the reduced iron. The present invention relates to a method for producing high-grade reduced iron with improved slag.
[0002]
[Prior art]
Conventionally, various dusts are generated in processing and refining processes such as sintering, blast furnaces, converters, electric furnaces, etc. at steelworks. In these processes, the iron content is low because impurities are contained in the dust as a result of the addition of auxiliary materials such as limestone and silica required for processing and refining, and the ash content of coal and coke used as fuel. In addition, the dust is very fine because it is mainly the dust accompanying the process gas and repaired and collected by the dust collector. For this reason, these dusts are collected and mixed, subjected to pretreatment such as drying, agglomeration or granulation, and recycled mainly in the form of iron oxide for sintering, blast furnace and converter in the iron source process. However, since zinc oxide that enters the system from ore and scrap circulates and concentrates in the dust, some of it cannot be recycled and is stored as waste or inventory, and dezincing treatment is necessary.
[0003]
Therefore, as a method for removing zinc in dust, when zinc oxide is segregated in the fine particles of dust like blast furnace dust, it is used by separating it into high zinc concentration dust and low zinc concentration dust by wet classification method. Is done. In addition, a carbon reduction method or an iron reduction method is used as a dezincing method, but in order to reduce and remove zinc, it is necessary to simultaneously reduce iron oxide contained in dust having a lower oxygen affinity than zinc. The average iron content of ironmaking dust is about 40 to 50%, and even if reduced iron is produced using this as a raw material, the quality of reduced iron is low. For these reasons, the carbon reduction method has a disadvantage that it is not competitive as an economic process.
[0004]
On the other hand, conventional technologies that perform dust recycling by dedusting dust generated from steelworks and smelters are roughly classified into gas reduction method, solid reduction method, and smelting reduction method. The gas reduction method includes a method of producing iron powder by reducing fine iron oxide dust with hydrogen or CO gas in a fluidized bed. In addition, as a gas / solid reduction method, a rotary kiln is used to mix dust and carbonaceous material, and the raw material is reduced at 900 to 1200 ° C. to produce reduced iron having a metalization rate of 70 to 80%. This is a method of producing pellets with carbonaceous materials and reducing them using a rotary kiln or rotary hearth type firing furnace to produce reduced pellets with a metallization rate of 70 to 80%. A method of producing pig iron by adding carbonaceous material to a metal, melting it in an iron bath type melting furnace, and reducing the iron oxide in the slag with a carbonaceous material or hot metal floating in the slag bath using high-density energy such as oxygen. Further, there is a method of blowing fine dust dust together with air from a tuyere into a shaft furnace type coke filling furnace and performing smelting reduction in a coke packed bed.
[0005]
[Problems to be solved by the invention]
As mentioned above, dust generated at steelworks and smelters is recycled and recycled, but as a result, zinc oxide gradually circulates and accumulates in the system, for example, charging zinc oxide into a blast furnace. When the basic unit reaches the allowable control limit, further recycling of dusts does not proceed, and it is discarded outside the system or stocked as defective stock in the system. As a means for promoting the active recycling of dust, a method is adopted in which dust is reduced in a rotary kiln or fluidized bed, iron oxide is reduced, and zinc oxide is reduced and removed in the process. However, the dust generated at ironworks is low in iron content because it is diluted with auxiliary materials such as quick lime and coke ash required for melting and refining in blast furnaces and converters, and reduced iron produced by ordinary reduction treatment. Is high in impurities. Fe is about 70% and cannot be said to be economically sufficiently valuable as a raw material for steelmaking. Fe and M.I. The actual situation is that improvement of Fe and improvement of the reduction treatment method are required.
[0006]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, the present invention preliminarily reduces the melting point of the dust so that slag having a low melting point starting temperature is generated by reduction treatment when blending iron-making dust generated from a sintering machine, a blast furnace, a converter, and the like. Produces dry green pellets with moderately adjusted basicity of gangue components and interiors with coal-based carbonaceous materials such as coke. When firing this in a rotary hearth-type firing furnace, reduction is performed by separating the metallic iron particles that have been reduced by the carbonaceous material inside the pellets and agglomerated by the mass transfer action within the grains from the low melting point slag portion that is produced at the same time. The present invention resides in a method for producing high-grade granular reduced iron from iron-making dust characterized in that a reduction treatment is performed by setting a temperature and a reduction time.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail.
When blending several types of dust and charcoal generated at steelworks, the basicity CaO / SiO 2 of gangue components such as CaO, SiO 2 , Al 2 O 3, etc. contained in the mixture is replaced with low melting point slag. The range to be generated is adjusted to 1.4 to 1.6. This is because if the basicity is less than 1.4, slag and iron are not effectively separated, and if it is more than 1.6, the melting point of slag is lowered and melts, so that separation from iron is stable. It is because it becomes impossible. Moreover, carbon materials, such as fine powder coke and anthracite, are equipped so that it may become 10 to 20% in carbon conversion. If less than 10%, dust will not be reduced, and if it exceeds 20%, it is too much to reduce dust, and this carbon content remains in the slag as a residue and does not serve as energy. Because. These raw materials are sufficiently mixed, a binder such as bentonite is added, and green pellets having an average particle size of about 10 mm are produced with a pelletizer.
[0008]
The dried green pellets are placed in a thin layer in a rotary hearth type firing furnace and fired at 1250-1350 ° C. to achieve the following functions. That is, the iron oxide in the dust is reduced by carbon in the carbon material incorporated therein to become metallic iron, and the melting point of the metallic iron is lowered and aggregated according to the carburization with carbon. On the other hand, the part containing the gangue component reacts with the part composed of unreduced FeO and pre-adjusted CaO, SiO 2 , Al 2 O 3 to produce low melting point slag. As a result, mutual mass transfer occurs inside the pellet, and metallic iron aggregates due to surface tension, separates from the slag portion, and becomes a state of granular reduced iron.
[0009]
In the rotary hearth type firing furnace, the charged pellets are processed by being left standing in the hearth, so that there is a granulated metallic iron part and a semi-molten slag part in which the soot is separated in the discharge part, It is discharged by a scraper. The discharged mixture is cooled and separated by a mechanical method or magnetic sorting. Of course, in the separated form, it is possible to perform hot treatment in the next process.
[0010]
Unlike pellets made from high-grade iron ore, dust-based pellets contain a large amount of slag components and impurities, making it difficult to obtain high-grade reduced iron with a high iron content by conventional reduction treatments. However, by adjusting the formulation so as to form a low melting point slag, the metallic iron produced by reduction aggregates due to the mass transfer in the pellets, and is shown in the present invention. By performing the reduction treatment, it is possible to produce high-grade reduced iron using dust as a raw material.
[0011]
【Example】
Hereinafter, the present invention will be specifically described with reference to examples.
FIG. 1 is a diagram showing an equipment flow for producing the high-grade granular reduced iron of the present invention. In accordance with the manufacturing process shown in Fig. 1, add 1% of bentonite as binder from the bentonite storage hopper to the raw material storage tank and kneaded dust, pulverize and mix with a ball mill, adjust the moisture, and produce with a pelletizer After granulation, 6 to 18 mm (average 10 mm) dust green pellets were produced using a sieve.
Table 1 shows the brand names of the steelworks dust used in the present invention and the breakdown of the composition. In addition to the carbon contained in the dust as a reducing material, it was adjusted with a dust collector powder (fine coke) of a coke dry fire extinguishing equipment, and the carbon blending ratio was 14.7%.
[0012]
[Table 1]
Figure 0003779009
[0013]
The pellets are charged into a rotary hearth type firing furnace and subjected to a reduction treatment. The pellets are placed in the rotary hearth, and the iron oxide particles in the dust are reduced to metallic iron in a short period of time by direct reduction reaction by the fine powder carbon incorporated in the pellets in the process of moving with the rotary hearth. The This paper describes the results of tests conducted on small-scale equipment to establish a method for producing reduced iron in the rotary hearth type and an effective operation method. That is, the results of tests performed using a small apparatus in order to grasp the proper operating conditions for the rotary hearth type are shown in FIGS. 2, 3, 4, 2, and 3.
[0014]
[Table 2]
Figure 0003779009
[0015]
[Table 3]
Figure 0003779009
[0016]
Table 2 shows the results of examining the heating condition, the fuel consumption rate, and the metallization rate by changing the air ratio of the combustion burner of the firing furnace to 0.6 to 1.0. The temperature does not rise in time, and in the case of 0.8, the fuel consumption rate increases by 40% or more compared to the case where the fuel consumption rate is 1.0. Although the metallization rate is slightly lowered, the air ratio is most economical near 1.0.
Table 3 shows the influence of the blending ratio of interior carbon materials. When the amount of carbon is less than 10%, an oxidation phenomenon is observed when the heating time is increased. Moreover, when the amount of carbon exceeds 20, unreacted carbon remains in the pellets after firing, and the crushing strength after reduction decreases. A case where the amount of carbon was 10 to 20% was appropriate, and a high dezincification rate was obtained.
[0017]
FIG. 2 shows the relationship between the layer thickness of the pellets in the rotary hearth and the crushing strength after reduction. When the layer thickness of the pellet is increased, the lower layer is not sufficiently fired and the reduction reaction does not proceed sufficiently. Therefore, it is necessary to make the pellet thickness 20 to 30 mm. Referring to the batch test results described above, examples of the results of the firing test in which continuous charging was performed under the conditions of carbon amount 15%, layer thickness 30 mm, and air ratio 0.9 to 1.0, and the firing temperature was changed. Are shown in Tables 4 and 5. Table 4 shows the set operation conditions. Table 5 shows the properties of the reduced iron that has been reduced under the set operating conditions.
[0018]
[Table 4]
Figure 0003779009
[0019]
[Table 5]
Figure 0003779009
[0020]
As described above, using a rotary hearth type firing furnace, the metallization rate is 80%, the dezincification rate is 90%, the reduced iron strength is 136 kg / p, 5 mm or more in a short time of about 22 minutes at 1250 ° C. A product yield of 88% is obtained, which is a dezincing method by effective reduction treatment of iron-making dust, and is an effective means for promoting the recycling of dust. However, as shown in the examples, when waste materials of various processes such as converter dust, sintered dust, blast furnace dust, etc. generated at steelworks are used as the main raw material, limestone and quicklime used in each process Since the ash of coal-based carbon materials used as fuel is mixed as impurities, the average iron content of the raw material is about 50%, and the iron content of reduced iron produced using this as a raw material is 70%. When it is used for steelmaking, there is room for improvement compared to scrap and the like.
[0021]
FIG. 3 is a diagram showing the relationship between T-Fe and basicity at each treatment temperature of reduced iron produced by reduction treatment using a rotary hearth method. As shown in FIG. 3, the basicity at each treatment temperature of 1250 ° C., 1300 ° C., and 1350 ° C. is in the range of 1.4 to 1.6. It can be seen that Fe shows a value of 90% or more. On the other hand, when the basicity is less than 1.4 or more than 1.6, T.P. It can be seen that the value of Fe decreases to 90% or less.
[0022]
FIG. 4 shows T. of reduced iron produced by reduction treatment using a rotary hearth method. Fe and M.M. It is a figure which shows the relationship between Fe and baking temperature. Then, CaO is added to the raw material which carried out the mixing | blending as mentioned above, and basicity is adjusted to 1.4-1.6. When this compounded raw material is charged into a rotary hearth-type firing furnace as green pellets with a diameter of about 10 mm and the reduction temperature is increased to 1300 ° C, the same raw material is used for the purpose of producing conventional reduced iron. The results of reduction treatment at 1100 ° C. and 1200 ° C. using are shown for comparison. The reduced iron subjected to the reduction treatment at 1300 ° C. has a reduced iron portion and a gangue component portion separated, and the reduced iron portion is agglomerated particles. Those subjected to the reduction treatment at 1100 ° C. retain the original shape of the pellet, and separation of the gangue portion is not recognized. What performed the reduction process at 1200 degreeC has shown the intermediate | middle semi-molten state.
[0023]
As described above, the present invention is characterized by separating the aggregated granular reduced iron portion and the gangue component portion when reducing the raw pellet while maintaining the stationary state as much as possible using the rotary hearth, After the treatment is completed, a cooling treatment such as water cooling is performed, and the quality of the reduced iron portion is remarkably improved by mechanical treatment, magnetic separation treatment or the like. Further, the optimum temperature in the reduction treatment is preferably a temperature slightly higher than the welding start temperature determined by the gangue component of the dust pellet, but in this example, when the CaO / SiO 2 of the slag portion of the raw material pellet is 1.56 The optimal reduction treatment temperature is 1300 ° C., and the initial objective high quality granular reduced iron is produced.
[0024]
Table 6 shows the quality of the granular reduced iron and the chemical properties of the separated slag part. As is apparent from Table 6, the quality of the granular reduced iron produced by carrying out the reduction treatment of the present invention and separating the slag portion is such that the basicity is in the range of 1.4 to 1.6 and the treatment temperature is 1250. At 1350 ° C., T.W. Fe has a high grade of 90% or more, which is much higher than the grade of reduced iron produced under general conditions.
[0025]
[Table 6]
Figure 0003779009
[0026]
【The invention's effect】
As described above, according to the present invention, it is possible to manufacture high-quality reduced iron with dramatically improved iron content using dust generated at a steel mill as a raw material. In addition, when performing dezincification necessary for dust recycling using the reduction treatment method, it is possible to produce reduced iron with high added value as a raw material for steelmaking, as compared with scrap that is normally used. The economic effect is very good.
[Brief description of the drawings]
FIG. 1 is a diagram showing an equipment flow for producing high-grade granular reduced iron of the present invention;
FIG. 2 is a diagram showing the relationship between the layer thickness of pellets in the rotary hearth method and the crushing strength after reduction,
FIG. 3 is a view showing the relationship between T-Fe and basicity at each treatment temperature of reduced iron produced by reduction treatment using a rotary hearth method;
FIG. 4 shows the T. of reduced iron produced by reduction treatment using a rotary hearth method. Fe and M.M. It is a figure which shows the relationship between Fe and baking temperature.

Claims (1)

製鉄ダストから還元鉄を製造するに際して、複数種のダスト及び炭材で構成される混合物のCaO/SiO2 を1.4〜1.6とし、且つ混合物の炭素含有量を10〜20%に、予め内装せしめた原料から、含炭ペレットを製造し、これを回転炉床方式の焼成炉で1250〜1350℃の温度で還元処理を行う過程で、ペレット内部で炭材で還元され、粒内物質移動によって凝集したメタリック鉄粒子が、ダストの脈石成分から生成したFeOを含む低融点のスラグ部分から、自然に分離する作用を利用してメタリック鉄粒子を抽出し高品位粒状還元鉄を製造することを特徴とする製鉄ダストからの高品位還元鉄の製造方法。When producing reduced iron from steelmaking dust, CaO / SiO 2 of the mixture composed of a plurality of types of dust and carbonaceous material is 1.4 to 1.6, and the carbon content of the mixture is 10 to 20%, In the process of producing carbon-containing pellets from raw materials that have been pre-incorporated and reducing them at a temperature of 1250 to 1350 ° C. in a rotary hearth-type firing furnace, the pellets are reduced with carbonaceous materials and become intragranular substances. Metallic iron particles agglomerated by migration are extracted from the low melting point slag containing FeO generated from the gangue component of dust, and the metallic iron particles are extracted using the action of natural separation to produce high-grade granular reduced iron. A method for producing high-quality reduced iron from iron-making dust.
JP30602096A 1996-11-18 1996-11-18 Method for producing high-quality reduced iron from steelmaking dust Expired - Fee Related JP3779009B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30602096A JP3779009B2 (en) 1996-11-18 1996-11-18 Method for producing high-quality reduced iron from steelmaking dust

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30602096A JP3779009B2 (en) 1996-11-18 1996-11-18 Method for producing high-quality reduced iron from steelmaking dust

Publications (2)

Publication Number Publication Date
JPH10147806A JPH10147806A (en) 1998-06-02
JP3779009B2 true JP3779009B2 (en) 2006-05-24

Family

ID=17952117

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30602096A Expired - Fee Related JP3779009B2 (en) 1996-11-18 1996-11-18 Method for producing high-quality reduced iron from steelmaking dust

Country Status (1)

Country Link
JP (1) JP3779009B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6126718A (en) * 1999-02-03 2000-10-03 Kawasaki Steel Corporation Method of producing a reduced metal, and traveling hearth furnace for producing same
JP2001279313A (en) 2000-03-30 2001-10-10 Midrex Internatl Bv Method for producing molten metallic iron
JP2001288504A (en) 2000-03-31 2001-10-19 Midrex Internatl Bv Method for producing molten metallic iron
TW562860B (en) 2000-04-10 2003-11-21 Kobe Steel Ltd Method for producing reduced iron
TW565617B (en) 2000-10-30 2003-12-11 Nippon Steel Corp Raw pellets containing oxidized metal for a reduction furnace, a method for production the same, a method for reducing the raw pellets and a reducing apparatus
JP4691827B2 (en) * 2001-05-15 2011-06-01 株式会社神戸製鋼所 Granular metal iron
JP5047468B2 (en) * 2005-03-31 2012-10-10 新日本製鐵株式会社 Method for producing reduced iron
EP2551362A1 (en) 2010-03-25 2013-01-30 Kabushiki Kaisha Kobe Seiko Sho Carbon-material-containing iron oxide briquette composition, method for producing same, and method for producing reduced iron using same
JP2015021148A (en) * 2013-07-17 2015-02-02 株式会社神戸製鋼所 Heating apparatus for object to be heated
JP6623127B2 (en) 2016-08-01 2019-12-18 株式会社神戸製鋼所 Method and apparatus for producing reduced iron

Also Published As

Publication number Publication date
JPH10147806A (en) 1998-06-02

Similar Documents

Publication Publication Date Title
RU2271396C2 (en) Hearth melting furnace and method of its operation for production of iron or steel
JP5334240B2 (en) Method for producing reduced iron agglomerates for steelmaking
KR100210649B1 (en) Method for recovering zinc oxide from dust and apparatus therefor
US3313617A (en) Iron-containing flux material for steel-making process
JP3779009B2 (en) Method for producing high-quality reduced iron from steelmaking dust
US3894865A (en) Production of metallurgical pellets in rotary kilns
US6372011B1 (en) Method for producing an iron melt using iron-containing residual smelting plant materials
JP5428534B2 (en) Pig iron production method using high zinc content iron ore
JP4540172B2 (en) Production of granular metallic iron
JP3516854B2 (en) Steelmaking furnace dust treatment method and dust pellets
US4629506A (en) Process for the production of ferrochromium
CA2831461C (en) Use of bimodal carbon distribution in compacts for producing metallic iron nodules
US3403018A (en) Method of treating precipitator dust
US6395052B1 (en) Method for producing directly-reduced iron, liquid pig iron and steel
JPH0770662A (en) Device for removing zinc from zinc-containing dust
US4434001A (en) Method for manufacturing metal from fine-grain metal-oxide material
US4255185A (en) Processes and apparatus for reducing and subsequently pelletizing moist fine-grained ore
JP4060986B2 (en) How to use dust in converter steelmaking.
JP3317137B2 (en) Recovery device for zinc oxide from steelmaking dust
JP5971482B2 (en) Agglomerate production method
Nakano et al. Coke breeze-less sintering of BOF dust and its capability of dezincing
JPH11302712A (en) Reduction dissolution refining method for iron oxide
JP5119815B2 (en) Operation method of mobile hearth furnace
JP5397020B2 (en) Reduced iron production method
JP3864506B2 (en) Semi-reduced iron agglomerate, method for producing the same, and method for producing pig iron

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040928

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060228

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060301

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100310

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100310

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110310

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120310

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130310

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140310

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees