[go: up one dir, main page]

JP3769866B2 - Method for producing catalyst for gas phase catalytic oxidation - Google Patents

Method for producing catalyst for gas phase catalytic oxidation Download PDF

Info

Publication number
JP3769866B2
JP3769866B2 JP08956997A JP8956997A JP3769866B2 JP 3769866 B2 JP3769866 B2 JP 3769866B2 JP 08956997 A JP08956997 A JP 08956997A JP 8956997 A JP8956997 A JP 8956997A JP 3769866 B2 JP3769866 B2 JP 3769866B2
Authority
JP
Japan
Prior art keywords
metal oxide
composite metal
catalyst
gas phase
catalytic oxidation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP08956997A
Other languages
Japanese (ja)
Other versions
JPH1028862A (en
Inventor
孝 牛窪
一典 大島
徹 大越
知美 沼澤
久夫 木下
展 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP08956997A priority Critical patent/JP3769866B2/en
Publication of JPH1028862A publication Critical patent/JPH1028862A/en
Application granted granted Critical
Publication of JP3769866B2 publication Critical patent/JP3769866B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は炭化水素の気相接触酸化反応用の複合金属酸化物触媒の製造方法に関する。炭化水素の気相接触酸化反応はその生成物の有用性や製造方法の経済性などから工業的に広く実施されている。特に、炭化水素の部分酸化反応によるアクリル酸、無水マレイン酸等の含酸素有機化合物、又は、炭化水素とアンモニアの接触酸化反応によるアクリロニトリル、メタクリロニトリル等のニトリルを製造するために工業的に重要なものである。このほかにも飽和炭素−炭素結合を不飽和結合に変換する反応、例えば、エタン、プロパン、ブタンなどのアルカンを相当するアルケン、すなわち、エチレン、プロピレン、ブテン類などに変換する脱水素気相接触酸化反応も提案されている。
【0002】
【従来の技術】
モリブデン、バナジウムなどを含有する複合金属酸化物触媒の報告例は多数知られている。例えば、炭化水素のアルカンとアンモニアの接触酸化反応によるニトリル製造用でモリブデンを必須主元素として含む触媒だけでも、Mo−Bi−P系触媒(特開昭48−16887号)、V−Sb−W系酸化物とMo−Bi−Ce−W系酸化物を機械的に混合して得た触媒(特開昭64−38051号)、Mo−Ag−Bi−V系触媒(特開平3−58961号)、Mo−V−Sn−Bi−P系触媒(特開平4−247060号)、Mo−Cr−Te系触媒(米国特許5171876号)、MoとMn、Coなどの元素からなる複合金属酸化物触媒(特開平5−194347号)、Mo−V−Te系触媒(特開平2−257号、特開平5−148212号、特開平5−208136号、特開平6−279351合、特開平6−287146号、特開平7−108101号など)、Mo−Cr−Bi系触媒(特願平4−265192号、特願平5−305361号)、Mo−Te系触媒(特願平5−309345号)などが例示される。
【0003】
また、特にバナジウムを必須主元素として含む触媒として、V−Sb系触媒(特開昭47−33783号、特公昭50−23016号、特開平1−268668号、特開平2−180637号)、V−Sb−U−Ni系触媒(特公昭47−14371号)、V−Sb−W−P系触媒(特開平2−95439号)、V−W−Te系触媒(特願平5−18918号)などが例示される。
【0004】
【発明が解決しようとする課題】
触媒の活性はその組成に大きく依存する。しかしながら、触媒の組成を最適化して本質的には優れた触媒活性が期待できるにもかかわらず、その調製方法などにより十分な触媒活性が発現できない場合が非常に多い。特に、上記のような複合金属酸化物からなる触媒においては、その調製操作が煩雑であり、微妙な調製条件の変更によって、期待される触媒活性が再現性よく得られないという問題がある。
【0005】
【課題を解決するための手段】
本発明者らは、上記の課題を考慮しつつ、モリブデン、バナジウムなどを含有する複合金属酸化物触媒の製造方法について検討を継続した結果、複合金属酸化物を一旦調製した後に、特定元素成分を含む溶液を含浸させる処理を施すことにより、炭化水素の選択的な気相接触酸化反応において優れた性能を示すことを見いだし、本発明に到達したものである。
【0006】
即ち、本発明の要旨は、下記の実験式(1)で表される複合金属酸化物に、タングステン、モリブデン、クロム、ジルコニウム、チタン、ニオブ、タンタル、バナジウム、硼素、ビスマス、テルル、パラジウム、コバルト、ニッケル、鉄、リン、ケイ素、希土類元素、アルカリ金属、アルカリ土類金属からなる群より選ばれる1つ以上の元素を含む溶液を含浸させてなる炭化水素の気相接触酸化反応用触媒の製造方法に存する。
【0007】
【化2】
Moa b x zn (1)
(式(1)において、XはTe及び/又はSb、ZはNb,Ta,W,Ti,Al,Zr,Cr,Mn,Fe,Ru,Co,Rh,Ni,Pd,Pt,Bi,B,In及びCeの中から選ばれた1つ又はそれ以上の元素を表し、
a=1とするとき、
b=0.01〜1
x=0.01〜1
z=0〜1
であり、また、nは他の元素の酸化状態により決定される。)
【0008】
【発明の実施の形態】
以下、本発明を詳細に説明する。本発明では、初めに上記実験式(1)で示される複合金属酸化物を調製する。該金属複合酸化物は、モリブデンとバナジウムを必須成分とするほか、テルル及び/又はアンチモンを必須成分するものである。以上の必須成分以外ではニオブ、タングステン、チタン、タンタルを任意成分として含むことが好ましく、ニオブが特に好ましい。また、各元素の実験式(1)における係数の範囲は、好ましくは、a=1とするとき、b=0.1〜0.6、x=0.05〜0.4、z=0.001〜0.6である。
【0009】
上記の複合金属酸化物の原料としては、モリブデン化合物、バナジウム化合物、テルル化合物及び/又はアンチモン化合物、ニオブ,タンタル,タングステン,チタン,アルミニウム,ジルコニウム,クロム,マンガン,鉄,ルテニウム,コバルト,ロジウム,ニッケル,パラジウム,白金,ビスマス,硼素,インジウム及びセリウムの中から選ばれた1つまたはそれ以上の元素のカルボン酸塩、カルボン酸アンモニウム塩、ハロゲン化アンモニウム塩、酸化物、ハロゲン化物、水素酸、アセチルアセトナート、アルコキシド等の化合物を使用することがてきる。複合金属酸化物の調製方法は、特に限定はなく、複合金属酸化物の原料水もしくは有機溶媒の溶液又はスラリーより調製する方法と、複合金属酸化物の原料を混合して高温固相反応により調製する方法の主に2つがある。しかしながら、より活性に優れた触媒を得るという点では前者の方法、特に各成分を含む溶液又はスラリー状の水性液を調製後、乾燥し、焼成する方法が好ましい。
【0010】
例えば、モリブデン、バナジウム、テルル及びニオブを含む複合金属酸化物の製造方法としては、メタバナジン酸アンモニウム塩の水溶液に、テルル酸の水溶液、シュウ酸ニオブアンモニウム塩の水溶液およびパラモリブデン酸アンモニウム塩の水溶液を各々の金属元素の原子比が所定の割合となるような量比で順次添加し、蒸発乾固法、噴霧乾燥法、凍結乾燥法、真空乾燥法等で乾燥させ乾燥物を得て、次に得られた乾燥物を焼成することにより得ることができる。
【0011】
この焼成方法はその乾燥物の性状や規模により任意に採用することが可能であるが、蒸発皿上での熱処理や回転炉、流動焼成炉等の加熱炉による熱処理等が一般的である。また、これらの処理を複数種組み合わせてもよい。これら焼成条件も採用される方法により異なるが、通常、温度は200〜700℃、好ましくは250〜650℃、時間は通常0.5〜30時間、好ましくは1〜10時間行われる。また、焼成は、酸素雰囲気中で行ってもよいが、酸素不存在下で行うことが好ましく、具体的には、窒素、アルゴン、ヘリウム等の不活性ガス雰囲気中または真空中で行われる。
【0012】
以上のようにして得た複合金属酸化物は、そのままでも固体触媒としての活性を有するものであるが、本発明では、更に、該複合金属酸化物に、タングステン、モリブデン、クロム、ジルコニウム、チタン、ニオブ、タンタル、バナジウム、硼素、ビスマス、テルル、パラジウム、コバルト、ニッケル、鉄、リン、ケイ素、希土類元素、アルカリ金属、アルカリ土類金属からなる群より選ばれる1つ以上の元素を含む溶液を含浸させてその触媒性能を向上させるところに特徴を有する。これらの元素のうち、好ましくはタングステン、チタン、マグネシウム、希土類元素のセリウム,イットリウム、サマリウムである。また、使用されるこれらの元素の化合物、および溶液を調製する際に使用される溶媒は特に限定されないが、溶媒としては水を使用するのが含浸後の処理が容易であるため好ましく、水を使用する場合には水溶性の化合物、あるいは水溶性のゾルなどが好適に使用される。上記の元素は、複合金属酸化物のモリブデンに対して、原子比で通常0.0001〜0.5、好ましくは0.001〜0.2で含浸させる。以上の含浸処理に際しては、複合金属酸化物の全体に元素がほぼ均一に分散含浸できるので、複合金属酸化物を予め粉砕処理などを行う必要は特にない。また、含浸処理後は、通常、常温から200℃程度で水分などを乾燥した後に触媒として使用することができるが、必要に応じて更に通常300〜700℃程度の範囲で再度焼成を行ってもよい。
【0013】
本発明の含浸処理して得られる複合金属酸物触媒の性能が優れてる理由の詳細は明らかではないが、改良成分の含浸により触媒表面上の好ましくない副反応、例えば、生成物の分解反応や反応原料の燃焼反応を進行させる活性点を不活性化したりすることが推定される。また、このような方法により活性化された複合酸化物触媒の粉末エックス線回折測定により決定される結晶構造は変化がなく触媒のバルク構造ではなく表面の性質を変化させているものと考えられる。なお、含浸に使用される元素の中には、含浸前の複合金属酸化物中に既に含まれている元素の場合もあるが、含浸の効果は上記したような複合金属酸化物表面の性質の改良に関わるものであり、複合金属酸化物を形成する元素とはその役割が異なると推定される。
【0014】
このようにして製造される複合金属酸化物触媒は、単独で用いてもよいが、周知の担体成分、例えば、シリカ、アルミナ、チタニア、ジルコニア、アルミノシリケ−ト、珪藻土などを1〜90重量%程度含んだ混合物として使用することもできる。この場合、上記したような担体は複合酸化物の調製時、調製後の含浸処理前、あるいは含浸処理後のいずれの段階で添加してもよい。
【0015】
以上の方法で製造した複合金属酸化物触媒は、炭化水素の気相接触酸化反応による有機化合物の製造に利用される。本発明における炭化水素の気相接触酸化反応とは、炭化水素を酸素と気相接触反応させるものであるが、酸素のほかにアンモニアや水蒸気などを反応系に存在させるような反応も含まれ,含酸素有機化合物、脱水素化有機化合物、ニトリル類などの各種の有機化合物の製造に適用される。そして、本発明で製造された複合金属酸化物触媒の使用条件は、各触媒系において既に公知の反応条件と同じ条件にすればよく、従来法で製造された類似の組成の触媒を使用した場合と比較して、目的とする生成物をより高選択率、高収率で得ることができる。
【0016】
反応原料の炭化水素としては、炭素数3〜8程度のアルカン又はアルケン、炭素数6〜12程度の芳香族炭化水素などが挙げられる。その反応例としては、アルケン又はアルカンとアンモニアとの気相接触酸化反応によるニトリルの製造(例えば、プロピレン又はプロパンとアンモニアからのアクリロニトリルの製造、イソブテン又はイソブタンとアンモニアからのアクリロニトリルの製造)アルカン又はアルケンの部分酸化反応による不飽和アルデヒド、不飽和カルボン酸の製造(例えば、プロパン又はプロピレンからのアクロレイン、アクリル酸の製造、イソブタン又はイソブテンからのメタクロレイン、メタクリル酸の製造)、飽和カルボン酸の酸化脱水素反応(例えば、イソ酪酸からメタクリル酸の製造)、炭化水素の酸化脱水素反応(例えば、ブテンからのブタジエンの製造)、各種炭化水素の部分酸化反応による酸無水物の製造(例えば、ナフタレン又はキシレンからの無水フタル酸の製造、ブタン又はブテンからの無水マレイン酸の製造)などがある。
【0017】
炭化水素の気相接触酸化反応の条件について述べる。該触媒は、他の気相接触酸化反応用の金属酸化物触媒と比較して、通常500℃以下の比較的低温下においてもアルカンの部分酸化活性が高いという特性を有する。該触媒を用いた気相接触酸化反応においては、反応温度が300〜500℃、好ましくは350〜450℃程度であり、気相反応におけるガス空間速度SVが100〜10000hr-1、好ましくは300〜6000hr-1の範囲であり、反応は通常大気圧下で実施できるが、低度の加圧下または減圧下でもよい。また、空間速度と酸素分圧を調整するための希釈ガスとして、窒素、アルゴン、ヘリウム等の不活性ガスを用いることができる。反応方式は固定床、流動層等のいずれも採用できるが、発熱反応であるため、流動層方式の方が反応温度の制御が容易である。
【0018】
本発明で製造した複合金属酸化物触媒は、アルカンとアンモニアとの気相接触酸化反応によるニトリルの製造、特にプロパンからのアクリロニトリルの製造に有効である。この反応おいて、反応系に供給する酸素の割合が生成するアクリロニトリルの選択率に関して重要であり、酸素はプロパンに対して特に0.2〜4モル倍量の範囲で高いアクリロニトリルの選択率を示す。また、反応に供与するアンモニアの割合は、プロパンに対して特に0.1〜3モル倍量の範囲が好適である。
【0019】
また、本発明で製造した複合金属酸化物触媒を用い、プロパンの気相接触酸化反応を行うことにより高収率でアクリル酸を得ることができる。反応原料ガスとしてはプロパンと酸素含有ガスを使用するが、更に、水蒸気を用いるのが好ましく、水蒸気によりアクリル酸の選択性を更に向上させることができる。原料ガスのモル分率としては、好ましくは(プロパン):(酸素):(水蒸気)=1:(1〜5):(5〜40)である。
【0020】
【実施例】
以下、本発明を、実施例を挙げてさらに詳細に説明するが、本発明はその要旨を超えないかぎりこれらの実施例に限定されるものではない。
なお、以下の実施例および比較例におけるプロパン転化率(%)、アクリロニトリル選択率(%)、アクリロニトリル収率(%)は、各々以下の式で示される。
【0021】
【数1】

Figure 0003769866
【0022】
参考例1 複合金属酸化物の調製(1)
実験式がMo10.3Te0.23Nb0.12n/SiO2(重量比90/10)である担体成分としてのシリカが混合された複合金属酸化物を次のように調製した。温水5.68リットルに、パラモリブデン酸アンモニウム塩1.380kg、メタバナジン酸アンモニウム塩0.275kg、テルル酸0.413kgを溶解し、均一な水溶液を調製した。更に、該水溶液に、20重量%シリカゾル0.658kg及びニオブの濃度が0.659mol/kgのシュウ酸ニオブアンモニウム水溶液0.618kgを混合し、スラリ−を調製した。このスラリーを乾燥させ水分を除去した。次いで、この乾燥物をアンモニア臭がなくなるまで約300℃で加熱処理した後、窒素気流中600℃で2時間焼成した。
【0023】
実施例1
実験式がW0.1Mo10.3Te0.23Nb0.12n/SiO2(重量比約90/10)である複合金属酸化物触媒を次のように調製した。なお、以下の実施例も含めて触媒の実験式では、複合金属酸化物に後から含浸させた元素成分を、実験式のモリブデン(Mo)の前に表記することとした。WO3に換算して50重量%に相当するメタタングステン酸アンモニウム水溶液0.47gを水で1mlとして、前記参考例1で調製した複合金属酸化物2.5gに含浸させ、空気中室温で約1日乾燥させた後、熱風乾燥器中150℃で1時間乾燥させた。
【0024】
このようにして得た複合金属酸化物触媒0.55gを反応器に充填し、反応温度440℃、空間速度SVを約900hr-1に固定して、プロパン:アンモニア:空気=1:1.2:15のモル比でガスを供給し気相接触酸化反応を行った。反応成績を表−1に示す。
【0025】
実施例2
実施例1で調製した複合金属酸化物触媒を用い、反応温度を450℃とした以外は実施例1と同様の条件で気相接触酸化反応を行った。反応成績を表−1に示す。
実施例3
実験式がW0.10.0083Mo10.3Te0.23Nb0.12n/SiO2(重量比約90/10)である複合金属酸化物触媒を次のように調製した。P25・24WO3に換算して85重量%に相当するH3PW1240・nH2O 0.99gを水で1mlとして、参考例1の方法で調製した複合金属酸化物2.5gに含浸させ、空気中室温で約1日乾燥させた後、熱風乾燥器中150℃で1時間乾燥させた。
【0026】
このようにして得た複合金属酸化物触媒0.55gを反応器に充填し、反応温度を450℃とした以外は実施例1と同様の条件で気相接触酸化反応を行った。反応成績を表−1に示す。
【0027】
実施例4
実験式W0.1Si0.0083Mo10.3Te0.23Nb0.12n/SiO2(重量比約90/10)である複合金属酸化物触媒を次のように調製した。SiO2・24WO3に換算して82重量%に相当するH4SiW1240・nH2O 1.02gを水で1mlとして、参考例1の方法で調製した複合金属酸化物2.5gに含浸させ、空気中室温で約1日乾燥させた後、熱風乾燥器中150℃で1時間乾燥させた。
【0028】
このようにして得た複合金属酸化物触媒0.55gを反応器に充填し、反応温度を420℃とした以外は実施例1と同様の条件で気相接触酸化反応を行った。反応成績を表−1に示す。
【0029】
実施例5
実験式W0.1Te0.01Mo10.3Te0.23Nb0.12n/SiO2(重量比約90/10)である複合金属酸化物触媒を次のように調製した。WO3に換算して50重量%に相当するメタタングステン酸アンモニウム水溶液0.47gとH2TeO4・2H2O 0.023gを水と混合して1mlとし、前記参考例1で調製した複合金属酸化物2.5gに含浸させ、空気中室温で約1日乾燥させた後、熱風乾燥器中150℃で1時間乾燥させた。
【0030】
このようにして得た複合金属酸化物触媒0.55gを反応器に充填し、反応温度を430℃とした以外は実施例1と同様の条件で気相接触酸化反応を行った。反応成績を表−1に示す。
【0031】
実施例6
実験式W0.1Te0.02Mo10.3Te0.23Nb0.12n/SiO2(重量比約90/10)である複合金属酸化物触媒を次のように調製した。WO3に換算して50重量%に相当するメタタングステン酸アンモニウム水溶液0.47gとH2TeO4・2H2O 0.046gを水と混合して1mlとし、該液を前記参考例1で調製した複合金属酸化物2.5gに含浸させ、空気中室温で約1日乾燥させた後、熱風乾燥器中150℃で1時間乾燥させた。
【0032】
このようにして得た複合金属酸化物触媒0.55gを反応器に充填し、反応温度を450℃とした以外は実施例1と同様の条件で気相接触酸化反応を行った。反応成績を表−1に示す。
【0033】
比較例1〜5
参考例1のようにして得た複合金属酸化物0.55gを触媒として反応器に充填し、表−1に示す反応温度とした以外は実施例1と同様の条件で気相接触酸化反応を行った。反応成績を表−1に示す。
【0034】
【表1】
Figure 0003769866
【0035】
実施例7
実験式がCe0.0867Mo10.3Te0.23Nb0.12n/SiO2(重量比約90/10)である複合金属酸化物触媒を次のように調製した。15重量%CeO2ゾル0.8mlを参考例1の方法で調製した複合金属酸化物2gに含浸させ、空気中100℃で1時間乾燥させた後、600℃の窒素気流中で2時間焼成した。
【0036】
このようにして得た複合金属酸化物触媒0.55gを反応器に充填し、反応温度440℃、空間速度SVを約770hr-1に固定して、プロパン:アンモニア:空気=1:1.2:15のモル比でガスを供給し気相接触酸化反応を行った。反応成績を表−2に示す。
【0037】
実施例8
実験式がCe0.0260Mo10.3Te0.23Nb0.12n/SiO2(重量比約90/10)である複合金属酸化物触媒を次のように調製した。4.5重量%CeO2ゾルlを参考例1の方法で調製した複合金属酸化物2gに含浸させ、空気中100℃で1時間乾燥させた後、600℃の窒素気流中で2時間焼成した。
【0038】
このようにして得た複合金属酸化物触媒0.55gを反応器に充填し、反応温度を430℃とした以外は実施例7と同様の条件で気相接触酸化反応を行った。反応成績を表−2に示す。
【0039】
実施例9
実験式がCe0.0173Mo10.3Te0.23Nb0.12n/SiO2(重量比約90/10)である複合金属酸化物触媒を次のように調製した。3.0重量%CeO2ゾルlを参考例1の方法で調製した複合金属酸化物2gに含浸させ、空気中100℃で1時間乾燥させた後、600℃の窒素気流中で2時間焼成した。
【0040】
このようにして得た複合金属酸化物触媒0.55gを反応器に充填し、反応温度を420℃とした以外は実施例7と同様の条件で気相接触酸化反応を行った。反応成績を表−2に示す。
【0041】
実施例10
実験式がCe0.00867Mo10.3Te0.23Nb0.12n/SiO2(重量比約90/10)である複合金属酸化物触媒を次のように調製した。3.0重量%CeO2ゾルlを参考例1の方法で調製した複合金属酸化物2gに含浸させ、空気中100℃で1時間乾燥させた後、600℃の窒素気流中で2時間焼成した。
【0042】
このようにして得た複合金属酸化物触媒0.55gを反応器に充填し、反応温度を430℃とした以外は実施例7と同様の条件で気相接触酸化反応を行った。反応成績を表−2に示す。
【0043】
【表2】
Figure 0003769866
【0044】
実施例11
実験式がMg0.002Mo10.3Te0.23Nb0.12n/SiO2(重量比約90/10)である複合金属酸化物触媒を次のように調製した。酢酸マグネシウム四水和物(Mg(CH3COO)2・4H2O)13.5mgを5mlの水に溶解し、該液を参考例1の方法で調製した複合金属酸化物7.6gに含浸させ、空気中80℃で5時間乾燥させた後、窒素気流中450℃で2時間焼成した。
【0045】
このようにして得た複合金属酸化物触媒0.55gを反応器に充填し、反応温度410℃、空間速度SVを約900hr-1に固定して、プロパン:アンモニア:空気=1:1.2:15のモル比でガスを供給し気相接触酸化反応を行った。反応成績を表−3に示す。
【0046】
実施例12
実験式がCa0.005Mo10.3Te0.23Nb0.12n/SiO2(重量比約90/10)である複合金属酸化物触媒を次のように調製した。酢酸カルシウム一水和物(Ca(CH3COO)2・4H2O)27.6mgを5mlの水に溶解し、該液を参考例1の方法で調製した複合金属酸化物7.6gに含浸させ、空気中80℃で5時間乾燥させた後、窒素気流中450℃で2時間焼成した。
【0047】
このようにして得た複合金属酸化物触媒0.55gを反応器に充填し、実施例11と同様の条件で気相接触酸化反応を行った。反応成績を表−3に示す。
【0048】
実施例13
実験式がY0.005Mo10.3Te0.23Nb0.12n/SiO2(重量比約90/10)である複合金属酸化物触媒を次のように調製した。酢酸イットリウム(Y(CH3COO)3)44.6mgを5mlの水に溶解し、該液を参考例1の方法で調製した複合金属酸化物7.6gに含浸させ、空気中80℃で5時間乾燥させた後、窒素気流中500℃で2時間焼成した。
【0049】
このようにして得た複合金属酸化物触媒0.55gを反応器に充填し、反応温度を420℃とした以外は実施例11と同様の条件で気相接触酸化反応を行った。反応成績を表−3に示す。
【0050】
実施例14
実験式がLa0.005Mo10.3Te0.23Nb0.12n/SiO2(重量比約90/10)である複合金属酸化物触媒を次のように調製した。酢酸ランタン四水和物(La(CH3COO)3・4H2O)64.8mgを5mlの水に溶解し、該液を参考例1の方法で調製した複合金属酸化物7.6gに含浸させ、空気中80℃で5時間乾燥させた後、窒素気流中600℃で2時間焼成した。
【0051】
このようにして得た複合金属酸化物触媒0.55gを反応器に充填し、反応温度を430℃とした以外は実施例11と同様の条件で気相接触酸化反応を行った。反応成績を表−3に示す。
【0052】
実施例15
実験式がNd0.005Mo10.3Te0.23Nb0.12n/SiO2(重量比約90/10)である複合金属酸化物触媒を次のように調製した。酢酸ネオジウム(Nd(CH3COO)3)53.7mgを5mlの水に溶解し、該液を参考例1の方法で調製した複合金属酸化物7.6gに含浸させ、空気中80℃で5時間乾燥させた後、窒素気流中600℃で2時間焼成した。
【0053】
このようにして得た複合金属酸化物触媒0.55gを反応器に充填し、実施例11と同様の条件で気相接触酸化反応を行った。反応成績を表−3に示す。
【0054】
実施例16
実験式がSm0.005Mo10.3Te0.23Nb0.12n/SiO2(重量比約90/10)である複合金属酸化物触媒を次のように調製した。酢酸サマリウム(Sm(CH3COO)3)66.7mgを5mlの水に溶解し、該液を参考例1の方法で調製した複合金属酸化物7.6gに含浸させ、空気中80℃で5時間乾燥させた後、窒素気流中600℃で2時間焼成した。
【0055】
このようにして得た複合金属酸化物触媒0.55gを反応器に充填し、実施例11と同様の条件で気相接触酸化反応を行った。反応成績を表−3に示す。
【0056】
【表3】
Figure 0003769866
【0057】
参考例2 複合金属酸化物の調製(2)
実験式がMo10.3Te0.10Nb0.12n/SiO2(重量比90/10)である担体成分としてのシリカが混合された複合金属酸化物を次のように調製した。温水568mlに、パラモリブデン酸アンモニウム塩138g、メタバナジン酸アンモニウム塩27.5g、テルル酸18.0gを溶解し、均一な水溶液を調製した。更に、該水溶液に、20重量%シリカゾル65.8kg及びニオブの濃度が0.659mol/kgのシュウ酸ニオブアンモニウム水溶液61.8gを混合し、スラリ−を調製した。このスラリーを乾燥させ水分を除去した。次いで、この乾燥物をアンモニア臭がなくなるまで約300℃で加熱処理した後、窒素気流中600℃で2時間焼成した。
【0058】
実施例17
実験式がTe0.02・Mo10.3Te0.10Nb0.12n/SiO2(重量比約90/10)である複合金属酸化物触媒を次のように調製した。テルル酸(H6TeO6)66.0mgを3mlの水に溶解し、該液を参考例2で調製した複合金属酸化物3.0gに含浸させ、空気中80℃で5時間乾燥させた後、窒素気流中600℃で2時間焼成した。
【0059】
このようにして得た複合金属酸化物触媒0.6gを反応器に充填し、反応温度418℃、空間速度SVを約900hr-1に固定して、プロパン:アンモニア:空気=1:0.3:4のモル比でガスを供給し気相接触酸化反応を行った。反応成績を表−4に示す。
【0060】
比較例4
参考例1のようにして得た複合金属酸化物0.6gを触媒として反応器に充填し、反応温度を421℃とした以外は実施例17と同様の条件で気相接触酸化反応を行った。反応成績を表−4に示す。
【0061】
【表4】
Figure 0003769866
【0062】
参考例3 複合金属酸化物の調製(3)
Mo10.3Sb0.2 Nb0.05n/SiO2(重量比90/10)である担体成分としてのシリカが混合された複合金属酸化物を次のように調製した。
温水2.1リットルに122gのメタバナジン酸アンモニウム塩、三酸化アンチモン102gを添加し90℃で6時間スラリーを加熱処理し、水分を除去して約3/4に濃縮した。これをスラリーAとする。これとは別に温水1.23kgにパラモリブデン酸アンモニウム塩614gを添加し溶解させた後、40℃に加温してモリブデンを含む水溶液を調製した。さらに温水4.62kgにシュウ酸ニオブアンモニウム77gを溶解させた後、40℃に加温し、ニオブを含む水溶液を調製した。これらスラリー、または水溶液を約30℃に冷却し、スラリーAに前述のモリブデンを含む水溶液、次いでシリカ含量が20wt%のシリカゾル400g、さらに前述のニオブを含む水溶液を添加し、撹拌、混合した後、噴霧乾燥機により水分を除去し乾燥させた。次いでこの乾燥物をアンモニア臭がなくなるまで約300℃で加熱処理した後、窒素気流中600℃で2時間焼成した。
【0063】
実施例18
実験式がTe0.01Mo10.3Sb0.2Nb0.05n/SiO2(重量比90/10)である複合金属酸化物触媒を次のように調製した。
テルル酸(H6TeO6)66.0mgを3mlの水に溶解し、該溶液を参考例3に記したようにして調製された複合金属酸化物6.71gに含浸させ、空気中80℃で5時間乾燥させた後、窒素気流中600℃で2時間焼成した。
【0064】
このようにして得た複合金属酸化物触媒0.2gを反応器に充填し、空間速度SVを約1770hr-1に固定して、プロパン:アンモニア:空気=1:0.3:4のモル比でガスを供給し、反応温度420℃、430℃のもとで、気相接触酸化反応を行った。反応成績を表−5に示す。
【0065】
比較例5
参考例3のようにして得た複合金属酸化物0.2gを触媒として反応器に充填し、実施例18と同様の条件で気相接触酸化反応を行った。反応成績を表−5に示す。
【0066】
【表5】
Figure 0003769866
【0067】
【発明の効果】
本発明によれば、炭化水素の気相接触酸化反応に有効な金属酸化物触媒を得ることができるので、工業原料として有用なアクリロニトリル、アクリル酸、無水マレイン等を高収率で製造することができる。本発明で得られる触媒を使用することにより、アルカンを原料として、反応系にハロゲン化物や水等を存在させることなく、500℃以下の低い温度において、高い収率あるいは選択率で目的生成物を製造することができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a composite metal oxide catalyst for hydrocarbon gas phase catalytic oxidation reaction. The hydrocarbon gas phase catalytic oxidation reaction is widely carried out industrially because of the usefulness of the product and the economics of the production method. In particular, industrially important for producing oxygen-containing organic compounds such as acrylic acid and maleic anhydride by partial oxidation reaction of hydrocarbons, or nitriles such as acrylonitrile and methacrylonitrile by catalytic oxidation reaction of hydrocarbon and ammonia. It is a thing. Other reactions that convert saturated carbon-carbon bonds to unsaturated bonds, for example, dehydrogenation vapor phase contact that converts alkanes such as ethane, propane, and butane into the corresponding alkenes, ie, ethylene, propylene, butenes, etc. Oxidation reactions have also been proposed.
[0002]
[Prior art]
Many reported examples of mixed metal oxide catalysts containing molybdenum, vanadium, and the like are known. For example, a Mo-Bi-P catalyst (Japanese Patent Laid-Open No. 48-16887), V-Sb-W can be used only for a catalyst for producing nitrile by catalytic oxidation reaction of hydrocarbon alkane and ammonia and containing molybdenum as an essential main element. Catalyst obtained by mechanically mixing an oxide of the oxide and Mo-Bi-Ce-W oxide (Japanese Patent Laid-Open No. 64-38051), a Mo-Ag-Bi-V catalyst (Japanese Patent Laid-Open No. 3-58961) ), Mo-V-Sn-Bi-P-based catalyst (JP-A-4-247060), Mo-Cr-Te-based catalyst (US Pat. No. 5,171,876), mixed metal oxides composed of elements such as Mo and Mn, Co Catalyst (JP-A-5-194347), Mo-V-Te-based catalyst (JP-A-2-257, JP-A-5-148212, JP-A-5-208136, JP-A-6-279351, 287146 JP-A-7-108101), Mo-Cr-Bi catalysts (Japanese Patent Application Nos. 4-265192 and 5-305361), Mo-Te catalysts (Japanese Patent Application No. 5-309345), etc. Is exemplified.
[0003]
In particular, as a catalyst containing vanadium as an essential main element, a V-Sb-based catalyst (Japanese Patent Laid-Open No. 47-33783, Japanese Patent Publication No. 50-23016, Japanese Patent Laid-Open No. 1-268668, Japanese Patent Laid-Open No. 2-180636), V -Sb-U-Ni catalyst (Japanese Patent Publication No. 47-14371), V-Sb-WP catalyst (Japanese Patent Laid-Open No. 2-95439), VW-Te catalyst (Japanese Patent Application No. 5-18918) And the like.
[0004]
[Problems to be solved by the invention]
The activity of the catalyst is highly dependent on its composition. However, although the catalyst composition can be optimized and excellent catalytic activity can be expected essentially, there are many cases where sufficient catalytic activity cannot be expressed by the preparation method. In particular, the catalyst composed of the composite metal oxide as described above has a problem that the preparation operation is complicated, and the expected catalytic activity cannot be obtained with good reproducibility due to subtle changes in the preparation conditions.
[0005]
[Means for Solving the Problems]
As a result of continuing investigations on a method for producing a composite metal oxide catalyst containing molybdenum, vanadium, etc. while considering the above-mentioned problems, the present inventors once prepared the composite metal oxide, It has been found that by performing a treatment for impregnating a solution containing the catalyst, it exhibits excellent performance in a selective gas phase catalytic oxidation reaction of hydrocarbons, and the present invention has been achieved.
[0006]
That is, the gist of the present invention is that tungsten, molybdenum, chromium, zirconium, titanium, niobium, tantalum, vanadium, boron, bismuth, tellurium, palladium, cobalt are added to the composite metal oxide represented by the following empirical formula (1). Of a hydrocarbon gas phase catalytic oxidation reaction impregnated with a solution containing one or more elements selected from the group consisting of nickel, iron, phosphorus, silicon, rare earth elements, alkali metals, and alkaline earth metals Lies in the way.
[0007]
[Chemical formula 2]
Mo a V b X x Z z O n (1)
(In the formula (1), X is Te and / or Sb, Z is Nb, Ta, W, Ti, Al, Zr, Cr, Mn, Fe, Ru, Co, Rh, Ni, Pd, Pt, Bi, B Represents one or more elements selected from among In, Ce and
When a = 1,
b = 0.01-1
x = 0.01-1
z = 0-1
And n is determined by the oxidation state of other elements. )
[0008]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail. In the present invention, a composite metal oxide represented by the above empirical formula (1) is first prepared. The metal composite oxide contains tellurium and / or antimony as essential components in addition to molybdenum and vanadium as essential components. In addition to the above essential components, niobium, tungsten, titanium, and tantalum are preferably included as optional components, and niobium is particularly preferable. Moreover, the range of the coefficient in the empirical formula (1) of each element is preferably, when a = 1, b = 0.1 to 0.6, x = 0.05 to 0.4, z = 0. 001 to 0.6.
[0009]
As raw materials for the above composite metal oxides, molybdenum compounds, vanadium compounds, tellurium compounds and / or antimony compounds, niobium, tantalum, tungsten, titanium, aluminum, zirconium, chromium, manganese, iron, ruthenium, cobalt, rhodium, nickel , Palladium, platinum, bismuth, boron ,indium And carboxylic acid salts, carboxylic acid ammonium salts, ammonium halide salts, oxides, halides, hydrogen acid, acetylacetonate, alkoxy of one or more elements selected from cerium Etc. Can be used. The method for preparing the composite metal oxide is not particularly limited, and is prepared by mixing the composite metal oxide raw material water or organic solvent solution or slurry and mixing the composite metal oxide raw material by a high-temperature solid phase reaction. There are two main ways to do this. However, the former method, in particular, a method of preparing a solution containing each component or a slurry-like aqueous liquid, drying and calcining it is preferable in terms of obtaining a catalyst having more excellent activity.
[0010]
For example, as a method for producing a composite metal oxide containing molybdenum, vanadium, tellurium and niobium, an aqueous solution of telluric acid, an aqueous solution of niobium ammonium oxalate and an aqueous solution of ammonium paramolybdate is added to an aqueous solution of ammonium metavanadate. Sequentially added in such a quantitative ratio that the atomic ratio of each metal element becomes a predetermined ratio, dried by evaporation to dryness, spray drying, freeze drying, vacuum drying, etc. to obtain a dried product, It can be obtained by firing the obtained dried product.
[0011]
Although this firing method can be arbitrarily adopted depending on the properties and scale of the dried product, heat treatment on an evaporating dish or heat treatment using a heating furnace such as a rotary furnace or fluidized firing furnace is generally used. Moreover, you may combine multiple types of these processes. Although these firing conditions also vary depending on the method employed, the temperature is usually 200 to 700 ° C., preferably 250 to 650 ° C., and the time is usually 0.5 to 30 hours, preferably 1 to 10 hours. The firing may be performed in an oxygen atmosphere, but is preferably performed in the absence of oxygen. Specifically, the firing is performed in an inert gas atmosphere such as nitrogen, argon, or helium, or in a vacuum.
[0012]
The composite metal oxide obtained as described above has activity as a solid catalyst as it is, but in the present invention, the composite metal oxide further includes tungsten, molybdenum, chromium, zirconium, titanium, Impregnated with a solution containing one or more elements selected from the group consisting of niobium, tantalum, vanadium, boron, bismuth, tellurium, palladium, cobalt, nickel, iron, phosphorus, silicon, rare earth elements, alkali metals, alkaline earth metals Thus, the catalyst performance is improved. Of these elements, tungsten, titanium, magnesium, and rare earth elements cerium, yttrium, and samarium are preferable. Further, the compound of these elements to be used and the solvent used in preparing the solution are not particularly limited, but it is preferable to use water as the solvent because the treatment after impregnation is easy. When used, a water-soluble compound or a water-soluble sol is preferably used. The above elements are impregnated with molybdenum of the composite metal oxide in an atomic ratio of usually 0.0001 to 0.5, preferably 0.001 to 0.2. In the above impregnation treatment, elements can be dispersed and impregnated almost uniformly in the entire composite metal oxide, so that it is not particularly necessary to pulverize the composite metal oxide in advance. In addition, after impregnation treatment, it can be used as a catalyst after drying moisture or the like usually from room temperature to about 200 ° C., but if necessary, it may be fired again in the range of about 300 to 700 ° C. Good.
[0013]
Although details of the reason why the composite metal acid catalyst obtained by the impregnation treatment of the present invention is excellent are not clear, undesired side reactions on the catalyst surface due to impregnation of the improved component, for example, decomposition reaction of the product, It is presumed that the active site that causes the combustion reaction of the reaction raw material to proceed is inactivated. Further, it is considered that the crystal structure determined by the powder X-ray diffraction measurement of the composite oxide catalyst activated by such a method does not change and changes the surface properties, not the bulk structure of the catalyst. Note that some of the elements used for impregnation may be elements already contained in the composite metal oxide before impregnation, but the effect of impregnation is the property of the surface of the composite metal oxide as described above. It is related to the improvement, and it is presumed that its role is different from the element forming the composite metal oxide.
[0014]
The composite metal oxide catalyst produced in this way may be used alone, but it contains about 1 to 90% by weight of a known carrier component such as silica, alumina, titania, zirconia, aluminosilicate, diatomaceous earth and the like. It can also be used as a mixed mixture. In this case, the carrier as described above may be added at any stage during preparation of the composite oxide, before the impregnation treatment after preparation, or after the impregnation treatment.
[0015]
The composite metal oxide catalyst produced by the above method is used for production of an organic compound by a vapor phase catalytic oxidation reaction of hydrocarbons. The hydrocarbon gas phase catalytic oxidation reaction in the present invention is a gas phase catalytic reaction of hydrocarbon with oxygen, but also includes a reaction in which ammonia or water vapor is present in the reaction system in addition to oxygen. It is applied to the production of various organic compounds such as oxygen-containing organic compounds, dehydrogenated organic compounds, and nitriles. The use conditions of the composite metal oxide catalyst produced in the present invention may be the same as the known reaction conditions in each catalyst system, and when a catalyst having a similar composition produced by a conventional method is used. As compared with, the desired product can be obtained with higher selectivity and higher yield.
[0016]
Examples of the reaction raw material hydrocarbon include alkanes or alkenes having about 3 to 8 carbon atoms, and aromatic hydrocarbons having about 6 to 12 carbon atoms. Examples of the reaction include production of a nitrile by gas phase catalytic oxidation reaction of alkene or alkane and ammonia (for example, production of acrylonitrile from propylene or propane and ammonia, production of acrylonitrile from isobutene or isobutane and ammonia) alkane or alkene Of unsaturated aldehydes and unsaturated carboxylic acids by partial oxidation reaction (eg, acrolein from propane or propylene, production of acrylic acid, methacrolein from isobutane or isobutene, production of methacrylic acid), oxidative dehydration of saturated carboxylic acid Production of acid anhydrides (for example, naphthalene or the like) by elementary reactions (for example, production of methacrylic acid from isobutyric acid), oxidative dehydrogenation of hydrocarbons (for example, production of butadiene from butene), partial oxidation reactions of various hydrocarbons Kisire Production of phthalic anhydride from the preparation of maleic anhydride from butane or butene), and the like.
[0017]
The conditions for the hydrocarbon gas phase catalytic oxidation reaction will be described. The catalyst has a characteristic that alkane partial oxidation activity is high even at a relatively low temperature of 500 ° C. or lower, as compared with other metal oxide catalysts for gas phase catalytic oxidation reaction. In the gas phase catalytic oxidation reaction using the catalyst, the reaction temperature is 300 to 500 ° C., preferably about 350 to 450 ° C., and the gas space velocity SV in the gas phase reaction is 100 to 10,000 hr. -1 , Preferably 300 to 6000 hr -1 The reaction can usually be carried out under atmospheric pressure, but it may be under low pressure or under reduced pressure. In addition, an inert gas such as nitrogen, argon, or helium can be used as a dilution gas for adjusting the space velocity and oxygen partial pressure. Either a fixed bed or a fluidized bed can be employed as the reaction method, but since it is an exothermic reaction, the reaction temperature is easier to control in the fluidized bed method.
[0018]
The composite metal oxide catalyst produced in the present invention is effective for the production of nitrile by the gas phase catalytic oxidation reaction of alkane and ammonia, particularly for the production of acrylonitrile from propane. In this reaction, the proportion of oxygen supplied to the reaction system is important with respect to the selectivity of acrylonitrile to be produced, and oxygen exhibits a high selectivity of acrylonitrile, particularly in the range of 0.2 to 4 mole times the amount of propane. . In addition, the ratio of ammonia to be donated to the reaction is preferably in the range of 0.1 to 3 mol times the amount of propane.
[0019]
In addition, acrylic acid can be obtained in high yield by performing a gas phase catalytic oxidation reaction of propane using the composite metal oxide catalyst produced in the present invention. Propane and oxygen-containing gas are used as the reaction source gas, but it is preferable to use water vapor, and the selectivity of acrylic acid can be further improved by water vapor. The molar fraction of the source gas is preferably (propane) :( oxygen) :( water vapor) = 1: (1-5) :( 5-40).
[0020]
【Example】
EXAMPLES Hereinafter, although an Example is given and this invention is demonstrated further in detail, this invention is not limited to these Examples, unless the summary is exceeded.
The propane conversion (%), acrylonitrile selectivity (%), and acrylonitrile yield (%) in the following examples and comparative examples are each represented by the following formula.
[0021]
[Expression 1]
Figure 0003769866
[0022]
Reference Example 1 Preparation of composite metal oxide (1)
The empirical formula is Mo 1 V 0.3 Te 0.23 Nb 0.12 O n / SiO 2 A composite metal oxide mixed with silica as a carrier component (weight ratio 90/10) was prepared as follows. In 5.68 liters of warm water, 1.380 kg of ammonium paramolybdate, 0.275 kg of ammonium metavanadate, and 0.413 kg of telluric acid were dissolved to prepare a uniform aqueous solution. Further, 0.658 kg of 20 wt% silica sol and 0.618 kg of niobium ammonium oxalate aqueous solution having a niobium concentration of 0.659 mol / kg were mixed with the aqueous solution to prepare a slurry. The slurry was dried to remove moisture. Next, this dried product was heat-treated at about 300 ° C. until the ammonia odor disappeared, and then calcined at 600 ° C. for 2 hours in a nitrogen stream.
[0023]
Example 1
Experimental formula is W 0.1 Mo 1 V 0.3 Te 0.23 Nb 0.12 O n / SiO 2 A composite metal oxide catalyst having a weight ratio of about 90/10 was prepared as follows. In addition, in the empirical formula of the catalyst including the following examples, the elemental component impregnated into the composite metal oxide later is described before molybdenum (Mo) in the empirical formula. WO Three 0.47 g of ammonium metatungstate aqueous solution equivalent to 50% by weight in water was made 1 ml with water, impregnated with 2.5 g of the composite metal oxide prepared in Reference Example 1, and dried in air at room temperature for about 1 day. Then, it was dried at 150 ° C. for 1 hour in a hot air dryer.
[0024]
0.55 g of the composite metal oxide catalyst thus obtained was charged into a reactor, the reaction temperature was 440 ° C., and the space velocity SV was about 900 hr. -1 The gas phase catalytic oxidation reaction was carried out by supplying gas at a molar ratio of propane: ammonia: air = 1: 1.2: 15. The reaction results are shown in Table-1.
[0025]
Example 2
A gas phase catalytic oxidation reaction was carried out under the same conditions as in Example 1 except that the composite metal oxide catalyst prepared in Example 1 was used and the reaction temperature was 450 ° C. The reaction results are shown in Table-1.
Example 3
Experimental formula is W 0.1 P 0.0083 Mo 1 V 0.3 Te 0.23 Nb 0.12 O n / SiO 2 A composite metal oxide catalyst having a weight ratio of about 90/10 was prepared as follows. P 2 O Five ・ 24 WO Three H equivalent to 85% by weight in terms of Three PW 12 O 40 ・ NH 2 O 0.99 g of water was made 1 ml with water, impregnated with 2.5 g of the composite metal oxide prepared by the method of Reference Example 1, dried in air at room temperature for about 1 day, and then in a hot air dryer at 150 ° C. for 1 hour. Dried.
[0026]
A gas phase catalytic oxidation reaction was carried out under the same conditions as in Example 1 except that 0.55 g of the composite metal oxide catalyst thus obtained was charged into a reactor and the reaction temperature was 450 ° C. The reaction results are shown in Table-1.
[0027]
Example 4
Experimental formula W 0.1 Si 0.0083 Mo 1 V 0.3 Te 0.23 Nb 0.12 O n / SiO 2 A composite metal oxide catalyst having a weight ratio of about 90/10 was prepared as follows. SiO 2 ・ 24 WO Three H equivalent to 82% by weight in terms of Four SiW 12 O 40 ・ NH 2 1.02 g of O was adjusted to 1 ml with water, impregnated with 2.5 g of the composite metal oxide prepared by the method of Reference Example 1, dried in air at room temperature for about 1 day, and then in a hot air dryer at 150 ° C. for 1 hour. Dried.
[0028]
A gas phase catalytic oxidation reaction was carried out under the same conditions as in Example 1 except that 0.55 g of the composite metal oxide catalyst thus obtained was charged into a reactor and the reaction temperature was 420 ° C. The reaction results are shown in Table-1.
[0029]
Example 5
Experimental formula W 0.1 Te 0.01 Mo 1 V 0.3 Te 0.23 Nb 0.12 O n / SiO 2 A composite metal oxide catalyst having a weight ratio of about 90/10 was prepared as follows. WO Three 0.47 g ammonium metatungstate aqueous solution equivalent to 50% by weight in terms of H and H 2 TeO Four ・ 2H 2 0.023 g of O was mixed with water to make 1 ml, impregnated with 2.5 g of the composite metal oxide prepared in Reference Example 1, dried in air at room temperature for about 1 day, and then heated at 150 ° C. in a hot air dryer. Dry for 1 hour.
[0030]
A gas phase catalytic oxidation reaction was carried out under the same conditions as in Example 1 except that 0.55 g of the composite metal oxide catalyst thus obtained was charged into a reactor and the reaction temperature was 430 ° C. The reaction results are shown in Table-1.
[0031]
Example 6
Experimental formula W 0.1 Te 0.02 Mo 1 V 0.3 Te 0.23 Nb 0.12 O n / SiO 2 A composite metal oxide catalyst having a weight ratio of about 90/10 was prepared as follows. WO Three 0.47 g ammonium metatungstate aqueous solution equivalent to 50% by weight in terms of H and H 2 TeO Four ・ 2H 2 0.046 g of O was mixed with water to make 1 ml, and the liquid was impregnated with 2.5 g of the composite metal oxide prepared in Reference Example 1, dried in air at room temperature for about 1 day, and then in a hot air dryer. It was dried at 150 ° C. for 1 hour.
[0032]
A gas phase catalytic oxidation reaction was carried out under the same conditions as in Example 1 except that 0.55 g of the composite metal oxide catalyst thus obtained was charged into a reactor and the reaction temperature was 450 ° C. The reaction results are shown in Table-1.
[0033]
Comparative Examples 1-5
A gas phase catalytic oxidation reaction was carried out under the same conditions as in Example 1 except that 0.55 g of the composite metal oxide obtained as in Reference Example 1 was charged into the reactor as a catalyst and the reaction temperature was as shown in Table-1. went. The reaction results are shown in Table-1.
[0034]
[Table 1]
Figure 0003769866
[0035]
Example 7
The empirical formula is Ce 0.0867 Mo 1 V 0.3 Te 0.23 Nb 0.12 O n / SiO 2 A composite metal oxide catalyst having a weight ratio of about 90/10 was prepared as follows. 15 wt% CeO 2 0.8 g of the sol was impregnated with 2 g of the composite metal oxide prepared by the method of Reference Example 1, dried in air at 100 ° C. for 1 hour, and then calcined in a nitrogen stream at 600 ° C. for 2 hours.
[0036]
0.55 g of the composite metal oxide catalyst thus obtained was charged into a reactor, the reaction temperature was 440 ° C., and the space velocity SV was about 770 hr. -1 The gas phase catalytic oxidation reaction was carried out by supplying gas at a molar ratio of propane: ammonia: air = 1: 1.2: 15. The reaction results are shown in Table-2.
[0037]
Example 8
The empirical formula is Ce 0.0260 Mo 1 V 0.3 Te 0.23 Nb 0.12 O n / SiO 2 A composite metal oxide catalyst having a weight ratio of about 90/10 was prepared as follows. 4.5 wt% CeO 2 The sol 1 was impregnated with 2 g of the composite metal oxide prepared by the method of Reference Example 1, dried in air at 100 ° C. for 1 hour, and then calcined in a nitrogen stream at 600 ° C. for 2 hours.
[0038]
A gas phase catalytic oxidation reaction was carried out under the same conditions as in Example 7 except that 0.55 g of the composite metal oxide catalyst thus obtained was charged into a reactor and the reaction temperature was 430 ° C. The reaction results are shown in Table-2.
[0039]
Example 9
The empirical formula is Ce 0.0173 Mo 1 V 0.3 Te 0.23 Nb 0.12 O n / SiO 2 A composite metal oxide catalyst having a weight ratio of about 90/10 was prepared as follows. 3.0 wt% CeO 2 The sol 1 was impregnated with 2 g of the composite metal oxide prepared by the method of Reference Example 1, dried in air at 100 ° C. for 1 hour, and then calcined in a nitrogen stream at 600 ° C. for 2 hours.
[0040]
A gas phase catalytic oxidation reaction was carried out under the same conditions as in Example 7 except that 0.55 g of the composite metal oxide catalyst thus obtained was charged into a reactor and the reaction temperature was 420 ° C. The reaction results are shown in Table-2.
[0041]
Example 10
The empirical formula is Ce 0.00867 Mo 1 V 0.3 Te 0.23 Nb 0.12 O n / SiO 2 A composite metal oxide catalyst having a weight ratio of about 90/10 was prepared as follows. 3.0 wt% CeO 2 The sol 1 was impregnated with 2 g of the composite metal oxide prepared by the method of Reference Example 1, dried in air at 100 ° C. for 1 hour, and then calcined in a nitrogen stream at 600 ° C. for 2 hours.
[0042]
A gas phase catalytic oxidation reaction was carried out under the same conditions as in Example 7 except that 0.55 g of the composite metal oxide catalyst thus obtained was charged into a reactor and the reaction temperature was 430 ° C. The reaction results are shown in Table-2.
[0043]
[Table 2]
Figure 0003769866
[0044]
Example 11
Empirical formula is Mg 0.002 Mo 1 V 0.3 Te 0.23 Nb 0.12 O n / SiO 2 A composite metal oxide catalyst having a weight ratio of about 90/10 was prepared as follows. Magnesium acetate tetrahydrate (Mg (CH Three COO) 2 ・ 4H 2 O) 13.5 mg was dissolved in 5 ml of water, 7.6 g of the composite metal oxide prepared by the method of Reference Example 1 was impregnated, dried in air at 80 ° C. for 5 hours, and then in a nitrogen stream. Baked at 450 ° C. for 2 hours.
[0045]
0.55 g of the composite metal oxide catalyst thus obtained was charged into a reactor, the reaction temperature was 410 ° C., and the space velocity SV was about 900 hr. -1 The gas phase catalytic oxidation reaction was carried out by supplying gas at a molar ratio of propane: ammonia: air = 1: 1.2: 15. The reaction results are shown in Table-3.
[0046]
Example 12
The empirical formula is Ca 0.005 Mo 1 V 0.3 Te 0.23 Nb 0.12 O n / SiO 2 A composite metal oxide catalyst having a weight ratio of about 90/10 was prepared as follows. Calcium acetate monohydrate (Ca (CH Three COO) 2 ・ 4H 2 O) 27.6 mg was dissolved in 5 ml of water, the solution was impregnated with 7.6 g of the composite metal oxide prepared by the method of Reference Example 1, dried in air at 80 ° C. for 5 hours, and then in a nitrogen stream. Baked at 450 ° C. for 2 hours.
[0047]
0.55 g of the composite metal oxide catalyst thus obtained was charged into a reactor, and a gas phase catalytic oxidation reaction was carried out under the same conditions as in Example 11. The reaction results are shown in Table-3.
[0048]
Example 13
Experimental formula is Y 0.005 Mo 1 V 0.3 Te 0.23 Nb 0.12 O n / SiO 2 A composite metal oxide catalyst having a weight ratio of about 90/10 was prepared as follows. Yttrium acetate (Y (CH Three COO) Three 44.6 mg was dissolved in 5 ml of water, and 7.6 g of the composite metal oxide prepared by the method of Reference Example 1 was impregnated and dried in air at 80 ° C. for 5 hours. Baked at 2 ° C. for 2 hours.
[0049]
A gas phase catalytic oxidation reaction was carried out under the same conditions as in Example 11 except that 0.55 g of the composite metal oxide catalyst thus obtained was charged into a reactor and the reaction temperature was 420 ° C. The reaction results are shown in Table-3.
[0050]
Example 14
The empirical formula is La 0.005 Mo 1 V 0.3 Te 0.23 Nb 0.12 O n / SiO 2 A composite metal oxide catalyst having a weight ratio of about 90/10 was prepared as follows. Lanthanum acetate tetrahydrate (La (CH Three COO) Three ・ 4H 2 O) 64.8 mg was dissolved in 5 ml of water, the solution was impregnated with 7.6 g of the composite metal oxide prepared by the method of Reference Example 1, dried in air at 80 ° C. for 5 hours, and then in a nitrogen stream. Baked at 600 ° C. for 2 hours.
[0051]
A gas phase catalytic oxidation reaction was carried out under the same conditions as in Example 11 except that 0.55 g of the composite metal oxide catalyst thus obtained was charged into a reactor and the reaction temperature was 430 ° C. The reaction results are shown in Table-3.
[0052]
Example 15
The empirical formula is Nd 0.005 Mo 1 V 0.3 Te 0.23 Nb 0.12 O n / SiO 2 A composite metal oxide catalyst having a weight ratio of about 90/10 was prepared as follows. Neodymium acetate (Nd (CH Three COO) Three ) 53.7 mg was dissolved in 5 ml of water, and 7.6 g of the composite metal oxide prepared by the method of Reference Example 1 was impregnated and dried in air at 80 ° C. for 5 hours. Baked at 2 ° C. for 2 hours.
[0053]
0.55 g of the composite metal oxide catalyst thus obtained was charged into a reactor, and a gas phase catalytic oxidation reaction was carried out under the same conditions as in Example 11. The reaction results are shown in Table-3.
[0054]
Example 16
Empirical formula is Sm 0.005 Mo 1 V 0.3 Te 0.23 Nb 0.12 O n / SiO 2 A composite metal oxide catalyst having a weight ratio of about 90/10 was prepared as follows. Samarium acetate (Sm (CH Three COO) Three 66.7 mg was dissolved in 5 ml of water, and 7.6 g of the composite metal oxide prepared by the method of Reference Example 1 was impregnated and dried in air at 80 ° C. for 5 hours. Baked at 2 ° C. for 2 hours.
[0055]
0.55 g of the composite metal oxide catalyst thus obtained was charged into a reactor, and a gas phase catalytic oxidation reaction was performed under the same conditions as in Example 11. The reaction results are shown in Table-3.
[0056]
[Table 3]
Figure 0003769866
[0057]
Reference Example 2 Preparation of composite metal oxide (2)
The empirical formula is Mo 1 V 0.3 Te 0.10 Nb 0.12 O n / SiO 2 A composite metal oxide mixed with silica as a carrier component (weight ratio 90/10) was prepared as follows. In 568 ml of warm water, 138 g of ammonium paramolybdate, 27.5 g of ammonium metavanadate, and 18.0 g of telluric acid were dissolved to prepare a uniform aqueous solution. Further, 65.8 kg of 20 wt% silica sol and 61.8 g of niobium ammonium oxalate aqueous solution having a niobium concentration of 0.659 mol / kg were mixed with the aqueous solution to prepare a slurry. The slurry was dried to remove moisture. Next, this dried product was heat-treated at about 300 ° C. until the ammonia odor disappeared, and then calcined at 600 ° C. for 2 hours in a nitrogen stream.
[0058]
Example 17
The empirical formula is Te 0.02 ・ Mo 1 V 0.3 Te 0.10 Nb 0.12 O n / SiO 2 A composite metal oxide catalyst having a weight ratio of about 90/10 was prepared as follows. Telluric acid (H 6 TeO 6 66.0 mg was dissolved in 3 ml of water, and the solution was impregnated with 3.0 g of the composite metal oxide prepared in Reference Example 2, dried in air at 80 ° C. for 5 hours, and then in a nitrogen stream at 600 ° C. Baked for 2 hours.
[0059]
0.6 g of the mixed metal oxide catalyst thus obtained was charged into a reactor, the reaction temperature was 418 ° C., and the space velocity SV was about 900 hr. -1 The gas was fed in a molar ratio of propane: ammonia: air = 1: 0.3: 4 to carry out a gas phase catalytic oxidation reaction. The reaction results are shown in Table-4.
[0060]
Comparative Example 4
A gas phase catalytic oxidation reaction was carried out under the same conditions as in Example 17 except that 0.6 g of the composite metal oxide obtained as in Reference Example 1 was charged into the reactor as a catalyst and the reaction temperature was 421 ° C. . The reaction results are shown in Table-4.
[0061]
[Table 4]
Figure 0003769866
[0062]
Reference Example 3 Preparation of composite metal oxide (3)
Mo 1 V 0.3 Sb 0.2 Nb 0.05 O n / SiO 2 A composite metal oxide mixed with silica as a carrier component (weight ratio 90/10) was prepared as follows.
122 g of ammonium metavanadate and 102 g of antimony trioxide were added to 2.1 liters of warm water, and the slurry was heat treated at 90 ° C. for 6 hours to remove water and concentrate to about 3/4. This is designated as slurry A. Separately, 614 g of ammonium paramolybdate was added to 1.23 kg of warm water and dissolved, and then heated to 40 ° C. to prepare an aqueous solution containing molybdenum. Further, 77 g of ammonium niobium oxalate was dissolved in 4.62 kg of hot water, and then heated to 40 ° C. to prepare an aqueous solution containing niobium. These slurries or aqueous solutions are cooled to about 30 ° C., and the aqueous solution containing molybdenum described above to slurry A, 400 g of silica sol having a silica content of 20 wt%, and the aqueous solution containing niobium described above are further added, stirred and mixed, Water was removed by a spray dryer and dried. The dried product was then heat-treated at about 300 ° C. until the ammonia odor disappeared, and then calcined at 600 ° C. for 2 hours in a nitrogen stream.
[0063]
Example 18
The empirical formula is Te 0.01 Mo 1 V 0.3 Sb 0.2 Nb 0.05 O n / SiO 2 A composite metal oxide catalyst having a weight ratio of 90/10 was prepared as follows.
Telluric acid (H 6 TeO 6 66.0 mg was dissolved in 3 ml of water, and 6.71 g of the composite metal oxide prepared as described in Reference Example 3 was impregnated and dried in air at 80 ° C. for 5 hours. Firing was performed at 600 ° C. for 2 hours in a nitrogen stream.
[0064]
The reactor was charged with 0.2 g of the composite metal oxide catalyst thus obtained, and the space velocity SV was about 1770 hr. -1 The gas was fed at a molar ratio of propane: ammonia: air = 1: 0.3: 4, and a gas phase catalytic oxidation reaction was carried out at reaction temperatures of 420 ° C. and 430 ° C. The reaction results are shown in Table-5.
[0065]
Comparative Example 5
A reactor was charged with 0.2 g of the composite metal oxide obtained as in Reference Example 3 as a catalyst, and a gas phase catalytic oxidation reaction was performed under the same conditions as in Example 18. The reaction results are shown in Table-5.
[0066]
[Table 5]
Figure 0003769866
[0067]
【The invention's effect】
According to the present invention, an effective metal oxide catalyst for hydrocarbon gas phase catalytic oxidation can be obtained, so that acrylonitrile, acrylic acid, maleic anhydride and the like useful as industrial raw materials can be produced in high yield. it can. By using the catalyst obtained in the present invention, the target product can be obtained in a high yield or selectivity at a low temperature of 500 ° C. or lower without using a halide or water in the reaction system using alkane as a raw material. Can be manufactured.

Claims (4)

下記の実験式(1)で表される複合金属酸化物に、タングステン、モリブデン、クロム、ジルコニウム、チタン、ニオブ、タンタル、バナジウム、硼素、ビスマス、テルル、パラジウム、コバルト、ニッケル、鉄、リン、ケイ素、希土類元素、アルカリ金属、アルカリ土類金属からなる群より選ばれる1つ以上の元素を含む溶液を含浸させてなる炭化水素の気相接触酸化反応用触媒の製造方法。
Figure 0003769866
(式(1)において、XはTe及び/又はSb、ZはNb,Ta,W,Ti,Al,Zr,Cr,Mn,Fe,Ru,Co,Rh,Ni,Pd,Pt,Bi,B,In及びCeの中から選ばれた1つ又はそれ以上の元素を表し、
a=1とするとき、
b=0.01〜1
x=0.01〜1
z=0〜1
であり、また、nは他の元素の酸化状態により決定される。)
To the composite metal oxide represented by the following empirical formula (1), tungsten, molybdenum, chromium, zirconium, titanium, niobium, tantalum, vanadium, boron, bismuth, tellurium, palladium, cobalt, nickel, iron, phosphorus, silicon A method for producing a hydrocarbon gas phase catalytic oxidation reaction catalyst impregnated with a solution containing one or more elements selected from the group consisting of rare earth elements, alkali metals, and alkaline earth metals.
Figure 0003769866
(In the formula (1), X is Te and / or Sb, Z is Nb, Ta, W, Ti, Al, Zr, Cr, Mn, Fe, Ru, Co, Rh, Ni, Pd, Pt, Bi, B Represents one or more elements selected from among In, Ce and
When a = 1,
b = 0.01-1
x = 0.01-1
z = 0-1
And n is determined by the oxidation state of other elements. )
実験式(1)で表される複合金属酸化物のモリブデンに対して、原子比で0.0001〜0.5の元素を含浸させることを特徴とする請求項1の方法。 The method according to claim 1, wherein molybdenum of the composite metal oxide represented by the empirical formula (1) is impregnated with an element having an atomic ratio of 0.0001 to 0.5. 実験式(1)で表される複合金属酸化物が、モリブデン化合物、バナジウム化合物、テルル化合物及び/又はアンチモン化合物、ニオブ,タンタル,タングステン,チタン,アルミニウム,ジルコニウム,クロム,マンガン,鉄,ルテニウム,コバルト,ロジウム,ニッケル,パラジウム,白金,ビスマス,硼素,インジウム及びセリウムの中から選ばれた1つまたはそれ以上の元素の化合物を含有する水性液を乾燥し、残った乾燥物を焼成したものであることを特徴とする請求項1又は2の方法。The composite metal oxide represented by the empirical formula (1) is a molybdenum compound, vanadium compound, tellurium compound and / or antimony compound, niobium, tantalum, tungsten, titanium, aluminum, zirconium, chromium, manganese, iron, ruthenium, cobalt , Rhodium, nickel, palladium, platinum, bismuth, boron , indium and cerium containing one or more elemental compounds are dried and the remaining dried product is fired. The method according to claim 1 or 2, characterized in that アンモニアの存在下、アルカンより気相接触酸化反応によりニトリルを得るための触媒であることを特徴とする請求項1ないし3のいずれかの方法。4. The method according to claim 1, wherein the catalyst is a catalyst for obtaining a nitrile from an alkane by a gas phase catalytic oxidation reaction in the presence of ammonia.
JP08956997A 1996-04-18 1997-04-08 Method for producing catalyst for gas phase catalytic oxidation Expired - Fee Related JP3769866B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08956997A JP3769866B2 (en) 1996-04-18 1997-04-08 Method for producing catalyst for gas phase catalytic oxidation

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP8-96578 1996-04-18
JP9657896 1996-04-18
JP08956997A JP3769866B2 (en) 1996-04-18 1997-04-08 Method for producing catalyst for gas phase catalytic oxidation

Publications (2)

Publication Number Publication Date
JPH1028862A JPH1028862A (en) 1998-02-03
JP3769866B2 true JP3769866B2 (en) 2006-04-26

Family

ID=26430992

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08956997A Expired - Fee Related JP3769866B2 (en) 1996-04-18 1997-04-08 Method for producing catalyst for gas phase catalytic oxidation

Country Status (1)

Country Link
JP (1) JP3769866B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102716733A (en) * 2012-05-08 2012-10-10 赣州博晶科技有限公司 Preparation method of high performance cerium zirconium aluminum oxygen-storage material
WO2016152964A1 (en) * 2015-03-26 2016-09-29 旭化成株式会社 Method for producing catalyst and method for producing unsaturated nitrile

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999041012A1 (en) * 1998-02-13 1999-08-19 Korea Research Institute Of Chemical Technology A solid catalyst with core-shell catalytic phase and a method of preparation thereof
US6143690A (en) * 1998-05-07 2000-11-07 Asahi Kasei Kogyo Kabushiki Kaisha Ammoxidation catalyst for use in producing acrylonitrile or methacrylonitrile from propane or isobutane
DE10118814A1 (en) 2001-04-17 2002-10-24 Basf Ag Production of acrolein or acrylic acid involves absorption of propane and propene from a gas mixture followed by desorption and oxidation, with no catalytic dehydrogenation of propane and no added oxygen
JP5021140B2 (en) 2000-06-14 2012-09-05 ビーエーエスエフ ソシエタス・ヨーロピア Method for producing acrolein and / or acrylic acid
JP4845325B2 (en) * 2000-06-15 2011-12-28 旭化成ケミカルズ株式会社 Catalyst for gas phase catalytic oxidation reaction or gas phase catalytic ammoxidation reaction of propane or isobutane
AU2001287622A1 (en) 2000-07-18 2002-01-30 Basf Aktiengesellschaft Method for producing acrylic acid by the heterogeneously catalysed gas-phase oxidation of propane
JP4530595B2 (en) 2000-12-13 2010-08-25 旭化成ケミカルズ株式会社 Oxide catalyst for oxidation or ammoxidation
JP4610128B2 (en) * 2001-03-22 2011-01-12 旭化成ケミカルズ株式会社 Method for producing oxidation reaction catalyst
DE60336348D1 (en) 2003-06-09 2011-04-21 Asahi Kasei Chemicals Corp CATALYST FOR OXIDATION OR AMMOXIDATION
US7009075B2 (en) * 2004-06-30 2006-03-07 Saudi Basic Industries Corporation Process for the selective conversion of alkanes to unsaturated carboxylic acids
EP1806178B1 (en) 2004-08-17 2020-03-04 Asahi Kasei Kabushiki Kaisha Catalyst composed of complex oxide
ATE455595T1 (en) 2004-10-15 2010-02-15 Toagosei Co Ltd METHOD FOR PRODUCING A METAL OXIDE CATALYST
EP1704919A1 (en) * 2005-03-25 2006-09-27 Arkema France Process for preparing improved catalysts for selective oxidation of propane into acrylic acid
KR100999983B1 (en) 2006-03-20 2010-12-13 아사히 가세이 케미칼즈 가부시키가이샤 Oxidation or ammoxidation catalyst and preparation method thereof
US7875571B2 (en) * 2006-09-07 2011-01-25 Rohm And Haas Company Activated mixed metal oxide oxidation catalysts
US20080248947A1 (en) * 2007-04-03 2008-10-09 Zajac Gerry W Mixed metal oxide catalysts and catalytic processes for conversions of lower alkane hydrocarbons
MX2009008741A (en) 2007-02-16 2009-08-27 Ineos Usa Llc Process for the ammoxidation of propane and isobutane using mixed metal oxide catalysts.
CN102056662A (en) * 2008-06-10 2011-05-11 Lg化学株式会社 Catalyst for gas-phase contact oxidation of hydrocarbon, preparation method thereof and gas-phase oxidation method of hydrocarbon using the same
WO2009151254A2 (en) * 2008-06-10 2009-12-17 Lg Chem, Ltd. Catalyst for gas-phase contact oxidation of hydrocarbon, preparation method thereof and gas-phase oxidation method of hydrocarbon using the same
JP5063493B2 (en) * 2008-06-10 2012-10-31 三菱レイヨン株式会社 Method for producing catalyst for synthesis of unsaturated carboxylic acid
EP2570186B1 (en) 2010-05-13 2018-07-04 Asahi Kasei Kabushiki Kaisha Mixed catalyst
WO2012060175A1 (en) 2010-11-05 2012-05-10 旭化成ケミカルズ株式会社 Oxide catalyst, process for production of oxide catalyst, process for production of unsaturated acid, and process for production of unsaturated nitrile
KR101524392B1 (en) 2011-03-02 2015-05-29 아사히 가세이 케미칼즈 가부시키가이샤 Method for producing unsaturated nitrile
WO2018066158A1 (en) * 2016-10-05 2018-04-12 東亞合成株式会社 Metal oxide catalyst and method for producing same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102716733A (en) * 2012-05-08 2012-10-10 赣州博晶科技有限公司 Preparation method of high performance cerium zirconium aluminum oxygen-storage material
CN102716733B (en) * 2012-05-08 2016-01-20 赣州博晶科技有限公司 A kind of preparation method of high performance cerium zirconium aluminum oxygen-storage material
WO2016152964A1 (en) * 2015-03-26 2016-09-29 旭化成株式会社 Method for producing catalyst and method for producing unsaturated nitrile
KR20170107520A (en) 2015-03-26 2017-09-25 아사히 가세이 가부시키가이샤 METHOD OF PRODUCING CATALYST, AND METHOD OF PRODUCING UNSATURATED NITRILE
US10807073B2 (en) 2015-03-26 2020-10-20 Asahi Kasei Kabushiki Kaisha Method for producing catalyst, and method for producing unsaturated nitrile

Also Published As

Publication number Publication date
JPH1028862A (en) 1998-02-03

Similar Documents

Publication Publication Date Title
JP3769866B2 (en) Method for producing catalyst for gas phase catalytic oxidation
US7319179B2 (en) Method for the oxidative dehydrogenation of ethane
KR100814702B1 (en) Methods for producing unsaturated nitriles
JP3984017B2 (en) Mixed metal oxide catalyst
US20080194871A1 (en) Process for Preparing Improved Catalysts for Selective Oxidation of Propane Into Acrylic Acid
EP0166438A2 (en) Process for oxydehydrogenation of ethane to ethylene
TW548133B (en) NOx treated mixed metal oxide catalyst
JPH0857319A (en) Method for activating metal oxide catalyst
KR20020082763A (en) Single crystalline phase catalyst
JPH1017523A (en) Production of acetic acid
JP4346823B2 (en) Catalyst for oxidation of ethane to acetic acid
JP3669077B2 (en) Nitrile production method
JPH1142434A (en) Production of vapor phase catalytic oxidation reaction catalyst of hydrocarbon and vapor phase catalytic oxidation reaction method of hydrocarbon using the same
JPH1157479A (en) Gas phase catalytic oxidation reaction catalyst for hydrocarbon and preparation thereof
JPH11226408A (en) Production of metal oxide catalyst
JP3560070B2 (en) Method for producing niobium-containing composite metal oxide
JPH11169716A (en) Catalyst for preparing unsaturated nitrile and/or unsaturated carboxylic acid
US7355062B2 (en) Catalyst for selective oxidation and amoxidation of alkanes and/or alkenes, particularly in processes for obtaining acrylic acid, acrylonitrile and the derivatives thereof
JPH10310539A (en) Vapor-phase, catalytic oxidation of hydrocarbon
JP3961834B2 (en) Catalyst for the oxidation of lower olefins to unsaturated aldehydes, process for their production and use
JP3331629B2 (en) Catalyst for the production of nitriles from alkanes
JPH1045664A (en) Production of alpha,beta-unsaturated carboxylic acid
JPH07144132A (en) Production of catalyst for producing nitrile
JP2003531722A (en) Catalyst for oxidizing unsaturated aldehyde to produce carboxylic acid, method for producing and using the same
JPH10195036A (en) Vapor phase catalytic oxidation reaction of hydrocarbon

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051115

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051212

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060117

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060130

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090217

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100217

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100217

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110217

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees