JP3767639B2 - Operation state determination method and operation control method for fuel cell stack - Google Patents
Operation state determination method and operation control method for fuel cell stack Download PDFInfo
- Publication number
- JP3767639B2 JP3767639B2 JP06944796A JP6944796A JP3767639B2 JP 3767639 B2 JP3767639 B2 JP 3767639B2 JP 06944796 A JP06944796 A JP 06944796A JP 6944796 A JP6944796 A JP 6944796A JP 3767639 B2 JP3767639 B2 JP 3767639B2
- Authority
- JP
- Japan
- Prior art keywords
- fuel cell
- cell stack
- pattern
- amplitude
- voltage
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Fuel Cell (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、固体電解質膜を電解質として持つ燃料電池スタックの運転状態判別方法及び運転制御方法に関し、特に、高分子固体電解質膜を持つ燃料電池スタックの運転状態判別方法及び運転制御方法に関する。
【0002】
【従来の技術】
高分子固体電解質膜を電解質として持つ燃料電池は、PEM型燃料電池と呼ばれ、燃料極と空気極の電極間に水を含ませた高分子固体電解質膜を挟んだ状態で運転されている。PEM型燃料電池の電池反応は、燃料極に燃料ガスを供給することにより、生成する水素イオンはプロトン(H3 O+ )の形態で、高分子固体電解質膜中を空気極に移動し、同時に燃料極において燃料ガスから発生する電子が外部回路を伝って空気極に移動することにより行われる。
【0003】
PEM型燃料電池は一般的に、単セルを複数個直列に積層した、いわゆるセルスタックと呼ばれる形態で使用されている。この燃料電池スタックにおいて、一定の出力電圧を得る場合、全ての単セルの高分子固体電解質膜を適切な含水状態に保持するために、燃料ガスを、例えばバブリング装置等のような加湿装置により加湿して、各燃料極に供給する方法が採られていた。
【0004】
【発明が解決しようとする課題】
ところが従来の燃料電池スタックの運転方法においては、全ての単セルの高分子固体電解質膜を適切な含水状態に保持するために、運転中に燃料電池スタックへ供給する各反応ガス(燃料ガスおよび酸化剤ガス)の流量及び加湿装置の出力を調整していたが、燃料電池スタック中の全単セルを終始適切な加湿状態に均一に保持することは困難であり、燃料電池スタックの一部、あるいは全体が含水量過剰(膨潤状態)、あるいは過少(乾燥状態)となり易く、それが原因とみられる出力低下を引き起こすという問題があった。
【0005】
そこで本発明は、出力異常を早期に発見する運転状態判別方法を提供することを目的とする。さらに、迅速に正常状態に戻すことができる、燃料電池スタックの運転制御方法を提供することを目的とする。
【0006】
【課題を解決するための手段】
前記した問題点を解決するために、本発明の燃料電池の運転状態判別方法及び運転制御方法は、固体電解質膜を電解質として持つ燃料電池スタックの単セル又は複数個の単セルからなるセルブロックの電圧の振幅及び経時変化のパターンを燃料電池の種々の運転条件の場合に分けて予め記憶装置に記憶させておき、単セル毎又はセルブロック毎の電圧の振幅及び経時変化のパターンを測定し、得られた電圧の振幅及び経時変化のパターンと前記記憶装置に記憶させたパターンとを比較して運転状態を判定し、さらに比較演算し、適切な運転条件の設定値を選択し、燃料電池スタックの単セル又はセルブロックに対し該設定値に調整する命令を与えることを特徴とする。
【0007】
前記運転条件は、例えば、燃料電池スタックへ供給する水の供給量のためのもの、燃料ガスの供給量のためのもの、酸化剤ガスの供給量のためのもの、燃料電池スタックを冷却するためのものから一個以上の条件を選択することができる。
【0008】
前記適切な運転条件を選択するための入力情報として、前記電圧の振幅及び経時変化のパターンの測定結果に加えて、燃料電池スタックの単セル又は複数個の単セルからなるセルブロックの温度情報を使用することもできる。
【0009】
【発明の実施の形態】
本発明は、燃料電池スタックを構成する各単セル或いは単セルの複数個からなるセルブロックについて出力電圧の振幅の大きさ及び/又は周期、並びに出力電圧の経時変化を自動的にモニターし、その変化パターンより、正常状態のパターンから外れた場合、どのタイプの異常に属する経時パターンかを判断し、少なくともセル中の高分子固体電解質の含水状態を知り、単セル或いはセルブロックに対して、適切な運転条件を変更するものである。
【0010】
図1に本発明の燃料電池スタックの運転制御についてのシステム図の一例を示す。図2にそのシステムに基づいた異常検出フロー図を示す。
【0011】
燃料電池スタックの各単セル毎、或いは複数個の単セルを単位とするセルブロック毎に、それらの出力端子に接続して出力電圧を測定するための電位計が装備されている。さらに温度を測定するための熱電対が単セル複数個を単位とするセルブロック毎に装備されている。なおこの熱電対は前記の出力電圧測定ブロック毎に設置しても、しなくてもよく、任意の場所でよい。例えば、燃料電池スタックの両端および中腹の合計3ヵ所に設置してもよい。
【0012】
予め、燃料電池スタックの正常運転時のときの単セル、又は複数の単セルからなるセルブロックにおける出力電圧の振幅の大きさ及び/又は周期、並びに出力電圧の経時変化パターン或いはセル温度パターン等、及び異常運転時、例えば、高分子固体電解質膜の含水量異常時(過膨潤時又は過乾燥時)、反応ガス(燃料ガスおよび酸化剤ガス)供給量異常時のときの出力電圧の経時変化パターン或いはセル温度パターン等のデータを制御コンピュータの記憶装置に記憶させておく。
【0013】
一方、燃料電池の運転時に、前記電位計にて常時測定されている出力電圧値(V1 、V2 、… )はA/D変換ボードに取り込まれて、デジタル信号に変換され、一方、前記熱電対にて測定された温度(T1 、T2 ..)は別のA/D変換ボードに取り込まれて、やはりアナログ信号よりデジタル信号に変換される。これらのデジタル信号値は、コンピュータに取り込まれる(データの読込段階)。
単位時間当たりの出力電圧値の変化量が演算され、その変化量が一定量以上となった場合に、その時点からの経時変化パターンを既存データの異常パターンと比較し、近似係数が最も高いものを、その異常状態に特有なパターンとして同定する(演算段階)。
【0014】
異常パターンの同定の後、燃料電池スタックの各単セル或いは各セルブロックへ供給するための望ましい空気供給圧、加湿器の出力、冷却ファンの出力の設定変更値が決定される(設定段階)。
【0015】
得られた設定変更値はD/A変換ボードおよびリレーボードに送られる。D/A変換ボードにおいてはデジタル信号がアナログ信号に変換されると同時に、新設定置(例えば、加湿器の出力を10V→8Vに変更等)のアナログ信号が燃料電池スタックのための空気供給装置、加湿器、冷却装置等の各機器に送られ、燃料電池スタックの各単セル或いは各セルブロックの空気供給圧、加湿度、温度等の調整が行われる。一方、リレーボードにおいては、オン/オフ信号(例えば、燃料電池スタックの冷却ファンのオン・オフ指令)が前記各機器に送られる。
【0016】
燃料ガスとして水素ガス、酸化剤ガスとして空気を用いた場合の燃料電池スタックにおいて、図3に出力電圧パターンが正常な場合の一例、図4〜図6に異常である場合の異常パターンの一例を示し、さらに、その原因、およびその処置法を具体的な例に基づいて下記に説明する。なお、図3〜図6に示すパターンは、1辺が6cmの正方形の電極で、ナフィオン(商品名:デュポン社製のスルホン酸基を持つポリスチレン系陽イオン交換膜)よりなる電解質膜を挟持した単セルにおいて、酸化剤ガスとして空気、燃料ガスとして水素を用い、定常運転を行った場合における経時変化である。
【0017】
図3は、経過時間に対して出力電圧はほぼ一定に保たれているパターンの一例を示す。
【0018】
図4は、出力電圧の挙動が不安定な異常パターンの一例を示し、出力電圧の振幅が大きく、その変化が長い周期で不規則に繰り返しており、出力電圧が徐々に低下している。このパターンを同定するためには、例えば、5分間につき±0.03V以上の変化量が出現したときを基準値として設定することができる。このようなパターンを示す場合は、セルへ供給する水分量が増大して高分子固体電解質膜中の水分が過剰になったときである。この異常を解消するためには、セルへの水供給量を絞り、セルを乾燥側にシフトさせる操作をする。水供給方法は任意な方法で行うことができ、例えば、燃料ガスとしての水素ガスへ加湿するバブリング装置の出力を絞ってもよい。上記操作と平行して、冷却ファンをオフさせることによりセル温度を上昇させ、また、空気送風用ブロワ出力を増大させて空気供給量を増加させることが好ましい。
【0019】
図5は、出力電圧の小振幅の変化が短い周期で規則的に繰り返す異常パターンである。このパターンを同定するためには、例えば、±0.01V/分の振幅が10分間以上出現したときを基準値として設定することができる。このようなパターンを示す場合は、セルへの酸化剤ガス供給不足のときである。この異常を解消するためには、セルへの酸化剤ガス(空気)の供給量を増大させる。
【0020】
図6は、出力電圧が急速に低下する異常パターンである。このとき同時に高分子固体電解質の抵抗値の急上昇が観察される。このパターンを同定するためには、例えば、5分間につき±0.03V以上の電圧低下が出現した場合を基準値として設定することができる。このようなパターンを示す場合は、セルの高分子固体電解質膜の含水量が過少のときである。この異常を解消するためには、セルを加湿側にシフトさせる操作、即ち、セルへの水供給量を増大させる。水供給方法は任意な方法で行うことができ、例えば、燃料ガスとしての水素ガスに対して加湿するためのバブリング装置の出力を増大させてもよい。この操作と平行して冷却ファンをオンにしてセル温度を低下させたり、また空気送風用ブロワ出力を減少させて空気供給量を減少させることが望ましい。
【0021】
【発明の効果】
本発明の燃料電池スタックの運転状態判別方法及び運転制御方法によれば、燃料電池スタックを構成する各単セル又はセルブロック毎の出力異常を早期に発見することが可能であるので、迅速に正常状態に戻すことができる。すなわち、燃料電池スタック全体の出力低下が定格以下になる前に、各単セル又はセルブロック毎に処置することが可能となり、燃料電池スタックの運転を停止することなく短時間で正常状態に戻すことができる。
【0022】
本発明の燃料電池スタックの運転状態判別方法及び運転制御方法によれば、各単セル又はセルブロックの運転異常時の出力電圧の振幅の大きさ及び/又は周期、並びに出力電圧の経時変化パターンのデータ数を増やすことで、燃料電池スタックの異常のより正確な早期発見及び原因判断が行える。
【0023】
本発明の燃料電池スタックの運転状態判別方法及び運転制御方法によれば、出力電圧を測定するために汎用的に用いられている電圧計を出力電圧のモニターとして転用できるので、外部から特別な出力電圧制御装置を追加することなく既存の発電システムで簡易に実行可能である。
【0024】
本発明の燃料電池スタックの運転状態判別方法及び運転制御方法によれば、単セル或いはセルブロック毎に出力電圧をモニターしているので、外部マニホールド方式、内部マニホールド方式のいずれの燃料電池スタックにおいても適用可能であり、また、セルの積層方法にも影響されることなく適用できる。
【図面の簡単な説明】
【図1】本発明の燃料電池スタックの運転制御についてのシステム図の一例を示す。
【図2】本発明の燃料電池スタックの運転制御についての異常検出フローを示す。
【図3】燃料電池スタックにおいて、出力電圧パターンが正常な場合の一例を示す。
【図4】燃料電池スタックにおいて、出力電圧の振幅が大きく、その変化が長い周期で不規則に繰り返している異常パターンを示す。
【図5】燃料電池スタックにおいて、出力電圧の小振幅の変化が短い周期で規則的に繰り返す異常パターンを示す。
【図6】燃料電池スタックにおいて、出力電圧が急速に低下する異常パターンを示す。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an operation state determination method and operation control method for a fuel cell stack having a solid electrolyte membrane as an electrolyte, and more particularly to an operation state determination method and operation control method for a fuel cell stack having a polymer solid electrolyte membrane.
[0002]
[Prior art]
A fuel cell having a polymer solid electrolyte membrane as an electrolyte is called a PEM type fuel cell, and is operated in a state where a polymer solid electrolyte membrane containing water is sandwiched between an electrode of a fuel electrode and an air electrode. In the cell reaction of the PEM type fuel cell, by supplying fuel gas to the fuel electrode, the generated hydrogen ions move in the form of protons (H 3 O + ) through the polymer solid electrolyte membrane to the air electrode. Electrons generated from the fuel gas at the fuel electrode travel through an external circuit and move to the air electrode.
[0003]
A PEM type fuel cell is generally used in a so-called cell stack in which a plurality of single cells are stacked in series. In this fuel cell stack, when a constant output voltage is obtained, the fuel gas is humidified by a humidifying device such as a bubbling device in order to keep the solid polymer electrolyte membranes of all single cells in an appropriate water-containing state. Thus, a method of supplying each fuel electrode has been adopted.
[0004]
[Problems to be solved by the invention]
However, in the conventional method of operating a fuel cell stack, in order to maintain all the single-cell solid polymer electrolyte membranes in an appropriate water-containing state, each reaction gas (fuel gas and oxidation gas) supplied to the fuel cell stack during operation is maintained. However, it is difficult to keep all the single cells in the fuel cell stack uniformly in an appropriate humidification state from time to time, or a part of the fuel cell stack, or There is a problem that the whole tends to be excessive in water content (swelled state) or too low (in a dry state), and this causes a decrease in output.
[0005]
Therefore, an object of the present invention is to provide an operation state determination method for detecting an output abnormality at an early stage. Furthermore, it aims at providing the operation control method of a fuel cell stack which can return to a normal state rapidly.
[0006]
[Means for Solving the Problems]
In order to solve the above-described problems, a fuel cell operation state determination method and operation control method according to the present invention include a single cell of a fuel cell stack having a solid electrolyte membrane as an electrolyte or a cell block composed of a plurality of single cells. The voltage amplitude and the temporal change pattern are divided into various operating conditions of the fuel cell and stored in advance in the storage device, and the voltage amplitude and the temporal change pattern for each single cell or each cell block are measured. The obtained voltage amplitude and time-dependent pattern is compared with the pattern stored in the storage device to determine the operation state , and further comparison calculation is performed to select a set value of an appropriate operation condition, and the fuel cell stack An instruction for adjusting the set value is given to a single cell or a cell block.
[0007]
The operating conditions are, for example, for the amount of water supplied to the fuel cell stack, for the amount of fuel gas supplied, for the amount of oxidant gas supplied, and for cooling the fuel cell stack. One or more conditions can be selected.
[0008]
As input information for selecting the appropriate operating conditions, in addition to the measurement results of the voltage amplitude and the pattern of change over time, temperature information of a cell block of a single cell or a plurality of single cells of the fuel cell stack It can also be used.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
The present invention automatically monitors the magnitude and / or cycle of the amplitude of the output voltage and the change over time of the output voltage for each single cell or a plurality of cell blocks constituting the fuel cell stack. If the change pattern deviates from the normal state pattern, determine what type of abnormality the aging pattern belongs to, know at least the water content of the polymer solid electrolyte in the cell, and be appropriate for a single cell or cell block The operating conditions are changed.
[0010]
FIG. 1 shows an example of a system diagram for operation control of the fuel cell stack of the present invention. FIG. 2 shows an abnormality detection flowchart based on the system.
[0011]
An electrometer for measuring the output voltage by connecting to each output terminal is provided for each single cell of the fuel cell stack or for each cell block having a plurality of single cells as a unit. Further, a thermocouple for measuring temperature is provided for each cell block having a plurality of single cells. This thermocouple may or may not be installed for each output voltage measurement block, and may be at an arbitrary location. For example, the fuel cell stack may be installed at a total of three locations on both ends and in the middle.
[0012]
In advance, the magnitude and / or cycle of the amplitude of the output voltage in a single cell or a cell block consisting of a plurality of single cells during normal operation of the fuel cell stack, the time-dependent change pattern of the output voltage or the cell temperature pattern, etc. In addition, during abnormal operation, for example, when the moisture content of the polymer solid electrolyte membrane is abnormal (when over-swelling or over-drying), or when the supply amount of reaction gas (fuel gas and oxidant gas) is abnormal, the time-dependent change pattern of the output voltage Alternatively, data such as a cell temperature pattern is stored in a storage device of the control computer.
[0013]
On the other hand, during operation of the fuel cell, output voltage values (V 1 , V 2 ,...) That are constantly measured by the electrometer are taken into the A / D conversion board and converted into digital signals, The temperatures (T 1 , T 2 ...) Measured by the thermocouple are taken into another A / D conversion board and converted from analog signals to digital signals. These digital signal values are captured by a computer (data reading stage).
When the amount of change in the output voltage value per unit time is calculated and the amount of change exceeds a certain amount, the temporal change pattern from that point is compared with the abnormal pattern in the existing data, and the one with the highest approximation coefficient Is identified as a pattern peculiar to the abnormal state (calculation stage).
[0014]
After the abnormal pattern is identified, desired air supply pressure, humidifier output, and cooling fan output setting change values to be supplied to each single cell or each cell block of the fuel cell stack are determined (setting stage).
[0015]
The obtained setting change value is sent to the D / A conversion board and the relay board. In the D / A conversion board, the digital signal is converted into an analog signal, and at the same time, the analog signal of the new setting device (for example, the output of the humidifier is changed from 10 V to 8 V) is supplied to the air supply device for the fuel cell stack. The air supply pressure, humidification, temperature, etc. of each unit cell or each cell block of the fuel cell stack are adjusted. On the other hand, in the relay board, an on / off signal (for example, an on / off command for a cooling fan of the fuel cell stack) is sent to each device.
[0016]
In the fuel cell stack when hydrogen gas is used as the fuel gas and air is used as the oxidant gas, FIG. 3 shows an example when the output voltage pattern is normal, and FIGS. 4 to 6 show examples of the abnormal pattern when the output voltage pattern is abnormal. Furthermore, the cause and the treatment method will be described below based on a specific example. The pattern shown in FIGS. 3 to 6 is a square electrode having a side of 6 cm, and sandwiched an electrolyte membrane made of Nafion (trade name: polystyrene-based cation exchange membrane having a sulfonic acid group manufactured by DuPont). This is a change over time when a single cell is operated in a steady state using air as the oxidant gas and hydrogen as the fuel gas.
[0017]
FIG. 3 shows an example of a pattern in which the output voltage is kept substantially constant with respect to the elapsed time.
[0018]
FIG. 4 shows an example of an abnormal pattern in which the behavior of the output voltage is unstable. The amplitude of the output voltage is large, the change is repeated irregularly with a long period, and the output voltage gradually decreases. In order to identify this pattern, for example, when a change amount of ± 0.03 V or more per 5 minutes appears can be set as the reference value. The case where such a pattern is shown is when the amount of water supplied to the cell is increased and the water in the polymer solid electrolyte membrane becomes excessive. In order to eliminate this abnormality, the operation is performed to reduce the amount of water supplied to the cell and shift the cell to the dry side. The water supply method can be performed by any method. For example, the output of a bubbling device that humidifies hydrogen gas as a fuel gas may be reduced. In parallel with the above operation, it is preferable to increase the cell temperature by turning off the cooling fan and increase the air supply amount by increasing the blower output for air blowing.
[0019]
FIG. 5 shows an abnormal pattern in which the change in the small amplitude of the output voltage repeats regularly in a short cycle. In order to identify this pattern, for example, a time when an amplitude of ± 0.01 V / min appears for 10 minutes or more can be set as a reference value. The case where such a pattern is shown is when the supply of oxidant gas to the cell is insufficient. In order to eliminate this abnormality, the supply amount of oxidant gas (air) to the cell is increased.
[0020]
FIG. 6 shows an abnormal pattern in which the output voltage decreases rapidly. At the same time, a rapid increase in the resistance value of the polymer solid electrolyte is observed. In order to identify this pattern, for example, a case where a voltage drop of ± 0.03 V or more appears for 5 minutes can be set as the reference value. Such a pattern is shown when the water content of the polymer solid electrolyte membrane of the cell is too low. In order to eliminate this abnormality, the operation of shifting the cell to the humidification side, that is, the amount of water supplied to the cell is increased. The water supply method can be performed by any method. For example, the output of the bubbling device for humidifying the hydrogen gas as the fuel gas may be increased. In parallel with this operation, it is desirable to lower the cell temperature by turning on the cooling fan, or to reduce the air supply amount by reducing the blower output for air blowing.
[0021]
【The invention's effect】
According to the operation state determination method and operation control method of the fuel cell stack of the present invention, it is possible to detect an output abnormality for each single cell or cell block constituting the fuel cell stack at an early stage. It can be returned to the state. In other words, before the output drop of the entire fuel cell stack falls below the rating, it becomes possible to treat each single cell or cell block, and return to the normal state in a short time without stopping the operation of the fuel cell stack. Can do.
[0022]
According to the operation state determination method and the operation control method of the fuel cell stack of the present invention, the magnitude and / or cycle of the output voltage at the time of abnormal operation of each single cell or cell block, and the temporal change pattern of the output voltage By increasing the number of data, early detection and cause determination of the abnormality of the fuel cell stack can be performed.
[0023]
According to the operation state determination method and the operation control method of the fuel cell stack of the present invention, a voltmeter generally used for measuring the output voltage can be diverted as a monitor of the output voltage, so that a special output is provided from the outside. It can be easily implemented in an existing power generation system without adding a voltage control device.
[0024]
According to the operation state determination method and operation control method of the fuel cell stack of the present invention, the output voltage is monitored for each single cell or each cell block. The present invention is applicable and can be applied without being influenced by the cell stacking method.
[Brief description of the drawings]
FIG. 1 shows an example of a system diagram for operation control of a fuel cell stack according to the present invention.
FIG. 2 shows an abnormality detection flow for operation control of the fuel cell stack of the present invention.
FIG. 3 shows an example when the output voltage pattern is normal in the fuel cell stack.
FIG. 4 shows an abnormal pattern in which the amplitude of the output voltage is large and the change is repeated irregularly in a long cycle in the fuel cell stack.
FIG. 5 shows an abnormal pattern in which a change in the small amplitude of the output voltage repeats regularly in a short cycle in the fuel cell stack.
FIG. 6 shows an abnormal pattern in which the output voltage rapidly decreases in the fuel cell stack.
Claims (5)
(2)単セル毎又はセルブロック毎の電圧の振幅及び経時変化のパターンを測定し、
(3)得られた電圧の振幅及び経時変化のパターンと前記記憶装置に記憶させたパターンとを比較して、運転状態を判定する運転状態判別方法。(1) The voltage amplitude and time-dependent change pattern of a single cell or a cell block composed of a plurality of single cells of a fuel cell stack having a solid electrolyte membrane as an electrolyte are stored in advance for various operating conditions of the fuel cell. Memorize it in the device,
(2) Measure the voltage amplitude and time-varying pattern for each single cell or cell block,
(3) obtained by comparing the pattern is stored in the pattern and the storage device of the amplitude and time course of the voltage, determines the operating state determination method operating conditions.
(2)単セル毎又はセルブロック毎の電圧の振幅及び経時変化のパターンを測定し、(2) Measure the voltage amplitude and time-varying pattern for each single cell or cell block,
(3)得られた電圧の振幅及び経時変化のパターンと前記記憶装置に記憶させたパターンとを比較演算し、適切な運転条件の設定値を選択し、燃料電池スタックの単セル又はセルブロックに対し該設定値に調整する命令を与えることを特徴とする燃料電池スタックの運転制御方法。(3) The obtained voltage amplitude and temporal change pattern is compared with the pattern stored in the storage device, the set value of the appropriate operating condition is selected, and the unit cell or cell block of the fuel cell stack is selected. An operation control method for a fuel cell stack, characterized in that an instruction for adjusting the set value is given.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP06944796A JP3767639B2 (en) | 1996-02-29 | 1996-02-29 | Operation state determination method and operation control method for fuel cell stack |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP06944796A JP3767639B2 (en) | 1996-02-29 | 1996-02-29 | Operation state determination method and operation control method for fuel cell stack |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH09245826A JPH09245826A (en) | 1997-09-19 |
JP3767639B2 true JP3767639B2 (en) | 2006-04-19 |
Family
ID=13402909
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP06944796A Expired - Lifetime JP3767639B2 (en) | 1996-02-29 | 1996-02-29 | Operation state determination method and operation control method for fuel cell stack |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3767639B2 (en) |
Families Citing this family (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
ATE199797T1 (en) * | 1997-11-20 | 2001-03-15 | Siemens Ag | METHOD AND APPARATUS FOR MONITORING A SELECTED GROUP OF FUEL CELLS OF A HIGH TEMPERATURE FUEL CELL STACK |
JP4682386B2 (en) * | 1999-02-23 | 2011-05-11 | トヨタ自動車株式会社 | Fuel cell system |
JP2002324563A (en) * | 2001-04-24 | 2002-11-08 | Toyota Motor Corp | Fuel cell system and control method for fuel cell system |
JP4214761B2 (en) | 2002-01-31 | 2009-01-28 | 株式会社デンソー | Fuel cell system |
JP4380231B2 (en) | 2002-07-30 | 2009-12-09 | 株式会社デンソー | Fuel cell system |
JP3772826B2 (en) * | 2002-11-18 | 2006-05-10 | 日本電気株式会社 | FUEL CELL SYSTEM, PORTABLE ELECTRIC DEVICE USING FUEL CELL, AND METHOD OF OPERATING FUEL CELL |
JP4352688B2 (en) | 2002-11-27 | 2009-10-28 | トヨタ自動車株式会社 | Fuel cell diagnostic device and diagnostic method |
JP4506075B2 (en) * | 2002-11-27 | 2010-07-21 | トヨタ自動車株式会社 | Fuel cell diagnostic device |
JP4273781B2 (en) | 2003-02-05 | 2009-06-03 | トヨタ自動車株式会社 | Fuel cell operating state determination apparatus and method |
KR100670491B1 (en) * | 2003-08-01 | 2007-01-16 | 신덴겐코교 가부시키가이샤 | A fuel cell optimum operating point tracking system in a power supply apparatus using a fuel cell, and a power supply apparatus having the fuel cell optimal operating point tracking system |
JP4600642B2 (en) * | 2004-05-24 | 2010-12-15 | トヨタ自動車株式会社 | Abnormality judgment device for fuel cell stack |
JP4930818B2 (en) * | 2004-07-09 | 2012-05-16 | トヨタ自動車株式会社 | Fuel cell system |
WO2006021068A1 (en) * | 2004-08-26 | 2006-03-02 | Hydrogenics Corporation | Fuel cell regulation using updating table storage |
JP4784075B2 (en) * | 2004-11-22 | 2011-09-28 | 日産自動車株式会社 | Fuel cell |
KR100664090B1 (en) | 2005-12-13 | 2007-01-03 | 엘지전자 주식회사 | Power supply control device and method for grid-connected fuel cell system |
JP2007250461A (en) * | 2006-03-17 | 2007-09-27 | Fujitsu Ltd | FUEL CELL SYSTEM AND CONTROL METHOD FOR FUEL CELL SYSTEM |
JP5200414B2 (en) | 2007-04-26 | 2013-06-05 | トヨタ自動車株式会社 | Fuel cell system |
WO2009060706A1 (en) * | 2007-11-08 | 2009-05-14 | Toyota Jidosha Kabushiki Kaisha | Fuel cell system |
JP4803202B2 (en) * | 2008-04-07 | 2011-10-26 | トヨタ自動車株式会社 | Operation control of fuel cell system |
KR101601443B1 (en) * | 2014-07-02 | 2016-03-22 | 현대자동차주식회사 | Driving control method of fuel cell system |
KR101755936B1 (en) | 2015-12-11 | 2017-07-07 | 현대자동차주식회사 | Fuel cell system and Controlling method thereof |
CN114976144B (en) * | 2022-07-04 | 2024-04-09 | 骆驼集团武汉光谷研发中心有限公司 | Fuel cell management control method |
-
1996
- 1996-02-29 JP JP06944796A patent/JP3767639B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH09245826A (en) | 1997-09-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3767639B2 (en) | Operation state determination method and operation control method for fuel cell stack | |
JP4200576B2 (en) | Fuel cell system | |
JP3098510B2 (en) | System and method for detecting and correcting fuel cell overflow conditions | |
US20010028970A1 (en) | Fuel cell system and method for operating fuel cell | |
CA2456405C (en) | Operation state determining apparatus and method for fuel cell | |
US7862935B2 (en) | Management via dynamic water holdup estimator in a fuel cell | |
US9281532B2 (en) | Remedial actions for air flow errors in a fuel cell system | |
US8623564B2 (en) | Method for remedial action in the event of the failure of the primary air flow measurement device in a fuel cell system | |
US9070921B2 (en) | Subzero ambient shutdown purge operating strategy for PEM fuel cell system | |
DK1570538T3 (en) | Method and Device for Monitoring Fuel Cell Tensions | |
US20110076581A1 (en) | Stack operation method aimed at cell reversal prevention | |
US8603686B2 (en) | Method for remedial action in the event of the failure of the compressor bypass valve in a fuel cell system | |
US9379396B2 (en) | Controls giving −25° C. freeze start capability to a fuel cell system | |
JP2006351506A (en) | Fuel cell system | |
US9853312B2 (en) | Method for determining membrane protonic resistance of a fuel cell stack | |
JP2006310109A (en) | Fuel cell power generating system | |
US8927165B2 (en) | Stack cathode inlet RH (relative humidity) control without RH sensing device feedback | |
JPS6119072A (en) | Fuel cell power generating plant | |
JP2002231283A (en) | Solid polymer electrolyte fuel cell power generator and operation method thereof | |
US20070048557A1 (en) | Diagnosis of cell-to-cell variability in water holdup via dynamic voltage sensor pattern in response to a cathode flow pulse | |
US7608351B2 (en) | System and method for controlling cathode stoichiometry to minimize RH excursions during transients | |
JP2003115311A (en) | Polymer electrolyte fuel cell and method of operating the same | |
JP2006228608A (en) | Fuel cell system and its control method | |
Scholta et al. | Startup-procedures for a HT-PEMFC stack | |
WO2004049486A2 (en) | Reactant supply for a fuel cell power system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20050204 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20050609 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050728 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20060111 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20060124 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100210 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110210 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120210 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130210 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130210 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140210 Year of fee payment: 8 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |